
RC23561 (W0503-057) March 9, 2005
Computer Science

IBM Research Report

Projecting a Connected Programming-Model for Business
Applications onto Disconnected Devices:  

A Practical Approach

Avraham Leff, James Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Projecting a Connected Programming-Model for Business Applications Onto
Disconnected Devices: a Practical Approach

Avraham Leff
IBM T. J. Watson Research Center

P. O. Box 704
Yorktown Heights

NY 10598
avraham@us.ibm.com

James Rayfield
IBM T. J. Watson Research Center

P. O. Box 704
Yorktown Heights

NY 10598
jtray@us.ibm.com

Abstract

Programming models usefully structure the way that pro-
grammers approach problems and develop applications.
Business applications need properties such as persistence,
data sharing, transactions, and security, and various pro-
gramming models exist – for connected environments – that
facilitate the development of applications with these proper-
ties. However, as developers consider how business appli-
cations should run on disconnected devices, we must con-
sider ways to implement these properties in such an environ-
ment. In this paper we present a practical approach for pro-
jecting a connected programming model onto disconnected
devices, explain the advantages of this approach, and show
how the connected programming model is useful even in a
disconnected environment.

1 Introduction

1.1 Programming Models for Business Applica-
tions

A business application is characterized by the fact that
the application (1) updates state that is shared by multiple
users; (2) must perform these updates transactionally [8] to
a shared database; and (3) must operate securely. Business
applications therefore have requirements that other applica-
tions do not: chiefly, to access persistent datastores securely
and transactionally. Programming models can ease the diffi-
culty of developing complex business logic that meets these
requirements. This is typically done by abstracting business
application requirements as generic services or middleware
that the developer can access in as unobtrusive a manner
as possible. Good programming models enable a “separa-
tion of concerns” through which the application developer

can concentrate on the application-specific logic, and as-
sume that the deployed application will meet the business
application requirements. Well-known examples of such
programming models include CORBA [1], DCOM [2], and
Enterprise JavaBeans (EJBs) [5].

1.2 Business Applications on Disconnected De-
vices

Business applications have traditionally been deployed
in connectedenvironments in which the shared database can
always be accessed by the application. In contrast, when
applications are deployed to mobile devices such as per-
sonal digital assistants (PDAs), hand-held computers, and
laptop computers, these devices are only intermittently able
to interact with the shared database. (In a client/server
environment, the shared database resides on the server.)
Historically, resource constraints (e.g., memory and CPU)
have precluded disconnected devices from running business
applications. Ongoing technology trends, however, imply
that such resource constraints are disappearing. For exam-
ple, DB2 Everyplace [3] (a relational database) and Web-
Sphere MQ Everyplace [18] (a secure and dependable mes-
saging system) run on a wide variety of platforms such as
PocketPCTM , PalmOSTM , QNXTM , and Linux; they are also
compatible with J2ME [13] configurations/profiles such as
CDC and Foundation. It seems likely that mobile devices
will even be able to host middleware such as an Enterprise
JavaBeans container. As a result, business applications that
previously required the resources of an “always connected”
desktop computer can potentially run on a disconnected de-
vice.

However, resource constraints are not the only issue pre-
cluding the deployment of business applications on discon-
nected devices. Fundamental algorithmic and infrastructure
problems must also be solved. The algorithmic problems



stem from the fact that the application executes while dis-
connected from the server, but the work performed must
later be propagated to the server. To see why this is so,
consider the fact that business applications, by our defi-
nition, are structured as application logic that reads from,
and writes to, a transactional database that can be concur-
rently accessed by other applications. Connected business
applications have taken for granted that the transactional
database can always be accessed by the application. Even
if they are structured so as to access locally cached data for
“read” operations, state changes (“updates”) must still ap-
plied to the shared, master database [6] [15] at the comple-
tion of each user operation. Obviously, the shared-database
assumption does not hold when business applications are
disconnected: they are then forced to read from, and write
to, a database that isnot shared by other applications and
users. Also, almost inevitably, the disconnected applica-
tion will execute against data that is out-of-date with re-
spect to the server’s version of the data. How can work
performed on the disconnected device be merged into the
shared database in a manner that preserves the transactional
behavior of both disconnected and connected clients? The
lock-based concurrency control mechanisms used in con-
nected environments are not suitable for disconnectable ap-
plications because they unacceptably reduce database avail-
ability. Also, lock-based concurrency control is simply not
dynamic enough; it is typically impossible to know what
needs to be locked before the device disconnects from the
server.

Infrastructure must also be developed to deal with the
lifecycle of an application deployed to a disconnected de-
vice. Data must first be “checked out” from the shared
database; the data are then used by the application; and the
committed work must be merged into the server database
when the device reconnects. Without middleware that pro-
vides replication (from the server to the device) and syn-
chronization (from the device to the server) functions, each
application must provide its own implementation of these
features.

A programming model is therefore needed to facilitate
business application development for disconnected devices.
It must provide constructs that address these algorithmic
issues, and must integrate with middleware that provides
the services described above. This paper considers whether
the projection of an existing programming model, with the
appropriate middleware runtime, is sufficient to develop
and deploy useful business applications to disconnected de-
vices.

1.3 Projecting a Programming Model

We explain in this paper how the Enterprise JavaBeans
[5] programming model can be projected onto disconnected

devices. By “projection”, we acknowledge explicitly that
our approach does require that developers be aware that the
application will be deployed in a disconnected environment.
However, the programming model enables application se-
mantics that are identical, or similar, to the connected pro-
gramming model. The algorithmic issues discussed above
are solved in a way that is transparent to the developer, who
does not have to write more (or different) code than she does
for the connected environment. Further, we provide middle-
ware that meets the basic infrastructure requirements.

1.4 Technical Contribution

The implications of disconnection for transactional ap-
plications are well known (see [23] for a recent survey of
the area of “mobile transactions”). Much work has been
done in the area of transactionally synchronizing work per-
formed on a disconnected client to the server. One contri-
bution of our work is that we show how a mature program-
ming model can be projected to disconnected devices in a
way that takes advantage of this algorithmic work. This is
important because (1) developers can use their existing pro-
gramming model experience to develop disconnected appli-
cations and (2) differences between the connected and dis-
connected versions of an application are greatly reduced.
We also demonstrate that our approach is “practical” in the
sense that useful work can be performed on the discon-
nected device (i.e., few constraints are imposed), while min-
imizing the likelihood of problems arising during synchro-
nization. Our approach is also practical in the sense that we
have built middleware that concretely realizes the program-
ming model on disconnected devices.

1.5 Paper Structure

The paper is structured as follows. In Section 2, we
discuss how this programming model approach relates to
work in the area of mobile transactions. Section 3 explains
how the programming model must support the lifecycle of a
generic disconnected application; Section 4 introduces two
synchronization techniques that we considered using to sup-
port the programming model. In Section 5 we explain why
our combination of this programming model and middle-
ware is a practical approach for building disconnected ap-
plications.

2 Related Work

Our paper focuses on how a connected programming
model can be projected to disconnected devices. This part
of our work is closely related to the area of mobile transac-
tions [23]. However, our projected programming model and
synchronization algorithm (see Section 4) is much simpler



than many proposed in the mobile transactions literature.
We assert that this simpler approach is sufficient for several
reasons.

First, we address a programming model for environ-
ments that are more robust than is typically assumed for
mobile transactions. Much mobile transactions research,
for example, assumes that these transactions execute in re-
source constrained environments. They must thererefore
address issues related to limited bandwidth capacity, com-
munication costs, and energy consumption. In contrast, we
assume that business applications are deployed to (the in-
creasingly more powerful) devices that can locally execute
business applications against a transactional database.

Second, we assume that transactions are able to execute
entirelyon the disconnected device, without assistance from
a server. This allows considerable simplification compared
to the mobile transactions work designed to support trans-
action processing in which a client may initiate transactions
on servers or may distribute transactions among the mobile
client device and servers. Such environments require that
transaction processing be supported while the mobile de-
vice moves from one networked cell to another or drops its
network connections. Mobile transaction models such as
Kangaroo Transactions[4] are explicitly designed to op-
erate in such complex environments, whereas the synchro-
nization techniques discussed here can use traditional trans-
action semantics. Similarly, the synchronization techniques
discussed here do not deal with distributed transactions (be-
tween the mobile device and the network), nor do they deal
with heterogeneous multi-database systems. Our focus, in-
stead, is to jump-start deployment of business applications
to disconnected devices in well-controlled environments.

Finally, we do disagree with the assumption made by
some research that optimistic (non-locking) concurrency
control mechanisms must perform badly for the long dis-
connect durations typical of mobile transactions. Such re-
search assumes that the classic optimistic algorithms [8]
perform well only for short disconnections, and will ex-
perience unacceptable abort ratios for long disconnections.
Non-traditional transaction models such aspre-write op-
erations [17] and dynamic object clusteringreplication
schemes [21] are designed to increase concurrency by
avoiding such aborts. In our experience, however, busi-
ness processes greatly reduce the actual occurrence of such
aborts by implictly partitioning data among application
users. Furthermore, the transform-based approach used by
method replay synchronization (Section 4) is designed to re-
duce the size of a transactional footprint, and thus reduces
the probability of aborts during synchronization.

Our synchronization work builds on earlier work us-
ing log-replay in support of long-running transactions [19].
These ideas are similar to the approach taken by the
IceCube[9] system, although IceCube does not focus on

transactional applications.

3 Lifecycle of a Disconnected Business Appli-
cation

In order to be successful, a programming model for dis-
connected devices must be compatible with the lifecycle of
a disconnected application.

Deployment of a disconnectable business application re-
quires that an administrator perform a one-time setup (life-
cycle stage0) of the mobile device’s database(s). The key
challenge in stage0 is to replicate sufficient data (from the
server to the device) such that the application can execute
correctly. This can be a difficult task when an application
can potentially access a data set that is too large to fit on
the device. In such cases, application administrators must
determine the subset of data that will actually be used by
the application, and replicate that subset to the device. This
is often done throughad-hoc, but effective, business rules.
For example, a salesman does not need to have the entire set
of customer data replicated; only the set of customers in her
district is typically needed.

After this initial setup is performed, the mobile device
repeatedly executes the following lifecycle:

Stage 1 (Propagate server updates):Before disconnect-
ing, the server’s updates are propagated to the device.

Stage 2 (Execution):User executes one or more business
applications on the disconnected device.

Stage 3 (Propagate client updates):Device reconnects to
server, and propagates its updates to the server-side
database.

Stages0 and1 benefit from middleware that allows de-
vices to define the subset of relevant data that needs to be
copied to the device. The subset is typically expressed as a
query or set of queries applied to the server database.

Stage1 ensures that the device’s database is as up-to-
date as possible before beginning disconnected execution.
It greatly benefits from middleware that:

• Subscribesto relevant changes on the server (i.e. those
changes which fall within the defined subset of rele-
vant data).

• Propagates server changes to the client device
database, with the result that the device’s data is now
up-to-date with respect to the server.

Standardized protocols such as SyncML [25] can be used
to pass data between the device and the server – across wire-
less and wired networks and over multiple transport proto-
cols – using the standard representation format defined in



the SyncMLRepresentationprotocol. The SyncML Syn-
chronization protocol efficiently replicates server-side data
to the device, by doing either a “one-way sync from server
only” or a “Refresh sync from server only”. In the former,
the device gets all data modifications that have been com-
mitted on the server; in the latter, the server exports all of
its data to the device, which then replaces its current set of
data.

Assuming that the correct set of data has been replicated
to the device, stage2 simply involves the execution of the
disconnected application against the local database.

Consider, for example, an “order entry” application that
enables agents to record customer orders. Enabling this ap-
plication to run on a disconnected device requires, during
stage0, that a system administrator replicate the stock cat-
alog consisting of items, in-stock quantities, agents, cus-
tomers, and prior orders, if any. Before disconnection, the
device’s database is brought up-to-date (stage1), so that the
recorded stock levels match the server’s values. The agent
is then able to take new orders (stage2) while disconnected
from the server database. We assume that the agents prefer
to work while out in the field, where connectivity may be
unavailable or sporadic.

In order for work performed on the disconnected de-
vice to become visible to other applications, the device
must transactionally propagate its updates to the server-side
database that maintains the master version of the data seen
by other applications and users (stage3). While propagat-
ing the change set from the client to the server, stage3 must
deal with the following issues:

• Conflict Detection, in which the application or middle-
ware detects whether the change set conflicts with the
current state of the server-side database.

One important issue is how the notion of a “conflict”
is defined. Connected business applications typically
define conflicts as non-serializable transaction sched-
ules [8]. Can this definition be used for disconnectable
business applications as well? Efficiency is also a
consideration: for example, does a detected conflict
require that only that one transaction be aborted, or
must the entire set of work performed on the device
be aborted?

• Conflict Resolution, in which (if conflicts were de-
tected), the application or middleware attempts to de-
termine a new server-side state which eliminates the
conflict. If no resolution is possible, the synchroniza-
tion must be (partially or completely) aborted (i.e.,
the device’s state cannot be automatically propagated
to the server), and the failure logged and reported to
the user. If some resolution is possible, it is per-
formed, and the update is propagated to the server-side
database.

A key challenge here is whether general purpose con-
flict resolution algorithms can be devised or whether
application-specific resolution is required.

• Transactional Merge, during which the change set,
possibly modified by conflict resolution, is merged
with the server-side database. As a result, work per-
formed on the disconnected device is now visible to
other applications and users – without violating the
transactional guarrantees made by the application.

Note that update propagation between the client and server
is asymmetric: updates performed on the server may invali-
date transactions performed on the client, but client updates
cannot invalidate previously-committed server-side transac-
tions (because the server-side transactions were previously
visible to all users and applications).

The programming model discussed here is orthogonal to
stage1; the existence of middleware such as DB2 Every-
place [3] shows that efficient subscription and replication
can propagate server updates to the client. The task of the
middleware is to ensure that the application’s execution be-
havior during stage2 conforms as closely as possible to its
behavior in a connected environment. The difficulty of this
programming model projection is that we must deal with,
and provide middleware for, the stage3 synchronization
process, during which the client’s updates are propagated
to the the server.

4 Projecting the EJB Programming Model

EJBs are a component model for enterprise applications
written in Java. EJBs automatically supply common re-
quirements of enterprise applications such as persistence,
concurrency, transactional integrity, and security. Stateless
session beans(SSBs)are EJBs that enable clients to request
a service from the server, and are analogous to a procedure
call implementation. Entity beans are EJBs that represent
“objects”, typically those backed by a persistent datastore.
Bean developers focus on the business logic of their applica-
tion; when deployed to an EJBcontainer, the components
are embedded in an infrastructure that automatically sup-
plies the above requirements.

The EJB programming model is explicitly concerned
with identifying and facilitating the distinct roles that are
required to develop and deploy an application. The pro-
gramming model specifies contracts that separate, for ex-
ample, the bean-provider role (provider of the application’s
business logic) from the container-provider role (provider
of the deployment tooling and runtime that supply deployed
EJBs with functions such as transaction and security man-
agement).

We believe that the stage3 synchronization function can
be similarly abstracted as a container-provided function that



bean providers can ignore and that is transparently provided
by the middleware. The EJB programming model is thus
well suited for projection to disconnected devices: the exist-
ing role separation enables us to enhance existing containers
without changing the API and semantics used in connected
EJB applications.

In the context of projecting the EJB programming model
to disconnected clients, we investigate two contrasting ap-
proaches to synchronization:data replicationandmethod
replay. We determined that ourEJBSyncmiddleware
should implement the method replay approach. The reasons
for this choice are given in Section 5.

4.1 Data Replication

The data replication synchronization technique repre-
sents a change set as a log of data modifications that were
performed on the disconnected device. (The term “modifi-
cations” denotes data creation and deletion as well as data
changes.) Data replication is used by both DB2e [3] and
Lotus Notes [16]. It also underlies the notion of cached
RowSets [22] in which the reference implementation uses
optimistic concurrency-control. The synchronization pro-
cess begins by transmitting the data modification log to the
server.

• Conflict Detection: the server must track the data it has
replicated to individual clients and determine whether
activity by a given client – as represented by the data
modification log – conflicts with changes that were
previously committed by other clients or server-side
applications. The standard algorithm is to detect a
conflict if the synchronizing client has modified a da-
tum that was concurrently modified on the server while
the synchronizing client was disconnected. The server
copy may have been modified by a server-based appli-
cation or the synchronization of another client.

Note that this algorithm, though commonly used in
data replication, does not guarantee detection of all
non-serializable conflicts. For example, if client 1 ex-
ecutes A = A + B, and client 2 executes B = B + A,
this algorithm does not detect a problem, because the
write-sets do not intersect. However, such cases do not
seem to arise in practice.

• Conflict Resolution: the conflict resolution algorithm
used in commercial systems places the burden on the
user or system administrator. This is not due to lazi-
ness, but reflects the fact that (1) synchronization con-
flicts at the data level are difficult to resolve automat-
ically, and (2) the cost of a mishandled conflict reso-
lution being merged into the shared database may be
very high. This implies that the application itself must
specify how conflicts should be resolved.

In some applications, the cost of a mishandled con-
flict is not as serious, and/or the probability of an in-
correct automatic resolution is not that high. For ex-
ample, Lotus Notes can be configured to resolve con-
flicts between document records automatically, either
by merging all the modified columns together or by
taking the last-modified version of the document. This
is adequate for some applications. Also, the resolved
documents are typically viewed by users rather than
by programs, and the users will tend to see most merge
problems. Finally, if an automatic resolution fails, a
new “conflict document” is created, which again will
typically be seen by users.

For general databases and applications, though, this
is not acceptable. Many applications databases are
accessed directly by programs, and those programs
will not know how to deal with conflict documents or
“funny looking” data. For example, many databases
are accessed via a JDBC [12] interface. There is no
provision in JDBC for calling “user exit” code to re-
solve conflicts, or for providing a view of conflict
records to applications.

• Transactional Merge: data deleted on the device must
be deleted on the server; data created on the device
must be created on the server; and updates performed
on the device’s data must also be performed to the
server’s data. For example, in the case of DB2 Ev-
eryplace, the server transactionally performs the ap-
propriate sequence of SQL DELETE, INSERT and
UPDATE operations. In the case of Lotus Notes,
the client’s version of the NSF (Notes Storage Facil-
ity File) records are copied over the master copy.

If data replication is used to implement theorder entry
example, as orders are placed on the disconnected device,
the stock levels are correspondingly modified. During syn-
chronization, those stock table rows that were modified (by
reducing the stock level) are transmitted to the server. Fig-
ure 1 sketches what happens during a successful data repli-
cation synchronization.

4.2 Method Replay

The method replay synchronization technique represents
a change set as a log of the method invocations performed
on the disconnected device. Each log entry constains the
information needed to replay a single method: e.g., the
method name, the method’s signature, and the method’s pa-
rameter values. In can thus be seen as the “dual” of the data
replication approach which logs the data modifications. A
version of log replay is used in the “Field Calls” in IMS
Fast Path [11], earlier work on long-running transactions



Item name Count Dirty
Stock

Stapler 9 Yes

Client

Item name Count
Stock

Stapler 10

Server

Synchronize

Figure 1. Data Replication Synchronization

[19], and IceCube [9] (see also [10]). The synchronization
process begins by transmitting the method log to the server.

• Conflict Detection: the method invocations are re-
played, in sequence, against the server’s current state.
This simultaneously propagates the devices’s updates
to the server (if the method replay is successful) and
detects a conflict (if the method replay is unsuccess-
ful). Whether a method replay is successful depends
solely on the application’s business logic: i.e., on
whether the method throws an exception when invoked
on the server.

• Conflict Resolution: the exception that caused the
method to fail, when replayed on the server, is logged
and the user is informed of the error. The conflict must
be resolved manually.

• Transactional Merge: the disconnected work is trans-
parently applied to the server through successful
method replay.

Figure 2 sketches what happens during a successful
method replay synchronization for the disconnectableorder
entryapplication.

4.3 EJBSync (method replay) Implementation

Because an EJB’s state is backed by a datastore (typi-
cally a relational database), data replication can be used to
synchronize an EJB application that executed on a discon-
nected device to the server. As the EJBs are modified, they
modify the backing datastore, and that datastore can be syn-
chronized with existing middleware such as DB2e. How-
ever, as explained in Section 5, the programming model pro-
jection is not as successful when using data replication. We

Stock

Client

Item name Count

Stapler 9

sell(“stapler”,
1, “Mike”)

Log queue
Log

Middleware

Stock

Server

Item name Count

Stapler 10

Replay
Middleware

Figure 2. Method Replay Synchronization

therefore builtEJBSync: method-replay middleware, cus-
tomized for EJB-based applications.

Method ReplayTransactions/
Method Logging

JDBC

Controller
(SSBs)

Model
(Entity Beans)

View
(JSF)

Application

JDBC

Controller
(SSBs)

Model
(Entity Beans)

Application

Disconnectable client Server

EJBSync
Architecture

Replication

Synchronization

Figure 3. EJBSync: Method Replay Infras-
tructure

The EJBSync (see Figure 3) middleware is both
application-independent and application-transparent. That
is, an EJB business application developed for a connected
environment can be deployed to a disconnected environ-
ment with no (or few) changes.

EJB methods are specified in an interface definition
that is invoked by clients. EJBSync extends the tool-
ing that deploys EJBs to a connected container in the
following way. Whenever the deployed component (i.e.,
the class that implementsEJBObject) delegates a client



invocation to the bean implementation (i.e., the class
that implementsSessionBeanor EntityBean), a top-level
method invocation is logged by creating a LogRecord
EJB. For example, if an application invokes the SSB
placeOrder method, and that method, in turn, in-
vokes theOrderHome.createOrder and a series of
Order.addLineItem methods, onlyplaceOrder
(and its arguments) are logged. The EJBSync middleware is
responsible for tracking the dynamic method depth at which
a given method executes.

Because it has access to the container’s transaction
mechanisms, EJBSync respects the transaction structure
that is dynamically created as the application executes.
Thus, LogRecords are scoped with respect to a given trans-
action; within a transaction, they are ordered in the se-
quence that the methods were invoked. This allows all
methods invoked in a given transaction to be atomically re-
played on the server.

The default Java Serializability mechanism enables the
LogRecord fields to be transmitted by the client to the server
(during synchronization) without much difficulty. One im-
portant detail deals with the fact that the default EJB serial-
ization retains information about the address-space (JVM)
in which the EJB resides, and creates a remote proxy when
the EJB is deserialized in other JVMs. Our solution changes
the serialization to remove the address-space information,
so that EJB references are deserialized as references to local
EJBs with the same primary key, residing in the local Home
with the same JNDI name. This information, together with
Java’s reflection mechanisms, enables server-side recon-
struction of the EJB on which the method was invoked as
well as the method’s parameters. A method is replayed by
executinginvoke on the correspondingMethod .

This approach enables an application-independent syn-
chronization protocol.

1. The synchronizing client invokes
Replicator.initiateSync on the client-
side remote Replicator stub. All LogRecords created
since the last synchronization are transmitted to
the server, in addition to the client’s id and current
synchronization-session id.

2. The server-side Replicator SSB iterates over the set
of LogRecords, batching the LogRecords of a given
transaction together, and ordering the transactions as
they were originally invoked on the client. Each batch
is invoked in a separate server-side transaction and re-
played atomically. The failure (as indicated through an
exception thrown by a replayed method) of one trans-
action, automatically causes the failure of all subse-
quent transactions. Finally, the server returns aSync-
Tokento the client which can be used to query the sta-
tus of the synchronization.

Although EJBSync is customized for EJBs, we believe
that this approach can be applied to other transactional com-
ponent models [14] such as CORBA [1] and DCOM [2].

5 Substantiation

We claim that a connected programming model for busi-
ness applications can be projected to disconnected devices
such that:

• the semantics of the programming model are un-
changed regardless of whether the application executes
in a connected or disconnected environment;

• the need to synchronize the device’s work to the server
is hidden from developers by a combination of the pro-
gramming model and middleware;

• applications developed with this approach can be use-
fully deployed to disconnected devices because work
performed on the device will be committed success-
fully to the server.

A quantitative evaluation of this claim requires consid-
erable experience with deployed applications over a long
period of time. In the absence of such experience, we pro-
pose to validate our claim by comparing our approach with
some popular alternatives.

5.1 Exotic Transaction Models

Several more complicated programming models have
been introduced to address the problems of mobile discon-
nected business applications ([4], [17], [21]). These attempt
to reduce conflicts and/or operate in resource-constrained
environments. As discussed in Section 2, business applica-
tions (at least in the medium term) will be deployed to suf-
ficiently robust environments that the use of non-standard
transaction models is not needed to reduce synchronization
conflicts. Also, it seems likely that many of the resource
contraints of disconnected clients will be reduced or elimi-
nated in the future. Thus is seems preferable to use a pro-
gramming model which is familiar to developers of con-
nected applications.

5.2 Message-Based Programming Model

A message-basedprogramming model is a common ap-
proach to building disconnectable applications. Business
applications are explicitly partioned into two portions: one
is explictly coded to execute on the disconnected device,
and the other is explicitly coded to execute on the server
when the device reconnects to the server. The programming



model is “message-based” because, on a per-application ba-
sis, developers devise a suite of messages that are trans-
mitted by the device to the server during the stage3 syn-
chronization process. Upon receiving these messages, the
server invokes programs that propagate the change-set to
the server’s database.

In our order entryexample, the portion of the applica-
tion that runs on a disconnected device is responsible for
saving enough of the new order information to allow the
server to update its database as if the order had been placed
by a server-side application program. This might include
the name of the agent executing the order, the customer for
whom the order is executed, and the set of items in the or-
der. During synchronization, this state is transmitted to the
server; a server-side program then executes the order on the
server using the state that was previously saved on the dis-
connected device.

Stock

Client

Item name Count

Stapler 9

1 stapler
sold to Mike

Message queue
Client

Application

Stock

Server

Item name Count

Stapler 10

Server
Application

Figure 4. Message-Based Programming
Model

Figure 4 sketches message-based synchronization to im-
plement theorder entryapplication for a disconnected en-
vironment. It shows the client portion of the application as
having decremented the stock level of staplers because one
was sold to Mike; it also shows the subsequent message to
the server, instructing the server to decrement its stock level
so as to process the customer’s order on the server.

In terms of our evaluation criteria, the message-based
programming model is less useful thanEJBSyncbecause it
requires two distinct application implementations (for con-
nected and disconnected applications), and it forces devel-
opers to be explicitly aware of the synchronization process.
On the other hand, because developers can completely cus-
tomize the message suite and message contents, develop-
ers can potentially “tune” the application so as to commit

the maximum amount of the device’s work to the server.
Similarly, message-based synchronization can potentially
minimize bandwidth because only the minimum number of
methods and the minimum amount of state needed to invoke
the server-side program has to be recorded on the client and
transmitted to the server.

We consider the disadvantages of the message-based
programming (compared to EJBSync) to be considerable.
Developers must “hand-craft” a two-part solution (client
and server) on a per-application basis. The application itself
is responsible for transactionally constructing and transmit-
ting the message from the device to the server, processing
the message on the server, invoking the program that exe-
cutes the order on the server, and returning the results to
the reconnected device. EJBSync is a step forward in the
way it pushes more function into generic middleware. EJB-
Sync also provides a productivity improvement, in that de-
velopers can focus their efforts on the application-specific
logic, rather than the infrastructure. From the standpoint
of productivity, as well, businesses would prefer to develop
only one version of an application, and deploy that applica-
tion to both connected and disconnected environments. The
message-based approach usually requires that two versions
of an application must be developed: thepartitioned ver-
sion of the application, described above, and aconnected
version, for machines which are always connected to the
server. Thus the partitioned version requires additional de-
velopment, test, and maintenance effort beyond that re-
quired for the standard connected version. The message-
based approach also requires extra programming to enable
the disconnected device to see locally-applied state changes
— that is, state changes made by the application to the
cached database. This is because the straightforward im-
plementation of the messaging approach does not actually
make changes to the local database; instead, the actions
are saved for eventual transmission to the server. Apply-
ing the changes locally complicates the implementation be-
cause the changes must be transactionally merged with the
updated server state after the server has executed the appli-
cation messages.

Interestingly, EJBSync can be seen as a middleware-
based version of the message-based programming model.
As with the message-based approach, EJBSync tracks the
key business activities that have occurred during the discon-
nected application’s execution. Unlike the message-based
approach, middleware is responsible for tracking these busi-
ness activities; the application itself is unmodified, and
remains unaware that log activity is occuring. As with
other comparisons between hand-crafted and automated so-
lutions, the message-based programming model may well
(at least initially) provide a more optimal solution than EJB-
Sync. The usual tradeoff applies, however: development
and maintenance costs are considerably cheaper with an



automated approach, and automated solutions are typically
improved over time.

5.3 Data ReplicationversusMethod Replay

As mentioned in Section 4, the techniques used by EJB-
Sync can be used to “hide” data-replication synchroniza-
tion in the same way that method-replay is hidden. Based
only on our first two evaluation criteria, these approaches
are equally good since middleware is used to capture the
device’s change set and propagate it to the server. Both ap-
proaches facilitate the deployment of disconnected appli-
cations since the development, test, and maintenance costs
have already been incurred when building the connected
version of the application. In fact, DB2 Everyplace pro-
vides precisely this synchronization techique together with
integrated middleware in a commercial product. The key
differentiator between these approaches relates to our third
criterion: the way in which the programming model sup-
portssuccessfulpropagation of work from the client to the
server. Specifically, method replay has the following advan-
tages compared to data replication:

• Method replay creates a smaller “footprint”, in that it is
less likely to cause conflicts during the synchronization
process.

• Method replay projects a more consistent connected
programming model to the disconnected device be-
cause of the way conflict resolution logic is specified.

• With method replay, the device’s work executes
against current data (during synchronization) rather
than an out-of-date version of the data.

We discuss these advantages in more detail below, and then
discuss their implications for building disconnectable appli-
cations.

5.3.1 Smaller Conflict Footprint

The more that the device’s database state differs from the
server’s database, the more likely that synchronization will
fail. While we definitely do not want to ignore a “true”
conflict, we also want to minimize detection of “false” con-
flicts since those will cause useful work performed on the
device to be discarded, or will require manual intervention
to fix. Because data replication performs synchronization
in terms of low-level data (where it is difficult to introduce
higher-level semantics or application logic), it is more likely
to create such false conflicts than method replay.

To see why this is so, consider theorder entryexam-
ple, and note that two clients may concurrently decrement
the stock level for the same item. Data replication synchro-
nization sees these actions as conflicting: different clients

have modified the same row of the database. The mid-
dlewaremustflag this as a conflict, because this will lead
to a transaction serializability violation (one of the clients’
updates will be alost write [8]). From the perspective of
the application, however, the desired semantics are merely
that sufficient stock exists during synchronization to sat-
isfy the order. The precise stock level value for a given
item is irrelvant. These semantics are easily expressed by
a connected version of the application. They are also eas-
ily expressed for a disconnected version that uses method
replay. In fact, only one version of the application need ex-
ist, since the identicalpurchaseOrder method executes
for both connected and disconnected environments, decre-
menting the stock levels appropriately, and validating only
that (0 != stockLevel) . The same method – with
the same validating business logic – that executed and was
logged on the device, is replayed on the server during syn-
chronization. Disconnected versions of the application that
use data replication synchronization must use different se-
mantics: stock levels during synchronization must be iden-
tical to their levels during disconnected execution. Because
application-independent data replication middleware does
not have enough semantic information about the application
to resolve this automatically, synchronization will fail.

5.3.2 Consistent PM Projection

Advocates of data replication may counter that the previ-
ous argument is naive. The sort of false conflicts described
above can be easily avoided by adding business logic as
necessary to the synchronization engine. The middleware
makes application-specific synchronization “hooks” avail-
able to developers in order to explicitly compensate for (and
resolve) such false conflicts. The synchronization hooks
could (reasonably) assume that applications only increment
and decrement stock levels, and thus could determine the
stock level that would result from the synchronization of
multiple transactions.

However, this starts the synchronization middleware
down the path of understanding the application semantics.
The separation of synchronization business logic from ap-
plication business logic is awkward, to say the least. The
synchronization business logic is placed in the position of
trying to reverse-engineer the changes made by the appli-
cation logic, so that it can reconcile the data. More impor-
tantly, however, the more that such special-purpose logic
must be added bydevelopers– rather than being performed
automatically by middleware – the more the programming
model’s consistent projection is compromised. While mak-
ing the application disconnectable, it forces developers to
explicitly “code around” the issue of disconnected opera-
tion. More pragmatically, rather than maintaining a single
version of the application that can be deployed to both con-



nected and disconnected environments, the business must
now maintain two (or one and a half) versions of the appli-
cation.

5.3.3 Execution Against Current Data

Because business applications must behave transactionally,
a transaction model is part of any programming model for
business applications. At a high-level, both data replica-
tion and method replay offer the same transaction seman-
tics. In terms of the taxonomy presented in [6], both use
a detection-based algorithm, with deferred validity check-
ing, and invalidation when notified by the server about an
update. (This approach is sometimes termed “optimistic”,
in contrast to pessimistic, lock-based, concurrency control
mechanisms.) This enables high server-side availability –
despite long periods of disconnection or even device fail-
ures – because the server is not forced to avoid potential
conflicts.

Similarly, both approaches enable the connected trans-
action model to be projected to disconnected devices. EJB-
Sync, for example, presents a disconnected device with the
J2EE/EJB transaction model: sections of code can be ex-
plicitly demarcated with aUserTransaction , or the de-
veloper can use declarative transactions on a per-method ba-
sis. Transactions that are rolled back on the disconnected
device are not replayed on the server (since the LogRecords
are not committed). During synchronization, the transaction
boundaries created during the client’s execution are pre-
served on the server, as is the original transaction ordering.
Data replication, as well, can project the connected transac-
tion model to a disconnected environment. Although DB2
Everyplace sync does not maintain an application’s transac-
tion boundaries or ordering, this is a limitation of the imple-
mentation – not that of the idealized algorithm. Gold Rush,
for example [7], shows that mobile transaction middleware
can do data replication synchronization and preserve trans-
action boundaries and ordering. A similar situation holds
with respect to validating “read sets” – the set of data read,
but not written, by the application. Data replication imple-
mentations validate that conflicts have not occurred with re-
spect to the application’s “write set”, but do not appear to
check whether other users have concurrently modified the
synchronizing device’s read set. Although this can theo-
retically lead to a violation of transaction isolation [8], in
practice, we find it difficult to identify a realistic scenario
in which this leads to a serializability violation that was not
caused by the application logic. Regardless, enhancing data
replication implementations to also validate an application’s
read sets is relatively straightforward, and is not a funda-
mental limitiation of the algorithm.

The key difference between the transactional models of
data replication and method replay is more subtle, and in-

volves the definition of transactional isolation. Data repli-
cation synchronization ideally attempts to ensure that the
device’s transactions areconflict serializable[8] with the
transactions that were previously committed on the server.
This criterion is defined in terms of read and write op-
erations on data. Method replay attempts to ensure that
transformationsperformed on the device are compatabile
with transformations previously committed on the server.
In effect, transactions executed on the disconnected device
are movedto a later point in time: namely, the time at
which synchronization occurs. They are guaranteed to be
serializable with the server-side transactions because, from
the shared database viewpoint, they are executedafter all
the connected transactions have executed, and using any
data modified by the server-side transactions as their in-
puts. Thus, strictly speaking, there cannot be a serializ-
ability violation. Under model replay semantics, the fact
that work executed on a disconnected client is (almost) ir-
relvant to the transaction model. From a developer’s view-
point, therefore, the programming model is projected more
consistently; from the client’s viewpoint, the work executed
against the most current version of the data.

The only caveat to the method replay transaction model
is that any “human input” into the disconnected client trans-
actions may not be replayed accurately, because the human
thought processes are not captured in the method imple-
mentations. For example, the user may have looked at her
checking balance on the disconnected client, seen a balance
of $1000, and decided to withdraw $100. When the discon-
nected transactions are replayed on the server, the balance
may have been $101. The replayed method will withdraw
$100, leaving $1, but had the user known she only had $101
she may have decided to withdraw $50, or nothing. Also,
she thinks her new balance is $900, which does not repre-
sent the balance at any time in the shared database. Typi-
cally, however, business logic will prevent a withdrawal of
an amount greater than the available funds at synchroniza-
tion time, unless overdrafts are permitted. Thus the syn-
chronization process will not result in database consistency
violations, unless the application is flawed. Note also that
these “human serializability violation” scenarios occur with
data replication as well. Data replication algorithms typi-
cally do not verify that data which was read but not modi-
fied by the disconnected client is unchanged on the server at
synchronization time (in fact we are not aware ofanydata
replication system which does this verification).

5.4 Useful Disconnectable Business Applications

We conclude by arguing that only approaches similar
to EJBSync enable development of useful disconnectable
applications, because of the inevitable issues that arise as
server-side function is moved to the client. A continuum ex-



ists with respect to the degree to which server-side function
is moved to the client. Browser-based applications exist at
one extreme, in which almost all of the application resides
on the server. This “thin-client” approach has certain advan-
tages, but the application cannot execute on a disconnected
device. To enable disconnectable applications, more of the
data and more of the application logic must reside on the
client. At the other extreme of the continuum,all of the ap-
plication executes on the device. This may not always be
practical, but can be done for certain types of applications
(e.g., for theorder entryexample used in this paper). How-
ever, as we have shown, this approach causes the maximum
amount of data changes to take place on the device (e.g.,
stock level changes). As more changes are made to the de-
vice’s database, it becomes more likely that false conflicts
will be detected by data replication middleware (false in the
sense that human intervention could easily resolve them).
Relatively speaking, method replay will cause fewer false
conflicts to occur, because the replays happen against up-
to-date server data.

Consider the middle of this continuum, in which some
application logic is moved to the disconnected device, but
some remains on the server. For example, take the usage of
a customer’s “available credit” balance in validating an or-
der. The credit balance could be replicated to the client, and
orders placed only if the customer has sufficient credit. If
the balance is sufficient, the credit balance would be decre-
mented by the value of the order. Obviously this requires
that more data be replicated to the client. For data repli-
cation, this also raises a problem similar to the stock-level
problem discussed above. Because a customer’s credit bal-
ance is modified by each placed order, orders placed for
the same customer by different clients will always result in
a (usually false) conflict during the synchronization of the
second client. This conflict is usually false because only
the exhaustion of the customer’s credit balance is actually
a problem. Two debits to the credit balance that do not ex-
haust the customer’s credit could be combined arithmeti-
cally during synchronization.

In order to eliminate this false conflict for data replica-
tion, the credit-balance check could be eliminated from the
disconnected client version of the application. Since the
businessstill requires that the balance be checked and up-
dated before fulfillment of the order, a separate server-side
process, triggered by synchronization, must be put in place
to do the credit-balance check and update. The code it-
self is not the problem. The problem is that this code is
separate from the disconnected and connected versions of
the application. It is not embedded in the original order-
entry application flow, and it is not necessarily easy to fit
it into the post-synchronization workflow. In this scenario,
in fact, data replication synchronization begins to resemble
the message-based synchronization (with all of its disadvan-

tages) discussed above.
In contrast, with method replay, thepurchaseOrder

method is modified to conditionally perform the credit
check and modify the existing balance only when connected
(and thus during synchronization as well). This additional
application logic is ignored when executing on the discon-
nected device. All that this approach requires is the ability
to determine whether a method is executing in a connected
or disconnected environment. The connected version per-
forms the required credit-check; the disconnected version
branches around that code (placing the order without the
credit-check); and, during method replay, the credit-check
will be transparently performed before placing the order.

It seems therefore that the following tension exists with
respect to deploying business applications to disconnected
devices. If you wish to use a single programming model
so as to develop and maintain a single version of the ap-
plication, the application will modify much transactional
state. During synchronization, data replication then is more
likely than method replay to abort the work performed on
the device because of false conflicts. This problem can be
reduced, but only by creating connected and disconnected
versions of the application. Here too, method replay is more
useful than data replication because the branch logic is more
easily packaged within a single method or business process
than as extraneous processes that must be hooked into the
business workflow during synchronization. Executing the
bulk of the application on the server, with only a minimal
application executing on the client, mitigates this problem
but only by drastically limiting the usefulness of discon-
necting the application in the first place.

The use of method-replay synchronization does con-
strain the application to take extra care when accessing data
that is outside the shared datastore. If such data becomes
part of the client-side datastore, it may not be used correctly
during replay because the external value may have changed
since the original disconnected execution. For example, if
an application sets fields based on the current time (e.g.,
timestamps) or using unique identifiers [26], the replayed
application will use thecurrent values of the external data
(e.g. the current time), not the values that were originally
used on the device. This may or may not be a problem.
If the UUID is used to set an EJB’s primary key, and that
EJB is referenced (and logged) by the application, method
replay synchronization will fail because that EJB’s identity
on the server will be based on a new UUID value.

Data replication experiences a similar issue when deal-
ing with unique identifiers. Because the locally unique iden-
tifier (LUID) client ID may be different from the globally
unique identifier (GUID) server ID, the server must main-
tain an ID mapping table for all items exchanged between
itself and the client. Otherwise, the client’s datastore that
references a set of LUIDs cannot be translated (or identified



as referring to the data on the server by a different name) by
the server. SyncML [25], for example, uses aMapoperation
to send the LUID of newly created data to the server. This
allows the server to update its mapping table with the new
LUID, GUID association. However, this is not sufficient
to address all possible problems. If the LUID gets incor-
porated directly into application data, the synchronization
process may not know how to modify the application data,
or even detect that it should be modified during synchro-
nization.

6 Summary and Conclusion

We showed that a programming model for business ap-
plications can be usefully projected to disconnected devices
– despite the fundamental algorithmic and infrastructure is-
sues that must be addressed. This approach enables devel-
opers to apply skills acquired in connected applications to
disconnected environments. It also enables businesses to
maintain only a single version of an application. We de-
scribed the programming model and theEJBSyncprototype
middleware, and showed how this approach compares fa-
vorably to other approaches for developing disconnected
applications.

References

[1] J. Siegel. Quick CORBA 3. John Wiley & Sons, 2001.

[2] F. E. Redmond. DCOM: Microsoft Distributed Compo-
nent Object Model. John Wiley & Sons 1997.

[3] IBM DB2 Everyplace.
http://www-306.ibm.com/software/data/db2/everyplace/
index.html

[4] Dunham, M. H.; Helal, A.; Balakrishnan, S. Mobile
Transaction Model That Captures Both the Data and
Movement Behavior. Mobile Networks and Applications
Vol 2, No 2, 1997, 149-162.

[5] J2EE Enterprise JavaBeans Technology.
http://java.sun.com/products/ejb/

[6] M.J. Franklin, M.J. Carey, M. Livny. Transactional
Client-Server Cache Consistency: Alternatives and Per-
formance. ACM Transactions on Database Systems
(TODS), Volume 22 , Issue 3, 315 - 363, 1997.

[7] M. A. Butrico et al. Mobile Transaction Middleware
with Java-Object Replication. Proc. Third USENIX Con-
ference (COOTS), 1997.

[8] J. Gray, A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann. 1993.

[9] A.-M. Kermarrec et al., The IceCube approach to the
reconciliation of diverging replicas. Proc 20th annual
ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC) Aug. 2001.

[10] IceCube
http://research.microsoft.com/camdis/icecube.htm.
2005.

[11] IBM IMS Family.
http://www-306.ibm.com/software/data/ims

[12] Java Database Connectivity (JDBC)
http://java.sun.com/products/jdbc/. 2005.

[13] Java 2 Platform, Micro Edition (J2ME).
http://java.sun.com/j2me/index.jsp

[14] A. Leff, P. Prokopek, J. T. Rayfield, and I. Silva-Lepe.
Enterprise JavaBeans and Microsoft Transaction Server:
Frameworks for Distributed Enterprise Components. Ad-
vances in Computers, Academic Press. Vol. 54. 99-152.
2001.

[15] A. Leff and J. T. Rayfield. Improving Application
Throughput with Enterprise JavaBeans Caching. May
2003. 23rd International Conference on Distributed
Computing Systems.

[16] B. Benz, R. Oliver. Lotus Notes and Domino 6 Pro-
gramming Bible. Wiley, 2003.

[17] Madria, S. K.; Bhargava, B.; A Transaction Model to
Improve Data Availability in Mobile Computing. Journal
of Distributed and Parallel Databases, Vol. 10 No. 2, 127-
160, 2001.

[18] IBM WebSphere MQ Everyplace.
http://www-306.ibm.com/software/integration/wmqe/

[19] B. Bennett et al. A Distributed Object Oriented Frame-
work to Offer Transactional Support for Long Running
Business Processes. ACM Middleware 2000. 331-348.

[20] Open Services Gateway Initiative
http://www.osgi.org/

[21] E. Pitoura, B. Bhargava. Maintaining consistency of
data in mobile distributed environments. 15th Interna-
tional Conference on Distributed Computing Systems
(ICDCS’95).

[22] JDBC Rowset Tutorial
http://java.sun.com/developer/Books/JDBCTutorial/chapter5.html.
2005.

[23] Serrano-Alvarado, P.; Roncancio, C.; Adiba, M; A
Survey of Mobile Transactions. Journal of Distributed
and Parallel Databases, Vol. 16 , Issue 2, 193-230, 2004.



[24] IBM Service Management Framework
http://www-306.ibm.com/software/wireless/smf/

[25] Open Mobile Alliance (OMA), SyncML
http://www.openmobilealliance.org/tech/affiliates/syncml/
syncmlindex.html

[26] Universal Unique Identifier,
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm


