
RC23565 (W0503-074) March 11, 2005
Computer Science

IBM Research Report

Redescriptions: Structure Theory and Algorithms

Laxmi Parida
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Naren Ramakrishna
Department of Computer Science

Virginia Tech
Blacksburg, VA

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Redescriptions: Structure Theory and Algorithms

Laxmi Parida Naren Ramakrishna
Computational Biology Center Department of Computer Science

IBM T J Watson Research Center Virginia Tech
Yorktown Heights, USA Blacksburg, USA

parida@us.ibm.com naren@cs.vt.edu

Abstract

We present a new approach to mining redescriptions – patterns that identify subsets of data
that afford multiple definitions. Redescription mining finds important applications in descriptor-
rich datasets, such as in bioinformatics. The key contributions of this paper are (i) identifying the
existence of a dichotomy law that the redescriptions follow (ii) definition of a notion of irredundant
redescriptions underyling a dataset, (iii) an output-sensitive algorithm to mine the irredundant
set of redescriptions in a specific form, both exact and approximate, (iv) identifying an important
connection between biclusters and redescriptions, using which we can build a redescription mining
algorithm around a biclustering algorithm.

Keywords: redescription, redescription mining, biclustering, data mining in biological domains.

1 Introduction

Redescription mining is a new data mining task introduced in [3]. As the name indicates, to redescribe
something is to describe anew or to express the same concept in a different vocabulary. The input to
redescription mining is a collection of sets such as shown in Fig. 1. Each bubble in this diagram denotes
a meaningful grouping of objects (in this case, countries) according to some intensional definition.
For instance, the colors green, red, cyan, and yellow (from right, counterclockwise) refer to the sets
‘permanent members of the UN security council,’ ‘countries with a history of communism,’ ‘countries
with land area > 3, 000, 000 square miles,’ and ‘popular tourist destinations in the Americas (North
and South).’ We will refer to such sets as descriptors. An example redescription for this dataset is
then: ‘Countries with land area > 3, 000, 000 square miles outside of the Americas’ are the same as
‘Permanent members of the UN security council who have a history of communism.’ This redescription
re-defines the set {Russia, China}. The goal of redesription mining is to find which subsets afford
multiple definitions and to find these definitions. The underlying premise is that sets that can indeed
be defined in (at least) two ways are likely to exhibit concerted behavior and are, hence, interesting.

Finding redescriptions is trivial if all the possible participating expressions are specified a priori.
Instead we are given only a vocabulary of sets as in Fig. 1 but neither the way in which the sets can be

1

Russia
China

UK

FranceArgentina

Brazil

Chile
USA

Canada

Figure 1: Example input to redescription mining.

combined into an expression nor the objects (countries) participating in the redescription are given.
An algorithm is expected to automatically infer that we must subtract the yellow set from the blue
set on one side but intersect the green and red sets on the other, to arrive at a redescription for two
countries.

We can view redescription mining as a generalization of association rule mining [1, 4] wherein we
enrich the pattern space from implications to equivalences. At the same time, however, redescription
mining emphasizes constructive induction (i.e., the task of automatically creating new features for
use in data mining) to an extent not previously studied by the rule mining community. It is this
additional flexibility that both makes the patterns appealing and complicates the design of data
mining algorithms.

Ref. [3] presents an approach (CARTwheels) to mining redescriptions by exploiting two important
properties of binary decision trees. First, if the nodes in such a tree correspond to boolean membership
variables of the given sets then we can interpret paths to represent set intersections, differences, or
complements; unions of paths would correspond to disjunctions. Second, a partition of paths in the
tree corresponds to a partition of objects. These two properties are employed in CARTwheels which
grows two trees in opposite directions so that they are joined at the leaves. Essentially, one tree
exposes a partition of objects via its choice of subsets and the other tree tries to grow to match this
partition using a different choice of subsets. If partition correspondence is established, then paths
that join can be read off as redescriptions. CARTwheels explores the space of possible tree matchings
via an alternation process whereby trees are repeatedly re-grown to match the partitions exposed by
the other tree. By suitably configuring this alternation, we can guarantee, with non-zero probability,
that any redescription existing in the dataset would be found. However, CARTwheels has a tendency
to re-find already mined redescriptions as it searches for potentially unexplored regions of the search
space.

1.1 Contributions of this Paper

This paper presents new algorithms for mining redescriptions involving theoretical (a formal basis of
redescriptions) as well as practical (algorithm implementation and case study) contributions:

2

1. We identify a dichotomy law that governs redescriptions in general

2. Given a collection of descriptors, we define a notion of an irredundant redescription underlying the
dataset and present an output-sensitive algorithm to mine them. We explain how the irredundant
redescription can help form a basis for the set of all possible redescriptions.

3. We highlight how finding redescriptions can exploit biclustering algorithms at its core; specifi-
cally, we show how we can mine in linear time boolean expressions satisfying a certain support
threshold using a biclustering algorithm, and subsequently relate these expressions to arrive at
redescriptions.

4. Our algorithm is able to redescribe in expressive and complete biases for the expressions, such as
monotone CNF (conjunctive normal form) or DNF (disjunctive normal form), and mines both
exact and approximate redescriptions.

The rest of the paper is organized as follows. Section 2 introduces background notation and ter-
minology for use in this paper. It also presents a basic strategy for exploring the space of possible
expressions in search of redescriptions. Section 3 relates the strategy to biclustering and introduces a
concrete algorithm to mine exact redescriptions. This is extended in Section 5 to the task of mining
approximate redescriptions.

2 Formalisms

Formally, the inputs to redescription mining are the universal set of objects O = {o1, o2, . . . , on}, and a
set (the vocabulary) F = {F1, F2, . . . , Fm} of proper subsets of O. The elements of F (called features)
are assumed to form a covering of O (

⋃
i Fi = O), but not necessarily a partition. For notational

convenience, this information can be summarized in the n ×m binary dataset matrix D (see Fig. 2)
whose rows represent objects, columns represents the features, and the entry Dij is 1 if object oi is
a member of feature Fj , and 0 otherwise. The reader will notice the immediate parallels between D
and the traditional item-transaction modeling in association rule mining.

Definition 1 (descriptor e, features F (e), objects O(e)) A descriptor is a boolean expression on a set
of features V ⊆ F . Given a descriptor e, we will denote the set of features involved in e by F (e) and
the set of objects it represents (for a presumed D) by O(e).

For ease of interpretability, notice that we have overloaded notation: F denotes the entire set of
features, F (e) denotes the subset of F that participates in e (similarly for O). Also, in writing
boolean expressions, we will use boolean connectives (∧, ∨, ¬) as well as set constructors (∩, ∪, −)
interchangeably, but never together in the same expression. Example descriptors are F3, F1 ∩ F4,
¬F2 ∨ F3, and F1 − (F1 − F4).

Two descriptors e1 and e2 defined over (resp.) V1 and V2 are distinct (denoted as e1 6= e2), if one of
the following holds: (1) V1 6= V2, or (2) there exists some D for which O(e1) 6= O(e2). Notice that
this condition rules out tautologies. For example the descriptors F1 ∩ F4 and F1 − (F1 − F4) are not
distinct.

3

F1 F2 F3 F4 F5 F6 F7 F8

o1 0 0 0 1 1 0 0 1
o2 1 0 1 0 1 1 0 1
o3 1 1 0 0 0 1 1 0
o4 0 1 1 0 0 1 0 0
o5 0 0 0 1 0 0 1 1

Figure 2: Example dataset matrix D.

Definition 2 (redescriptions R(e), O(R(e)) e′ is a redescription of e, if and only if O(e) = O(e′)
holds for the given D. R(e) is the set of all redescriptions of e. O(R(e) is defined to be O(e).

In the example dataset matrix D of Fig. 2, (F3∩F1)∪(F4−F3) is a redescription of (F7−F6)∪(F5−F7),
since they both induce the same set of objects: {o1, o2, o5}. Furthermore, these expressions are also
redescriptions of F8. The reader will find it easy to verify the following two properties:

Lemma 1 Given D, if e1, e2 6= e1 ∈ R(e), then (e1e2), (e1 ∨ e2) ∈ R(e).

Lemma 2 Redescription is reflexive, symmetric, and transitive: it induces a partition on a collection
of descriptors on D.

Clearly, the set of redescriptions of e, as defined by R(e) contains redundant elements; the next task
is to trim R(e) to its bare essentials by identifying a ‘basis’ set of redescriptions for a descriptor e.
As a first attempt to arrive at such a minimal set, we can reason whether this set would be parwise
disjoint in its use of features, i.e., whether the following holds.

Conjecture 1 Fixing a set of features can endow a unique (upto tautology) description of a set of
objects.

We answer in the negative using a counterxample. Given the D of Fig. 2, there are at least two distinct
redescriptions (e1 6= e2) such that F (e1) = F (e2) = {F3, F4} and O(e1) = O(e2) = {o1, o2, o4, o5}: (1)
e1 = F3 ∨ F4, and, (2) e2 = F3 ⊕ F4 = (¬F3 ∧ F4) ∨ (F3 ∧ ¬F4). Redescription relationships are hence
heavily data dependent. Conversely, note that if the values of both F3 and F4 are flipped for o3 in
D, e1 and e2 are no longer redescriptions of each other. While e2 would continue to denote the set of
objects {o1, o2, o4, o5}, the definition of e1 would get expanded.

Definition 3 (relaxation X(e) of e, e′ ≤ e) Given descriptors e and e′, defined on the features V and
V ′ respectively, e′ is a relaxation of e, denoted as (e′ ≤ e), if e ⇒ e′ is a tautology. The collection of
all the relaxations of e is denoted by X(e).

For example, descriptor F1 is a relaxation of F1 ∧ F2, F1 ∨ F2 is a relaxation of F1 ∨ (F2 ∧ F3), and
F1 ∨ F2 is also a relaxation of F1. It is easy to see the following:

4

Lemma 3 Relaxation is reflexive, anti-symmetric, and transitive: it induces a partial order on a
collection of descriptors on D.

Lemma 4 For each e2 ∈ X(e1), O(e2) ⊇ O(e1).

Given a dataset D, note that a relaxation of e is not necessarily a redescription of e. Consider our
running example: F1 ∈ X(F1 ∧ F2) but F1 6∈ R(F1 ∧ F2) since O(F1) = {o2, o3} ⊃ {o3} = O(F1 ∧ F2).
On the other hand, F4 ∈ X(F4 ∧ F8) and O(F4) = O(F4 ∧ F8) = {o1, o5}, hence F4 ∈ R(F4 ∧ F8).
In general, therefore, we cannot express any prior relationship between R(e) and X(e). Consider the
partial order PX hinted at by Lemma 3: there is a directed edge from e1 to e2 in PX if e1 ∈ X(e2).
If we choose to include ‘true’ and ‘false’ in the set of possible expressions, then PX will also be a
lattice as every pair of expressions will have a lowest upper bound as well as a greatest lower bound.
Specifically, the lub of e1 and e2 is e1 ∧ e2 and their glb is e1 ∨ e2. For instance, the glb of F1 and ¬F1

is ‘true’ and the lub of F1 ∧F2 and F1 ∧F3 is F1 ∧F2 ∧F3. Notice that we can extend the lub and glb
definitions to more than two expressions, by associativity.

Lemma 5 If (e′ ∈ X(e)) 6∈ R(e), then X(e′) ∩R(e) = φ

S ince e′ ∈ X(e) and e′ 6∈ R(e), O(e′) ⊃ O(e). For each e′′ ∈ X(e′), O(e′′) ⊇ O(e′). Thus for each
e′′ ∈ X(e′), O(e′′) ⊃ O(e), hence e′′ 6∈ R(e). 2

Lemma 6 If e is a relaxation of both e1 and (e2 6∈ R(e1)), then e 6∈ R(e1) and e 6∈ R(e2).

S ince e is relaxation of e1 and e2, O(e) ⊇ O(e1)∪O(e2). Note that O(e1) 6= O(e2). Thus O(e) 6= O(e1)
and O(e) 6= O(e2), hence the result. 2

2.1 Irredundant Representation of R(e)

We next address the question of describing R(e) in the most concise manner, without any loss of
information.

Definition 4 (Frontier(R(e))) Frontier(R(e)) ⊆ R(e) is defined as follows: (1) for each e′′ ∈ R(e),
there is an e′ ∈ Frontier(R(e)) such that e′′ ∈ X(e′) and (2) there is no e′′ ∈ R(e) such that some e′

∈ Frontier(R(e)) is a relaxation of e′′.

Theorem 1 Frontier(R(e)) is a singleton set.

A ssume this is not true and there exist distinct p > 1 expressions e1, e2, . . . , ep ∈ Frontier(R(e)).
Then by Lemma 1, e1e2 . . . ep ∈ R(e), Frontier(R(e)). Then e1, e2, . . . , ep 6∈ Frontier(R(e)). Hence
the assumption is wrong and p = 1. 2

5

This lone element of Frontier(R(e)) is written as Fr(R(e)).

To summarize, relaxation induces a partial order and redescription is a “terrain” on this lattice sat-
isfying the following conditions: (1) By Lemma 5 if a node e′ is not in R(e), then no descendent of
node e′ can be in R(e). (2) By Lemma 6 a node (e′) that is not a Fr(R(e)) for some expression e in
the partial order cannot have multiple parents from distinct description families. These suggest a very
concise representation for a redescription R(e) as Fr(R(e)) with the following algorithm to extract
R(e).

CompRedscrp(e)
{
For each e′ ∈ X1(e)
If (e′ 6∈ S) then
{output e′; CompRedscrp(e′)}

}

X1(e) is a procedure that takes an expression e and returns the set of all possible e′ such that e′ ≤ e
and there is no e′′ with e′ ≤ e′′ ≤ e. Let S be the set of all Fr(R(e)) for the given data set D.

3 Mining Redescriptions

The above discussion explains how we might find B(e) for a given e but overlooks the fact that, in
the general setting of redescription mining, we are given neither e nor the set of objects O(e). In this
section, we relax these views and explain how to automatically identify redescribable e’s along with
their O(e)’s and B(e)’s.

3.1 Impossibility Results

We begin by making some impossibility statements in the context of mining redescriptions. The first
statement asserts an impossibility about finding even a single descriptor for certain object sets, and
the second statement asserts an impossibility about finding any redescriptions at all in a dataset.

Lemma 7 If two rows (corresponding to oi and oj) of D are identical, there can be no descriptor
involving oi but not oj.

This is easy to see since no boolean expression can be constructed over D’s columns that can discrim-
inate between the two objects. The second impossibility result holds when D has at least as many
rows as a truth table:

Theorem 2 Given a (n × m) dataset D such that every possible m-tuple binary vector is a row in
D, let e be a descriptor defined on D’s columns. Then R(e) = φ, i.e., no descriptor defined over the
columns of D has a redescription.

6

A ssume the contrary, i.e., there exists some e′ 6= e such that O(e) = O(e′). Then Fr(R(e)) =
Fr(R(e′)), hence V = F (e) = F (e′). Next let D′ be the dataset restricted to the |V | columns and
then D′ has all possible |V |-tuples: thus O(e) 6= O(e′) since e′ 6= e. Thus e′ must be the same as e
and subsequently R(e) = φ. 2

3.2 Strong Possibility Result

We next show that even if one or few rows are absent in the dataset D, each expression e has a
non-trivial redescription.

Theorem 3 Given a (n×m) dataset D such that at least one of the m-tuple binary vector is absent
in D. Then for each descriptor e defined on D’s columns, |R(e)| > 1, i.e., every descriptor e defined
over the columns of D has a redescription e′ 6= e.

C onsider some expression e with the support rows as O(e). Let the absent m-tuples be denoted as A;
these correspond to the missing collection of rows. Consider the expression e′ with O(e′) = O(e)∪A.
If e′ 6= e, then we are done. Let e′ = e, then there must exist at least another expression e′′ distinct
from e, e′ such that one of the following holds: (1) O(e′′) = O(e) ∪A and O(e′) = O(e), or, (2) O(e′)
= O(e) ∪ A and O(e′′) = O(e). (1) implies that e′′ ≤ e and (2) implies that e ≤ e′′. Then e′′ is a
redescription of e. Hence the result. 2

3.3 Forms of expression e

Theorem 4 (Dichotomy Law) Given a dataset D either no description e has a distinct redescription
or all descriptions e on D have distinct redescriptions.

L et D be an n×m matrix of elements. If n = 2m and all the rows are distinct, then by Thoerem 2, no
expression e has a redescription. Otherwise, by Theorem 3 each expression e has a disinct redescription.
Hence the result. 2

This bi-state phenomenon encourages us to consider some subset of expressions (or collection of rows)
and the study of redescriptions of expressions becomes interesting.

In this paper we adopt the specification of the form of the expression e as a systematic approach to
restriciting our study to a subset of the collection of expressions.

Recall that an atomic element involves a single feature or column label such as F1 or ¬F1. An
expression is a pure conjunction if it is a conjunction of atomic elements and a pure disjunction if
it is a disjunction of atomic elements. For example, let e1 = (F1 ∨ ¬F2), e2 = (F1 ∧ ¬F3 ∧ F4) and
e3 = F1 ∨ (F2 ∧F3). Then e1 is a pure disjunction, e2 is a pure conjunction, and e3 is neither. If e is a
pure conjunction then ¬e is a pure disjunction and vice-versa. A CNF (conjunctive normal form) [?]
expression e is made up of conjunctions of one or more pure disjunctions (each made up of one or
more atomic elements). For instance, F1, ¬F2, F2 ∨ F3, F2 ∧ F5, and (F1 ∨ ¬F4) ∧ (F3 ∨ ¬F5 ∨ F8)

7

F1 F2 F3 F4

o1 0 0 0 0
o2 1 0 1 1
o3 1 1 0 1
o4 0 1 1 0
o5 0 0 0 1

Figure 3: An example dataset matrix D to show that the Dichotomy Law does not hold for specific
forms of expressions.

are CNF expressions but F1 ∨ (F2 ∧ F3) is not (although it can be restated as one). The definition of
DNF (disjunctive normal form) is similar.

Corollary 1 If the expressions are in the CNF or DNF form, then the dichotomy law holds for the
collection of descriptions.

Since any arbitrary expression e can be written in the canonical CNF or DNF form, the dichotomy
law holds. Hence we must look for further restriction in the forms of the expressions.

In this paper we will design algorithms for two kinds of restrictions on expressions (1) monotone
forms [?] or (2) general expressions with a small number of variables. For each of the cases, we can
have the expressions either in CNF or DNF forms. We make the following proposition.

Proposition 1 If the expressions are in (1) monotone form or (2) use only some p < m variables,
then the dichotomy law does not hold.

W e will prove this result using an example where the dichotomy law does not hold. Consider the
dataset shown in Figure 3. We will show an expression e1 with redescriptions and another expression
e2 with no redescriptions for this dataset in both the forms of expressions. Let e1 = F1 + F2 with
O(e1) = {o2, o3, o4} and e2 = F1F4 with O(e2) = {o2, o3}.
(Case 1) Let the expressions be in the monotone form. Then O(e1) = O(F2 + F3) = O(F1 + F3) =
O(F1 + F2 + F3). Thus R(e1) = {F2 + F3, F1 + F3, F1 + F2 + F3}. R(e2) is a singleton set i.e., e2 has
no redescriptions.

(Case 2) Let the expressions be in the general form with only two factors. Again R(e1) = {F2 + F3,
F1 + F3} and R(e2) is a singleton.

Notice that if no restriction is imposed on the form of expressions then e3 = F1(F2 +F3)F4 with O(e3)
= O(e2) in both the cases. 2

4 Mining Exact Redescriptions

We now present a general framework that given a n×m dataset D and support k ≤ n, identifies all
descriptors e such that |O(e)| ≥ k. We focus on mining exact redescriptions here; the next section

8

deals with approximate redescriptions.

Thus our basic mining approach has two steps:

1. Compute the O(R(e))’s for the e’s in the predefined form and extract the Fr(R(e)).

2. Compute redescriptions of e from Fr(R(e)).

4.1 Computing O(R(e)), Fr(R(e))

Next, we claim that Fr(R(e)) is an expression that involves all the variables that play a role in R(e).

Lemma 8 F (Fr(R(e))) = ∪e′∈R(e)F (e′)

L et there exist e′ ∈ R(e) such that

F (e′) \ F (Fr(R(e))) 6= φ

Then clearly e′ 6∈ X(e) which is a contradiction, hence the assumption must be wrong, thus for each
e′ ∈ R(e), F (e′) ⊆ F (Fr(R(e))). Further, Fr(R(e)) ∈ R(e), hence the result. 2

This result shows that if there is a mechanism for computing O(e) where e involves as many variables
as possible, it can be used for computing all the descriptions (and subsequently redescriptions). So
we focus on computing biclusters. The rows in the bicluster correspond to O(R(e)). , thus when the
bicluster is maximal, then F (R(e)) can be derived from the columns.

4.1.1 From Biclusters to Redescriptions

Given D, a bicluster is a non-empty collection of rows O and a non-empty collection of columns F
such that for a fixed j ∈ F , D[i][j] = cj for a constant cj and for each i ∈ O and there does not exist
i′ 6∈ O with D[i][j] = cj for each j ∈ F .

The bicluster is maximal (or also called a closed itemset [4]) there does not exist j′ 6∈ F with D[i][j′] =
c′j for each i ∈ O and some fixed c′j . These conditions define the ‘constant columns’ type of biclusters
(see [2] for different flavors of biclusters used in the bioinformatics community).

The bicluster is minimal if for each j ∈ F , the collection of rows O and the collection of columns
F \ {j} is no longer a bicluster.

A generic biclustering algorithm is shown in Figure 4 which is capable of computing both maximal
and minimal biclusters. In detail, the algorithm can be understood as follows. For this description
assume that depth is set to (m + 1), compPOSET is set to FALSE, B and E are each set to 1. The
algorithm systematically generates and maintains S, a polymorphic array of (two) sets where S[1] is
a set of row numbers and S[2] is a set of column labels which are to be intrepreted as an expression

9

that is a conjunction of these column labels. Depending on how the algorithm is invoked, S will either
represent a maximal or a minimal bicluster. A maximal bicluster (S is such that no other term can
be added to S[2] without changing the size of S[1]. A minimal bicluster S is such that no other term
can be removed from S[2] without changing the size of S[1]. Notice that when computing maximal
biclusters, S[2] will be a single set but could possibly be a collection of sets when computing minimal
bicluster. Given D and a support k, the maximal or minimal biclusters are computed recursively by
ordered search. The algorithm uses a data structure T , such as a tree, to store the sets S[1] and S[2]
computed in lines (2.4) and (2.7) respectively, so that the query of line (3.3) can be answered in logn
time. Also, the following lemma is straightforward to verify.

Lemma 9 Let S be defined as follows: (1) S[1] = U − S[] and (2) S[2] = {f | f ∈ S[2]}. S is a
minimal disjunction form if and only if S is a minimal conjunction form.

The depth parameter is used to terminate the call when the required amount of factors (columns) in
the bicluster have been collected. The compPOSET parameter is used to compute the connectivity
in the partial order of the O(−) sets. When B is set to 0, then the negation of each column is used,
when E is set to 1 the column is used as-is, hence when B=E=1, then no column is negated and when
B=E=0, each column is negated.

Time Complexity. Here we give the worst case analysis of the Generic algorithm. Let C be
all the biclusters computed. In the case of maximal biclusters, the time taken by this algorithm
is O(L log n + mn) where L =

∑
c∈C |c|. In the case of minimal biclusters, the time taken by this

algorithm is O(|C| log n + mn). Also, in each of the cases Generic is invoked only a constant number
(≤ 2) of times.

4.1.2 Expressions (e) in monotone CNF form

Since the forms are monotone, no negation of a variable (column) is permitted.

1. Find all minimal monotone pure disjunctions in D, by performing the following two substeps:

(a) Find all minimal pure conjunctions in D using the biclustering algorithm in the minimal
mode; Generic(S[],m, k, MINIMAL, compPOSET = FALSE,B = 0, E = 0, 0, depth =
m + 1)

(b) Extract all minimal monotone pure disjunctions by negating each of these computed mini-
mal conjunctions (see Lemma 9). Let the number of disjunctions computed be A in number.

2. Augment matrix D with the results of the last step. For each minimal disjunction form S,
introduce a new column c in D with

D[i, c] =

{
1 if i ∈ S
0 otherwise

Let the number of minimal disjunction forms in D be a. Thus the augmented D′ is of size
n× (m + A). Next, find all the monotone conjunction terms as maximal biclusters in D′.
Generic(S[],m,k,MAXIMAL,compPOSET = TRUE,B = 1,E = 1,0,depth = m + 1)

10

Generic(S[], j, k, f lag, compPOSET, B, E, d, depth)
(0) If (j ≤ 0) exit; If (d ≥ depth) exit
(1) lb ← B, le ← E
(2) For ` ← lb, le

Ancestor` ← TRUE
//==== S`[1] ← {i | D[(i ∈ S), j] = `}

For each i ∈ S[1]
If D[i, j] = ` S`[1] ← S`[1] ∪ {i}

Else Ancestor` ← FALSE
If (` = 0) f ← F j Else f ← Fj

S`[2] ← S[2] ∪ {f}
(3) For ` ← lb, le //==== 1st and 2nd child of traversal

If |S`[1]| ≥ k {
If S`[1] exists in T as Sp[1] {

If (compPOSET) S is added to parent list of Sp

If Ancestor`= TRUE { //==== S[2] ⊃ Sp[2] holds
If flag=Maximal Update Sp[2] ← Sp[2] ∪ S`[2]
Generic(S`[], j − 1, k, f lag, compPOSET, B, E, (d + 1), depth)

Else // [If Ancestor`= TRUE] ==== S[2] ⊂ Sp[2] holds
If flag=Minimal Add S` to T as Sq

//==== terminating traversal
} // [If Ancestor`= TRUE]

Else //[If S`[1] exists]
Add S` to T as Sq

If (compPOSET) S is assigned parent of S`

Generic(S`[], j − 1, k, f lag, compPOSET,B, E, (d + 1), depth)
} //[If S`[1] exists]

} //[If |S`[1]| ≥ k]
(4) Generic(S[], j-1, k, f lag, compPOSET, B, E, d, depth) //==== 3rd child of

traversal

Figure 4: Sketch of the algorithm: This is a biclustering algorithm that multiplexes three tasks (1)
computing minimal biclusters (2) computing maximal biclusters and (3) generating the connectivity
structure (partial order) of the biclusters.

11

{2,3}

{1,2,3} {2,3,4,5}

{1,2,3,4,5,6} {2,3,4,5,7}

{1,2,3,4,5,6,7}

{1,2,4}

{1,2,4,7}

{1,2}

{1,2,3} {2,3,4,5}

{1,2,3,4,5,6} {2,3,4,5,7}

{1,2,3,4,5,6,7}

{1,2,4}

{1,2,4,7}

(1) (2)

Figure 5: An example to show the steps involved when ξ < 1. Let k = 3 and ξ = 0.5 with n = 7 (7
rows). Then k′ = 2. (1) shows the redescription graph G′

R using k′. The special edges labeled with
Jξ are shown as undirected dashed lines between the vertices: they correspond to straddling sets S1

and S2 with J(S1, S2) ≥ ξ. The collection of rows corresponding to the biclusters are shown here as
nodes in the graph. The directed solid edges correspond to the connectivity in the partial order. (2)
shows the GR when the nodes with support < (k = 3) have been removed. Further, the edges with
label Jξ are shown with undirected dashed edges: these new edges correspond to the case when a set
S1 is contained in S2 with J(S1, S2) ≥ ξ.

4.1.3 Expressions (e) in monotone DNF form

There are two ways to computing the DNF form. The first is to compute the CNF forms and then
derive the DNF forms for each CNF form.

The other approach is to switch the order of calls to the routine Generic: first compute maximal
conjunctions and next compute the minimal disjunctions. Due to space constraints the details will be
presented in the full version of the paper.

4.1.4 Expressions (e) with a f number of factors

In this case we can use the columns as-is as well as in the negated forms, hence B is set to 0 and E is
set to 1. To limit the number of factors, depth is set to f .

Notice that we no longer have to impose the monotone condition. For the CNF form, the steps are
identical to the monotone CNF form with the following changes in the calls. In Step 1(a) the following
call is made: Generic(S[],m, k, MINIMAL, compPOSET = FALSE,B = 0, E = 1, 0, depth = f)
and in Step 2 the following call is made: Generic(S[],m,k,MAXIMAL,compPOSET = TRUE,B =
0,E = 1,0,depth = f).

12

4.2 Computing Redescriptions R(e)

Observe that if a set S[1] is generated such that S[1] ⊂ S′[1], then S′[1] must have been generated at
an ancestor node of the implicit tree of the recursive calls of Generic. Thus the connectivity of the
partial order is constructed during in the final call of Generic. Let this partial order be termed the
redescription graph and is denoted as GR.

The redescription is computed using the algorithm presented in Section 2.1. Checking for existence of
an Fr(R(e)) in the algorithm is simplified by traversing GR. This is to be interpreted for GR(V,E)
as follows: if node v1 is a parent of node v2, then the directed edge v1v2 ∈ E.

5 Mining Approximate Redescriptions

Given two sets O1 and O2 the Jaccard’s coefficient J of the two is given by

J(O1, O2) =
|O1 ∩O2|
|O1 ∪O2| =

|O1 ∩O2|
|O1 ∩O2|+ |O1 −O2|+ |O2 −O1|

When O1 and O2 are identical, then J = 1.0. In practice, it is useful to talk about O1, O2 that are
nearly equal but not necessarily exactly, i.e., the two sets have a Jaccard’s coefficient ξ < 1.

Next we define approximate redescriptions in terms of the Jaccard’s coefficient.

Definition 5 (approximate redescriptions Rξ(e), O(Rξ(e)) Let 0 < ξ ≤ 1.0. e′ is an ξ approximate
redescription of e, if and only if J(O(e), O(e′)) ≥ ξ holds for the given D. Rξ(e) is the set of all ξ
approximate redescriptions of e. O(Rξ(e)) is defined to be ∪e′∈Rξ(e)O(e′).

The pseudocode of the algorithm is as follows. Assume a given D and some 0 < ξ ≤ 1.0. Notice that
when ξ = 1.0, the redescriptions are exact and are computed as discussed in the last section.

Let R be the set of all R1’s
CompApproxRedscrp(e, ξ)
{
Let O(Rξ(e)) ← O(R1(e))
For each R1(e′) ∈ R
If (J(O(R(e)), O(R1(e′))) ≥ ξ) then
O(Rξ(e)) ← O(Rξ(e)) ∪O(R1(e′))

}

In practice however, this algorithm can be made very efficient using the partial order connectivity of
the exact approximations. This is discussed in the following section.

5.1 Approximate Redescriptions & Partial Order

The task here is to identify each pair of sets O1 and O2 such that J(O1, O2) ≥ ξ. We exploit the
redescription graph GR to cut down on the number of comparisons between sets. There are two cases:

13

(1) O1 ⊂ O2 and (2) (O1 \O2) 6= φ or (O2 \O1) 6= φ, i.e., the two sets straddle. The first case is easier
to detect since the possible candidates are along a path on the redescription graph GR. The second
case is not so straight forward.

We observe that given a support k, two straddling sets O1, O2 are such that |O1 ∩ O2| ≥ k′ for
some k′ whose value depends on k. If the redescription graph GR is augmented with these sets (that
have a support k′) to obtain G′

R, then each pair of straddling sets O1, O2, with J(O1, O2) ≥ ξ has a
common parent in G′

R. Again, it is easy to check J(O1, O2) on GR by simply keeping track of the
cardinalities of the sets. For example if v1v2 ∈ E with |O1| = k1, |O2| = k2 then it is easy to see
that J(O1, O2) = k1/(k2 − k1). And when v0v1, v0v2 ∈ E then J(O1, O2) = k0/(k1 + k2 − 2k0) where
k0, k1, k2 have the usual meaning.

To summarize, the algorithm with a given Jaccard’s coefficient ξ ≤ 1 and a support k is as follows:

1. We first estimate k′, a lower bound on |O1 ∩O2|, where |O1|, |O2| ≥ k with J(O1, O2) ≥ ξ. It is
easy to see that

k′ =
2kξ

1 + ξ

2. In Step 1 of the last section, we use support k′ (instead of k) and obtain all the expressions e
in the required form and the corresponding sets O(e) termed Oi’s. Construct the redesription
graph G′

R(V, E) in Step 2.

3. A special edge with label Jξ is introduced in the graph as follows: If v0v1, v0v2 ∈ E and
J(O1, O2) = k0/(k1 + k2 − 2k0) ≥ ξ, then the special edge between v1 and v2 is introduced.
Further, when for each child v11 of v1 and each child v21 of v2, where v1v2 has the Jξ labeled
edge, if J(O11, O21) = k0/(k11 + k21 − 2k0) ≥ ξ, then the special edge between v11 and v21 is
introduced. This process is continued till no special edges can be added. This is the case when
O1 and O2 straddle.

4. Next G′
R is transformed to GR by removing all the vertices that correspond to sets O with

|O| < k.

5. Edge with label Jξ is introduced in GR as follows: If v1v2 ∈ E and J(O1, O2) = k1/(k2 − k1) ξ,
then the special edge with label Jξ between v1 and v2 is introduced.

Next, for all possible v1v2 with label Jξ, and v2v3 ∈ E with J(O2, O3) = k2/(k3 − k2) ≥ ξ, then
the special edge between v1 and v3 with label Jξ is introduced.

This is the case when O1 ⊂ O2 holds.

6. Compute the exact redescriptions as discussed in the last section.

7. Reading off the redesrciptions from GR: Each pair of nodes v1v2 with edge label Jξ is a re-
description of each other with Jaccard’s coefficient ξ.

14

References

[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases.
In Proceedings of the 20th International Conference on Very Large Databases (VLDB’94), pages
487–499, Sep 1994.

[2] S.C. MAdeira and A.L. Oliveira. Biclustering Algorithms for Biological Data Analysis: A Survey.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 1(1):pages 24–45,
Jan 2004.

[3] N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R.F. Helm. Turning CARTwheels: An
Alternating Algorithm for Mining Redescriptions. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’04), pages 266–275,
Aug 2004.

[4] M.J. Zaki. Mining Non-Redundant Association Rules. Data Mining and Knowledge Discovery,
Vol. 9(3):pages 223–248, Nov 2004.

15

