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Abstract: We describe a method to reduce the amount of computer time required
to perform an exhaustive backtrack search. For the independent set problem, the
simplest version of the method achieves speedups of 3-4 on the DIMACS test graph
r500.5. More complicated versions can achieve even greater speedups.
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Backtrack search is a well known type of algorithm for solving combinatorial
problems (or proving that solutions do not exist). Solutions are built up incrementally
with the algorithm ”backtracking” to make a different choice at an earlier stage
whenever it gets stuck (ie whenever it becomes apparent that the current partial
solution cannot be successfully completed). Such searches can be organized to find
all solutions. However their execution time may grow very rapidly with the size of
the problem.

Some combinatorial problems have symmetry conditions which mean that solu-
tions can be partitioned into equivalence classes. In such cases backtrack search can
be made more efficient by organizing the search to find only one solution in each
equivalence class. For example consider Golomb rulers ([5]). A k mark Golomb ruler
of length n is a set of k integers 0 = a1 < a2 < · · · < ak = n such that all the
differences {(ai − aj)|1 ≤ j < i ≤ k} are distinct. Clearly the reflection (ie the set
{(n − ak+1−i)|i = 1, . . . , k} ) of a Golomb ruler is also a Golomb ruler. So if we
are performing a backtrack search to build up a Golomb ruler by choosing a1, a2, . . .
in sequence we can assume the middle mark, a(k+1)/2, has value at most (n + 1)/2
([4],[7]). It is notable that imposing this symmetry condition speeds up the backtrack
search by more than a factor of two. This suggests that speedups may be possible
even if the problem is not symmetric.

Consider the problem of finding the independence number of a graph. The inde-
pendence number of a graph is the maximum size of an independent set in the graph.
An independent set in a graph is a set of vertices no pair of which are adjacent.
This problem is NP-complete. It is equivalent to the problem of finding the clique
number of the complement of the graph (where a clique is a set of vertices every pair



2

of which is connected by an edge and the clique number is the maximum size of a
clique) and is sometimes stated in that form. The second DIMACS challenge asked
for efficient algorithms to solve this problem. As a benchmark DIMACS included a
program dfmax.c ([1]) which solved the problem by backtrack search. Dfmax is an
efficient implementation of the following algorithm (which is similar to the algorithm
stated in [2] and to the algorithm used for the computations in [6])

Let the graph, G, consist of n vertices {vi|i = 1, . . . , n}. Build up an indepen-
dent set choosing vertices vj1 , vj2, . . . with j1 < j2 < · · ·. This may be implemented
efficiently by maintaining lists of eligible vertices at each level of the search. After
choosing a vertex go through the list of the remaining eligible vertices at that level
and delete the ones adjacent to the chosen vertex. This is the new eligible list at
the next level. When the search reaches a point where there are not enough eligible
vertices in the current list to improve the current independence number backtrack
to the next higher level in the search and try the next vertex in the eligibility list
for that level. Clearly we can choose how to initially order the vertices. The dfmax
algorithm optionally initially orders the vertices by successively choosing the vertex
of maximum degree in the graph induced by the set of vertices not yet chosen.

Suppose the map which sends vertex vi to vn+1−i is an automorphism of G. Then
when using the above algorithm to search for an independent set of size k we can
assume that at least (k + 1)/2 of the vertices of the independent set are chosen from
the first (n + 1)/2 vertices of G. This will speed up the search. In fact the speedup
may exceed a factor of two. This suggests trying to use the same idea to speed up
the search even when G is not symmetric. We do this by partitioning the vertices
of G into two sets, A and B. Suppose we are searching for an independent set of
size k. First order the vertices so that the vertices in A precede the vertices in B
and perform the above backtrack search assuming at least (k + 1)/2 vertices of the
independent set are chosen from A. Next order the vertices so that the vertices in B
precede the vertices in A and perform another search which assumes at least (k+1)/2
vertices are chosen from B. Now it is easy to see that for any independent set, S, of
size k (or greater) either A or B (or both) must contain at least (k + 1)/2 vertices
of S. So by performing two backtrack searches in the above manner we will find all
independent sets of size k (or greater). In some cases this algorithm will be faster
than the original algorithm even though two searches are being performed. We can
try to improve the performance further by choosing A and B wisely. For the times
reported below we start with a partition into sets of equal (or nearly equal) size and
then try to minimize the number of edges between A and B by interchanging pairs
of vertices until we are at a local optimum.

We compared the above algorithm to the dfmax algorithm on the DIMACS test
graph r500.5, a random graph on 500 vertices with edge probability .5 ([3]). We
implemented our own version of the dfmax algorithm (A1) and then modified it to
perform the revised algorithm (A2). We timed these algorithms with and without
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Algorithm preorder M1 M2 M3
dfmax no 35.37 23.65 12.71
dfmax yes 25.20 16.34 8.59

A1 no 26.84 17.41 8.20
A1 yes 21.31 12.53 5.74
A2 no 8.86 5.70 2.13
A2 yes 5.27 3.20 1.34

Table 1: Search times

preordering for r500.5 on 3 different RS/6000 workstations (M1, M2 and M3). The
results appear in table 1. Times are in seconds. For this problem the method produces
speedups of 3− 4. More complicated versions of the method (corresponding to larger
symmetry groups) can produce even greater speedups.
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