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Abstract. Discovering topological motifs or common topologies in one
or more graphs is an important and an interesting problem. It had been
classically viewed as the subgraph isomorphism problem. This problem
and its various flavors are known to be NP-Complete. However, this
does not minimize the importance of solving this problem accurately in
application areas such as bioinformatics or even large network studies.
The explosion in the output is usually caused by isomorphisms in the
motif or graph: we present a method to handle this without sacrificing the
correct answers. In this paper, we apply the natural notion of maximality,
used extensively in strings, to the graphs and present a simple three-step
approach to solving this problem completely and accurately (without
resorting to heuristics). We handle the natural combinatorial explosion
due to isomorphism inherent in the problem by the use of “compact
location lists”. In other words, instead of enumerating k elements out of
n, we use the

(
n
k

)
form in an implicit manner, this drastically reduces

the size of the output without any loss of information. The algorithm we
present is linear in terms of the size of the output encoded as compact
lists.

Keywords: Subgraph isomorphism, graph isomorphism, topological mo-
tifs, pattern discovery, motif discovery, data mining

1 Introduction

Understanding large volumes of data is a key problem in a large number areas
such as the world wide web, bioinformatics and so on. Some of data in these areas
cannot be represented as linear strings which have been studied extensively with
a repertoire of sophisticated and efficient algorithms. The inherent structure in
these data sets is best represented as graphs. This is particularly important in
areas such as bioinformatics or chemistry since it might lead to understanding of
biological systems from indirect evidences in the data. Thus automated discovery
of “phenomenon” is a promising path to take as is evidenced by the use of motif
(substring) discovery in DNA and protein sequences.

A protein network is a graph that encodes primarily protein-protein inter-
actions and this is important in understanding the computations that happen
within a cell [HETC00, SBH+01]. A recurring topology or motif in such a set-
ting has been interpreted to be to act as robust filters in the transcriptional



network of Escherichia coli [MSOI+02, SOMMA02]. It has been observed that
the conservation of proteins in distinct topological motifs correlates with the
interconnectedness and function of that motif and also depends on the struc-
ture of the topology of all the interactions indicating that motifs may represent
evolutionary conserved topological units of cellular networks in accordance with
specific biological functions they perform [SOB03, LMF03]. This observation is
strikingly similar to the hypothesis in dealing with DNA and protein primary
structures.

Topological motifs are also being studied in the context of structural units
in RNA [HPS03] and for structural multiple alignments of proteins [DBNW03].
For yet another application consider a typical chemical data set: a chemical is
modelled as a graph with attributes on the vertices and the edges. A vertex
represents an atom and the attribute encodes the atom type; an edge models
the bond between the atoms it connects and its attribute encodes the bond
type. In such a database, very frequent common topologies could suggest the
relationship to the characteristic of the database. For instance, in a toxicology
related database, the common topologies may indicate carcinogenicity or any
other toxicity.

In the field of machine learning, methods have been proposed to search for
subgraph patterns which are considered characteristic and appear frequently:
this uses an a priori-based algorithm with generalizations from association dis-
covery [IWM03]. In massive data mining where the data is extremely large: it is
of the order of tens of gigabytes. These include the world wide web, internet traf-
fic and telephone call detail. The common topologies here are used to discover
social networks and web communities among other characteristics [Mur03].

In biological data the size of the database is not as large, yet unsuitable for
enumeration schemes. When this scheme was applied researchers had to restrict
their motifs to small sizes such as three or four [MSOI+02]. The problem of
finding common trees in a forest is discussed in [Zak02], which is a special case
of the general graph problem discussed below. We take a combinatorial approach
to the problem and introduce a compact notation to handle the combinatorial
explosion arising from isomorphisms. The problem is abstracted as follows: Given
a graph G(V, E) with labelled vertices and edges, the task is to discover at
least k(> 1) subgraphs that are topologically identical in G. Such subgraphs are
termed topological motifs. It is very closely related to the the classical subgraph
isomorphism problem defined as follows [GJ79]: Given graphs G = (V1, E1) and
H = (V2, E2). Does G contain a subgraph isomorphism to H i.e., a subset
V ⊆ V1 and a subset E ⊆ E1 such that |V | = |V2|, |E| = |E2| and there
exists a one-to-one function f : V2 → V satisfying {v1, v2} ∈ E2 if and only
if {f(v1), f(v2)} ∈ E? Two closely related problems are as follows [GJ79]. (1)
Largest common subgraph problem: Given graphs G = (V1, E1) and H = (V2, E2),
positive integer K. Do there exist subsets E′

1 ⊆ E1 and E′
2 ⊆ E2 with |E′

1| =
|E′

2| ≥ K such that the two subgraphs G′ = (V1, E
′
1) and H ′ = (V2, E

′
2) are

isomorphic? (2) Maximum subgraph matching problem: Given directed graphs
G = (V1, E1) and H = (V2, E2), positive integer K. Is there a subset R ⊆ V1×V2



with |R| ≥ K such that for all < u, u′ >, < v, v′ >∈ R, (u, v) ∈ A, if and only if
(u′, v′) ∈ A2? All the three problems are NP-Complete: each can be transformed
from the CLIQUE problem. The problem addressed in this paper is similar to
the latter two problems. However our interest is in finding at least K isomorphs
and all possible such isomorphs.

A naive enumeration to discover all the topological motifs is stymied primar-
ily by the combinatorial explosion. When a common topology represented by G′

occurs at least k times in a graph, so do all the subgraphs of G′. Also, when a
vertex v has n identical neighbors and only k need to be chosen then there are(
n
k

)
ways of choosing v’s neighbors leading to a combinatorial explosion: this is

a result of self-isomorphism in the subgraphs.
A discovery process must handle these issues appropriately to make the task

of topological motif detection a practical and an useful process. At the same
time it is vital that there is no loss of information. This requires some natu-
ral restrictions like maximality and we extend the ideas from one-dimensional
strings [Par00, AP04] to our problem definition in the following discussion in
Section 2. The compact lists handle the self-isomorphism related issues and in
Section 3 we present an efficient algorithm to compute the motifs in time pro-
portional to the size of the results represented in the compact form.

2 The Discovery Problem

In the remainder of the discussion we deal with undirected graphs with vertex
attributes. In other words all the edges have the same attribute. We show that
any general graph, directed or undirected and with arbitrary attributes defined
on the vertices and the edges, can be mapped onto such a special case and
the results from this can be mapped back to the original general graph. This
mapping is straightforward and we demonstrate this in the Appendix.

Consider a graph G(V, E) with |V | = n. Let AV be a finite set of elements
(referred to as attributes) with A : v → AV , a mapping sending v �→ av.

Definition 1. A topological motif is a connected graph M(Vm,Em) where Vm =
{u0, u1, u2, . . . , up}, p > 1 and is said to occur on the set of vertices Oi =
{vi0, vi1, vi2, . . . , vip} ⊆ V of graph G, 1 ≤ i ≤ K, if and only if (1) for each
i, 1 ≤ i ≤ K, there is a one-to-one onto mapping Fi : Vm → Oi, such that,
A(uj) = A(Fi(uj)) (inverse is denoted by F−1

i ()), and (2) (uj1 , uj2) ∈ Em ⇒
(Fi(uj1), Fi(uj2)) ∈ E holds. If there is no O distinct from each of Oi such that
motif M occurs on O, then O1, O2, . . .Ok is a complete occurrence list. The
ordered set of vertices Oi’s are aligned if for each j, F−1

i (vij) = vj ∈ Vm, for all
i.

A topological motif must be connected, hence |Em| > 0. Notice that a singleton
vertex is not considered a topological motif by the definition: this excludes the
trivial motifs of a vertex with a fixed attribute.

For example, consider the graph shown in Figure 1(a). The occurrence of
a topological motif M at O1, O2, . . .O10 is shown in Figure 1. Here the motif



shown in Figure 1(b) is M(Vm, Em) where Vm = {u1, u2, u3, u4}. For the oc-
currence (numbered 1) shown in Figure 1(1), aligned O1 = {v4, v5, v9, v10}.
Further F1(u1) = v4, F1(u2) = v5, F1(u3) = v9 and F1(u4) = v10 and
A(u1) = A(v4) = � and so on.

Definition 2. Given a graph G(V, E), the vertices in V1 ⊆ V are isomorphic
with respect to V2 ⊆ V if A(v ∈ V1) = a1 and A(v ∈ V2) = a2 for some
attributes a1 and a2 and there is an edge vivj ∈ E, for each vi ∈ V1 and Vj ∈ V2.
If there exists no V ′

1 ⊃ V1 and V ′
2 ⊃ V2 such that V ′

1 and V ′
2 are isomorphic,

then V1 is maximal with respect to V2. [To avoid clutter, V1 will be called a set
of (maximal) isomorphic vertices and existence of some non-empty V2 will be
assumed to be implicit]

In Figure 1(2), U1 = {u1, u2} is (maximally) isomorphic with respect to U2 =
{u3, u4} and vice-versa. In the rest of the paper, a set such as U1 (and also
U2) will be called a maximal set of isomorphic vertices. Maximality: We next
define a maximal motif, which is a natural extension of the maximality on linear
strings [Par00].

Definition 3. Let M(Vm, Em) be a topological motif with its complete occur-
rence list O1, O2, . . . , Ol. The motif is maximal if both edge-maximality and
vertex-maximality hold. Edge-maximal: For all vj1 , vj2 ∈ Vm if (Fi(vj1 , Fi(vj2 )) ∈
E for all i, 1 ≤ i ≤ l, then (vj1 , vj2) ∈ Em. Vertex-maximal: There does not exist
vertices v1, v

′
1, v2, v

′
2, . . . , vl, v

′
l ∈ V such that the following hold: (1) vi 	∈ Oi,

v′i ∈ Oi, 1 ≤ i ≤ l (2) A(vi) = A(vj), 1 ≤ i, j ≤ l (3) F−1
i (v′i) = F−1

j (v′j),
1 ≤ i, j ≤ l

In other words, edge-maximality ensures that no more edges can be added to
the motif and vertex-maximality ensures that no more vertices can be added to
the motif. Notice that Figure 1(b) is not a maximal motif since at least another
vertex can be added to the motif and Figure 2 gives an example of a maximal
motif.

Definition 4. Let O1, O2, . . .OK ⊆ V be a complete and aligned occurrence list
of topological motif M(Vm, Em), and let U = {u1, . . . , ud} ⊆ Vm be a set of
maximal isomorphic vertices of M(Vm, Em). The location list of U is denoted as
U -Lm = {{Fi(u1), . . . , Fi(ud)}1 ≤ i ≤ K}. M has a quorum K, if there exists
at least one set of maximal isomorphic vertices U with |U -Lm| ≥ K.

Thus the occurrence list gives the entire footprint of the motif at each occurrence
and the location list tracks the mapping of each vertex (or a set of isomorphic
vertices) in the motif. Also notice that by definition the location list is complete
since it corresponds to a complete occurrence list. In Figure 1, the (complete)
occurrence list of the two isomorphic vertices U = {u1, u2} are given as U -Lm =
{{v4, v5}, {v1, v2}, {v2, v3}, {v1, v3}}.
Compact list: To ease handling the combinatorial explosion due to isomor-
phisms, we introduce the compact list notation for the location lists of topo-
logical motifs. It is often possible to represent U -Lm (Definition 4) in a much



more compact way taking into account the fact the the vertices in U are isomor-
phic. For instance, in the example in Figure 1(b), U = {u1, u2} is set of isomor-
phic vertices and U -Lm = {{v1, v2}, {v1, v3}, {v2, v3}, {v4, v5}}. However, a more
compact way to represent U -Lm is by the set, U -Lc

m = {{v1, v2, v3},{v4, v5}} and
one recovers U -Lm from U -Lc

m by taking all two (the smallest cardinality of the
sets in U -Lm) element subsets of the sets in U -Lc

m. We call U -Lm the expansion
of the set U -Lc

m, and U -Lc
m a compact form of U -Lm. More precisely, given a

set L = {L1, . . . , L�} ⊂ 2V , we define the expansion of L, E(L) ⊂ 2V as follows:

Definition 5. Let d = min�
i=1 |Li|. If |L′ ∈ L| = d then L′ is called a discrimi-

nant of L. Flat(L) = ∪iLi ∈ L and |L| = |E(L)| where the expansion E(L) is
given as

E(L) = {L ∈ 2V |∃Li ∈ L | L ⊂ Li, |L| = d}.

3 The Discovery Algorithm

3.1 Main Idea

The method is based on a simple observation that given a graph a topological
motif can be represented either as a motif (graph) or as a collection of location
lists of the vertices of the motif. Our approach to discover the multiply occurring
motifs is to work in the space of the location lists. There are two aspects that
lend themselves to efficient discovery: (1) The motifs are maximal so a relatively
mall number of possibilities are to be explored. For instance if a graph has
exactly three red vertices with 5, 8 and 10 blue immediate neighbors (along with
other edges and vertices with other colors), then any maximal motif with a red
vertex can have exactly 5 blue neighbors or exactly 8 blue neighbors, although
a subgraph could have from 0 to 10 blue neighbors. The compact location list
captures this succinctly. (2) A single conservative “intersection”-like operation
(eg conjunct in Step 1 and join in Step 2) can efficiently handle all the potential
candidates with a high degree of efficiency.
Method. The discovery process consists of mainly two steps. In the first step we
compute an exhaustive list of potential location lists of vertices of these motifs,
which we store in a compact form, as compact location lists. In the second
step we enlarge the collection of compact location lists computed in the first
step by including all the non-empty intersections (termed join in the paper)
amongst the location lists computed in the first step. The collection of compact
location lists so obtained has the nice property that every maximal motif has a
vertex (or a group of vertices) whose location list appear in compact form in this
collection. Conversely, every compact location list appearing in this collection
is the location list of some vertex (or isomorphism class of vertices) of some
maximal motif. The intersection operations at different stages are carried out
in an output-sensitive manner: this is possible since we are computing maximal
intersections. This makes the overall algorithm very efficient. We could stop
at this point, since often the location lists are all that is required. However,
for the sake of completeness we compute in the third step of our algorithm



an actual list of maximal topological motifs. In fact the previous steps store
the neighborhood information of the location lists, thus the maximal motifs are
obtained by traversing this neighborhood structure.

v1 v2 v3 v4

v6 v7 v8 v9 v10

v5 u1 u2

u3 u4

v5v1 v2 v3 v4

v6 v7 v8 v9 v10

v5v1 v2 v3 v4

v6 v7 v8 v9 v10

(a) (b) (1) (2)
v5v1 v2 v3 v4

v6 v7 v8 v9 v10

v5v1 v2 v3 v4

v6 v7 v8 v9 v10

v5v1 v2 v3 v4

v6 v7 v8 v9 v10

v5v1 v2 v3 v4

v6 v7 v8 v9 v10

(3) (4) (5) (6)
v5v1 v2 v3 v4

v6 v7 v8 v9 v10

v5v1 v2 v3 v4

v6 v7 v8 v9 v10

v5v1 v2 v3 v4

v6 v7 v8 v9 v10

v5v1 v2 v3 v4

v6 v7 v8 v9 v10

(7) (8) (9) (10)

Fig. 1. (a) The input graph is given by G with nodes numbered from v1 to v10. The
nodes represented by squares have the attribute s, the circular nodes have attribute r.
(b) A topological motif M(Vm, Em) on this graph: u1 and u2 are isomorphic and so
are u3 and u4. (1)-(10) The ten occurrences of the topological motif are shown in bold
on the original graph. Let U� = {u1, u2}, U© = {u3, u4}. All the 10 occurrences are
represented in the following compact notation of the location lists corresponding to U�

and U©: U�-Lm = {{v4, v5}, {v1, v2, v3}} and U©-Lm = {{v9, v10}, {v6, v7, v8}}.

Input: Given a graph G(V, E) with at most D distinct attributes associated
with each vertex vi. For the sake of convenience, let B be a two-dimensional
array of dimension |V | ×D which encodes the graph as follows: B[i][j] is the set
of vertices adjacent to vi having the attribute aj , 1 ≤ i ≤ |V |, 1 ≤ j ≤ D.

3.2 Step 1-Computing the Conjuncts

Let L be the set of all possible complete compact lists L = {L1, . . . , L�} with the
following properties. (1) For each v ∈ Li, 1 ≤ i ≤ �, A(v) = ac holds, and, (2)



v1 v2 v3 v4

v6 v7 v8 v9 v10

v5 v1 v2 v3 v4

v6 v7 v8 v9 v10

v5 v1 v2 v3 v4

v6 v7 v8 v9 v10

v5

(1) (2) (3)
v1 v2 v3 v4

v6 v7 v8 v9 v10

v5 v1 v2 v3 v4

v6 v7 v8 v9 v10

v5 v1 v2 v3 v4

v6 v7 v8 v9 v10

v5

(4) (5) (6)

Fig. 2. The occurrences of a maximal topological motif (see (1) & (2) above) of the
graph shown in Figure 1(a) are shown in bold. The dashed-bold indicate multiple
occurrences shown in the same figure: the occurrence of a maximal motif is to be
interpreted as all the solid vertices and edges and one of the dashed edges and the
connected dashed vertex.

There exists at least one attribute aj such that there are h > 0 common neighbors
vij of all vertices v ∈ Li such that A(vij) = aj , for all i. L is complete if there
exists no L ∈ 2V , |L| ≥ d, L 	= Li, 1 ≤ i ≤ �, satisfying properties 1 and 2 above.
The signature S(L) = ((ac, d), P ) where ac is the attribute of property 1 and P is
the non-empty set of pairs (aj , h) that satisfy property 2 and d is the size of the
discriminant of L. Given L, for each attribute aj (of property 2), the conjugate
compact location list is given as Lj

= {Lk ∈ 2V |for each v ∈ Lk, A(v) = aj and
(uv) ∈ E, u ∈ Li ∈ L}. Lk ∈ Lj

is the conjugate of Li ∈ L given as cj(Li) = Lk.

Lb ⊆ L is called the conjuncts and is defined as follows: L ∈ Lb ⇔ ∀L′ ∈
L, (L′ ⊃ L) ⇒ S(L′) 	= S(L). The output of Step 1 is L = Lb ∪ Lc where Lc is
the set of all conjugates of each L ∈ Lb. Observe that any compact location list
U -L, where U has the usual meaning, is such that U -L ⊆ L′ ∈ L for some L′.

Due to space constraints, a running example is shown in the Appendix (Fig-
ure 4) for the referees. Given C, C, P where C is a subset of the location lists
C1, C2, . . . , Cn, C is a collection of vertices and P is a collection of attributes (in-
dices), CREATE-SET(C, C,P) creates a data structure D so that searching can
be done efficiently. Thus a query of the form if a subset C ∈ D (EXIST(C) in
the routine shown below) returns a True/False in time O(log |V |). In the routine
below, K is the quorum (see Definition 4).



PREPROCESS(K)
For each j, 1 ≤ j ≤ D
Cj ← φ
For each k, 1 ≤ k ≤ D
For each l, |B[i][k]|=l for some i

Ck(l)
j = {vi | A(vi)=aj , |B[i][k]| ≥ l}

If (|Ck(l)
j | ≥ K) Cj ← Cj ∪ {Ck(l)

j }

For each attribute aj

CONJUNCTS(Cj , |V |, K)

CONJUNCTS (Cj , h, K)
{

(1) If (h ≤ 0) Then Exit

(2) Let C′
j = {Ci(l)

j | vh ∈ Ci(l)
j ∈ Cj}

Let C′
j = {vh}

Let P ′
j = {(i, l)|{Ci(l)

j } ∈ C′
j}

(3) If ((|C′
j | ≥ K) and not EXIST(C′

j)
(4) CREATE-SET(C′

j , C′
j ,P ′

j)
(5) CONJUNCTS(C′

j , h − 1, K)
(6) If EXIST(C′

j) C′
j ← C′

j ∪ {vh}
(7) CONJUNCTS(Cj , h − 1, K)

}
Postprocessing: New compact lists and their conjugates are generated in this
step. The collection of compact lists Lb is constructed as follows: For each C′

j ,
construct Ljx

0 (where Flat(Ljx
0 ) = C′

j and x is an indexing number) as follows. If
vi1 , vi2 ∈ C′

j and for each (k,−) ∈ P ′ B[i1][k] ⊆ B[i2][k] without loss of generality
then vi1 , vi2 ∈ Li ∈ Ljx

0 . Notice that for each v ∈ Flat(Ljx
0 ), A(v) = aj .

We next introduce a process of maximalization of the compact lists. This
is best explained through a simple example. Consider a compact list L′ = {
{v1, v2}, {v3, v4, v5}, {v6, v7, v8, v9}} where each vertex has the attribute say a1.
Then the corresponding maximal motif has at least two vertices U = {u1, u2}
with attribute a1 and L′ = U -L. However by our definition of maximal motifs,
there will also exist a maximal motif with at least three vertices U ′ = {u1, u2, u3}
with U ′-L = {{v3, v4, v5}, {v6, v7, v8, v9}}. This can always be implictly handled
but for clarity in the presentation of the algorithm, we will explicitly compute
and store U ′-L as described below.

For each L, MAXIMALIZE(L) as follows: Let d be the size of the discriminant
of L and let m = maxi(|Li ∈ L|). Then for each p, d < p ≤ m, generate
Lp = {Li ∈ L | |Li| ≥ p}. Update Lb with the new locations lists generated in
MAXIMALIZE(L).

Conjugate location lists of Ljx
0 (Lc) for each (i, l) ∈ P ′

j is constructed as
Ljx

i(l) = {B[h][i] | vh ∈ C′
j , (i, l) ∈ P ′

j}. Notice that for each v ∈ Flat(Ljx
i(l)),

A(v) = ai. For simplicity, we collect all the compact location lists from Li ∈
Lb ∪Lc such that for each v ∈ Flat(Li), A(v) = aj . Let the number of such lists
be J denoted as Lj

1,Lj
2, . . . ,Lj

J . These sets are the key players in Step 2.

3.3 Step 2-Computing the Joins

Definition 6. Given p compact location lists Li, 1 ≤ i ≤ p, some L′
1 ⊆ L1 and

a family of one-to-one mappings Mi : (L1 ∈ L′
1) → (Li ∈ Li), 2 ≤ i ≤ p, we call

L′
M = {L1 ∩ (

⋂p
i=2 Mi(L1)) | L1 ∈ L1} a join of Li, 1 ≤ i ≤ p. If L′

1 = L1 and
the mappings Mi are onto, then we call L′

M a complete-join of Li.

Clearly, the join of two sets is not necessarily unique 1. For example, let L1 =
1 Hence we use the term join instead of intersection.



{L11 = {v0, v1, v2}, L12 = {v0, v1, v3}} and L2 = {L21 = {v1, v2, v4}, L22 =
{v1, v2, v3, v4}}. Then L3 = {L11 ∩ L21, L12 ∩ L22} = {{v1, v2}, {v1, v3}} and
L4 = {L11 ∩ L22, L12 ∩ L21}= {{v1}, {v1, v2}} are both joins of L1 and L2.
Although it appears that the algorithm has to explore a very large space of
mappings (Mi’s), since our interest is in “maximal” intersections, we can design
an efficient algorithm to compute all the joins. In the last example both L3 and
L4 are complete-joins. If L5 = {{v1, v2}, {v3, v4}} and L6 = {{v2, v1}, {v5, v6}},
then L7 = {{v1, v2}} is a join of L5 and L6 but not a complete-join.

Again due to space constraints, the running example is continued in the
Appendix (Figure 6) for the referees.

For each attribute aj, Lj
1,Lj

2, . . . ,Lj
J were computed at the end of last step.

Let ni = |Lj
i | and let Lik ∈ Lj

i , 1 ≤ k ≤ ni, 1 ≤ i ≤ J . XTION routine is along
the lines of CONJUNCTS: CREATE-SET() stores the compact location lists in
an appropriate data structure (say a tree) and the query in line (3) of the routine
can be computed in log |V | time. At the top level, L = {Lik | 1 ≤ i ≤ J, 1 ≤ k ≤
ni}, h is the number of vertices with the attribute aj and K = 1.

XTION(L, h, K)
{

(1) If (h ≤ 0) Then Exit
(2) Let L′′ = {Lik|vh ∈ Lik ∈ L}

Let P = {(i, k)|Lik ∈ L′′}
Let L′ = {vh}

(3) If |L′′| ≥ K and not EXIST(L′′)
(4) CREATE-SET(L′′,L′,P)
(5) XTION(L′′, h − 1, K)

(6) If EXIST(L′′) add vh to L′

(7) XTION(L, h − 1, K)
}

Postprocessing: (1) Computing the new compact lists: This involves (a) com-
puting the joins and (b) maximalization. (a) Computing Joins: At this phase new
compact location lists are constructed from the results produced by XTION. A
compact list is a collection of sets L and XTION first extracts all the L’s from
the compact lists and then computes all the possible intersection of these L. In
this step we reconstruct the collection of sets (as compact lists) back again as
follows: Let L′

l and Pl, 1 ≤ l ≤ � be the sets produced by the routine (line 2). For
each 1 ≤ l ≤ �, let Dl = {i | (i,−) ∈ Pl}. In other words, each Dl is a collection of
the input compact list numbers. For example, let P1 = {(1, 10), (2, 20), (3, 30)},
then Dl = {1, 2, 3}. Notice that the element (1, 10) ∈ P1 denotes the element la-
beled 10 in compact list numbered 1; (2, 20) ∈ P1 denotes the element labeled 20
in compact list numbered 2 and so on. D1 captures the non-empty intersection
of the three compact lists numbered 1, 2 and 3 and the one-to-one mappings Mi

of Definition 6 sends element labeled 10 of compact list 1 to element labeled 20
of compact list 2 and to element labeled 30 of compact list 3.

On the other hand, if some P2 = {(1, 10), (1, 15), (2, 20), (3, 30)}, then D2 =
{1, 2, 3} and the two families of one-to-one mappings, M1 and M2 satisfy: (1)
M1

2 (10) �→ (20), M1
3 (10) �→ (30), and, (2) M2

2 (15) �→ (20), M2
3 (15) �→ (30).



Obtain all the intersections of the D′s constructed in the last paragraph
using the CONJUNCT routine: Let D be the collection of all D’s of the last
step, then CONJUNCT(D, N ,2) computes all the distinct intersections. For each
distinct intersection I =

⋂lm
i=l1

Di, construct the compact location list {{L′
l} |

l = l1, l2, . . . , lm}. This new compact list is a join of the input compact lists
(numbers) contained in I. For instance if I = {1, 2, 3}, then the new compact
list L′ is a join of input compact lists numbered 1, 2 and 3 say L1, L2 and L3

respectively. If |E(L′)| = |E(Li)|, i = 1, 2, 3, then L′ is a complete-join.
(b) Maximalize: For each new compact list L generated in the last phase,

MAXIMALIZE(L) (see Section 3.2) and update the set of compact lists.
(2) Updating Conjugates: For each Lk ∈ L, construct for each conjugate

Lj

k and add it to L. Thus as each location list loses elements due to the joins,
its conjugate list (with a different attribute) also loses the same corresponding
elements to create possibly new location lists.
Step 2 is iterated until no more new location lists are formed.

Due to space constraints the proof of correctness of the algorithm has been
omitted and is presented in the appendix for the referees.

3.4 Step 3-Maximal motifs from the compact lists

By the end of Step 2 all the information regarding the maximal motifs has been
gathered namely the location lists in the compact form. This step is more about
organizing the results of the first two steps.

Let L be the collection of all compact lists at the end of Step 2. Consider
a graph G(V, E) where (vi ∈ V ) corresponds to the location list (Li ∈ L) and
(vivj) ∈ E if (1) Li is a conjugate of Lj or (2) Li is a complete-join of Lj .
Conjugate denotes immediate neighbors of vertices and complete-join denotes
the extension of the neighborhood information of the vertices in a compact list.
Thus, it is easy to see that the connected components of the graph correspond
to maximal motifs and they can be deduced from G. Continuing the concrete ex-
ample, the maximal motif shown in Figure 2 is obtained from (1) L�5

0 , (2) L�5
©(2),

(3) L©3
0 and (4) L©2

�(3). (1) and (2) are conjugates, (2) and (3) are complete-joins
and (3) and (4) are conjugates.

3.5 Time Complexity

We give the time complexity in terms of the size of the output S which is
considered to be the sum total of all the location lists of all the maximal motifs.
Notice that every compact list that is generated at each step corresponds to a
location list of some maximal motif.

Consider Step 1 (Section 3.2). It takes time O(|E|) to initialize B since each
edge is read at most twice during the process. Next, in the routine CONJUNCTS,
all the resulting sets, which are N in number are at the leaf node of tree im-
plicitly computed by it. Also, the number of internal nodes can not exceed the
number of leaf nodes, N . Thus the total number of internal nodes of this implicit



tree is O(N). The cost of the query at each node is O(log |V |) (line (3) of CON-
JUNCTS). The size of the input data is O(|V |D) and each data item is read
exactly once in the algorithm (line (2) of CONJUNCTS) Hence the algorithm
takes O(N log |V |+|V |D) time. The postprocessing again takes time O(|E|) since
each edge is represented at most twice in B. Thus this takes O(|E| + N log |V |)
where N is the number of distinct location lists at this step. The postprocessing
takes time linear in the size of the output at this step.

Consider Step 2 (Section 3.3). The routine XTION is along the line of CON-
JUCT and using similar arguments the step takes O(N2 log |N2|+N1) where N1

is the size of the input and N2 is the size of the output at this step. The distinct
intersection computation takes O(N3 log |N3| + N2) where N3 is the size of the
output. Again the postprocessing takes time linear in the size of the output at
this stage.

Notice that at each step N, N1, N2, N3 ≤ S where S is the size of the output
in terms of its location lists. Let the number of times Step 2 is iterated be m,
then m is bounded by log M where M is the maximum number of vertices in any
maximal motif. The total time taken by the algorithm is O(|E|+ S log S log M)
as Step 3 is just a linear time operation.

4 Discussion

Here we present a general framework for discovering common recurring struc-
tures or motifs in data. The framework has been developed for graphs. The next
natural variation is to allow for ”wild card” nodes, i.e. nodes whose attributes
can be ignored in the motif. Again for such variations, (1) the conjunct oper-
ation needs to be redefined to allow for wild card nodes and (2) the order in
which the join operations are undertaken. It is clear that similar other notions
of approximate topological motifs can be developed along these lines.

If we restrict the graphs to represent strings, does the algorithm specialize
to finding motifs in strings? We claim that it does and in fact gives rise to the
algorithm presented in [CP04] for finding extensible patterns in strings. Again,
this simply involves specializing conjunct and join operations appropriately.

5 Conclusion & Ongoing Work

We have presented a method for discovering all common subgraphs that appear
at least K times in a graph or multiple graphs. The usual problem due to isomor-
phism is handled effectively by the use of a compact notation that abbreviates
the output substantially without any loss of information. It also presents an al-
ternative way of presenting the results as compact location lists and opens the
possibility of evaluating significance of the motifs in a specific domain directly
on these compact lists. We are currently looking into using this technique for
discovering motifs in metabolic pathways and biological network data.
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Appendix A
Given a general graph G, we compute an undirected graph G′ that has only

vertex attributes by the following steps.

1. Introduce suffixes to vertices and edges with identical attributes.
2. (a) (directed graph) For each incoming edge with attribute xi, vertex with

attribute Aj and outgoing edge with attribute yk, create a node with
attribute xiAjyk in G′.

(b) (undirected graph) For each incident edge with attribute yk, vertex with
attribute Aj create a node with attribute Ajyk in G′.

3. In G′ for each pair of nodes with attributes
(a) (directed graph) –yk and yk–,
(b) (undirected graph) -yk and -yk,
introduce an edge between these nodes.

A

y

A

B C

x

x

z

z

B

A2

Cy

x1

x2

z1

z2

A1

(1) (2)

yBz2
z1A1x1

yBz1

x1Cy z2A2x2

x2Cy R

P

P

Q

Q

R
(3) (4)

Fig. 3. (1) A directed graph with vertex and edge attributes. (2) The annotated di-
rected graph. (3) Construction of an undirected graph from Step 2. (4) The undi-
rected graph with no edge attributes and a motif is shown in bold on this graph. Here
P = zAx, Q = yBz,R = xCy.



Appendix B
Proof of Correctness of the algorithm: At the end of Step 2, we have
a collection of compact lists that have the property discussed below. We first
make the observation: |Lk+1| ≤ |Lxi |, 1 ≤ i ≤ p, where Lk+1 is generated at
iteration (k + 1) from Lxi , generated at iteration (xi ≤ k), and, 1 ≤ i ≤ p.

Lk+1 can be generated in the two ways: (1) Lk+1 is the join of Lxi , 1 ≤ i ≤ p
(then |Lk+1| ≤ |Lxi | for each i), and (2) Lk+1 is the conjugate of Lxi for some
xi ≤ k. Since the mapping is one-to-one, |Lk+1| ≤ |Lx|.

Let L be the set of all compact lists computed at the end of Step 2. Let
M(Vm, Em) be a maximal motif and let U -L be the compact location list where
U ⊆ Vm is a set of maximal isomorphic vertices in M . Let L′ be the set of all
such compact lists of all maximal motifs.

Theorem7. L = L′.

We begin with a few lemmas.

Lemma8. Let M(Vm, Em) be a maximal motif with a set of maximal isomor-
phic vertices U1 ⊆ Vm and L = U -L. Let Lj

be one of the conjugates of L. Then
there exists at least one maximal motif M ′(V ′

m, E′
m) with isomorphic vertices

U1, U2 ⊆ V ′
m with U1-L = L and U2-L = Lj

.

If M is maximal then U -L = L is called a maximal location list. Also, let M(L)
denote the set of maximal motifs which have a set of isomorphic vertices U with
U -L = L.

Lemma9. For i = 1, 2, let Mi(Vmi , Emi) be maximal motifs with a set of iso-
morphic vertices, Ui ⊆ Vmi . If U1-L1 ⊂ U2-L2, then M2 is a proper subgraph of
M1. The converse is also true.

Since L1 ⊂ L2, M2 must occur in all the locations of L1 and so does M1. By
Lemma 8, M2 is a subgraph of M1. Conversely, if M2 is a subgraph of M1, then
M2 occurs at all the locations in L1 and L2, hence L1 ⊂ L2.

Lemma10. Let Mi(Vmi , Emi), 1 ≤ i ≤ p, be maximal motifs on G(V, E), let
M be the smallest graph (also on G) such that each of Mi is a subgraph of
M(Vm, Em), then M(Vm, Em) also must be a maximal motif on G(V, E).
Let U be a set of isomorphic vertices in Vm, Vmi , 1 ≤ i ≤ p such that they are
isomorphic to each other. Then U -L is the join of U -Li, 1 ≤ i ≤ p.

Lemma11. L is closed under join and closed under conjugation.

Notice that Steps (1-b) and (2) ensure these conditions.
Back to the main theorem. We first show that L′ is closed under conjugation
and join. Let Lj

be the conjugate of some L ∈ L′. By Lemma 8, Lj ∈ L′. Hence
L′ is closed under conjugation. Consider (L0 is the join of (Li ∈ L′), 1 ≤ i ≤ p,
L0 	∈ L′. Since Li ⊇ L0, 1 ≤ i ≤ p, by Lemma 9, for each Mi ∈ M(Li) and



for each M ′ ∈ M(L0), Mi is a subgraph of M ′. Since each Mi is maximal. By
Lemma 10, M ′ must be maximal. So L0 ∈ L′. Hence L′

b is closed under join. (I)
For any L ∈ L there exists a L′ ∈ Lb such that L′ ⊇ L. Also, clearly Lb ⊆ L′.

From Lemma 11 and (I), both L and L′ are closed under join and conjugation;
hence L ⊆ L′. (II)

We will show that L′\L = φ. Let L ∈ L′\L. Then L must have the form that
there exist some p ≥ i ≥ 1 location lists with (Li ⊃ L). Let L′ be the join of these
p location lists, hence L′ ∈ L. Assume L 	= L′. Let M(L) denote the collection
of maximal motifs such that L is a location list correpsonding to (possibly set)
vertex in the motif. Consider M(Vm, Em) ∈ M(L) and M ′(V ′

m, E′
m) ∈ M(L′).

Without loss of generality M ′ is a proper subgraph of M (by Lemma 9). Hence
there must exist a vertex u1 ∈ Vm with isomorphic vertices u′

1 ∈ V ′
m satisfying

A(u1) = A(u′
1) = aj . Further, there is some u2 ∈ Vm, (u1u2) ∈ Em, A(u2) = ai

and no vertex isomorphic to u2 in M ′. Consider some Lb ∈ Lb with signature
S(Lb) = ((aj , -), P ), where (ai, -) ∈ P . Then clearly Lb∩L′ = L, hence L ∈ L∩L′

contradicting the assumption and L = L′. Hence L′ ⊆ L. (III)
From (II) and (III), L = L′. �

Matrix B:

vi (A(vi)) � ©
v1(�) φ {v6, v7, v8}
v2(�) φ {v6, v7, v8}
v3(�) φ {v6, v7, v8, v9}
v4(�) {v5} {v9, v10}
v5(�) {v4} {v9, v10}
v6(©) {v1, v2, v3} φ
v7(©) {v1, v2, v3} φ
v8(©) {v1, v2, v3} φ
v9(©) {v3, v4, v5} {v10}

v10(©) {v4, v5} {v9}

PREPROCESS produces the following:

C�(1)
� = {v4, v5}

C©(2)
� = {v1, v2, v3, v4, v5}

C©(3)
� = {v1, v2, v3}

C©(4)
� = {v3}

C�(2)
© = {v6, v7, v8, v9, v10}

C�(3)
© = {v6, v7, v8, v9}

C©(1)
© = {v9, v10}

Fig. 4. Consider the graph of Figure 1(a). The graph has 10 vertices and two kinds of
vertex attributes (1) � and (2) ©. The correesponinng adjacency matrix is shown as
B along with the set produced in PREPROCESS of Step 1.

This article was processed using the LATEX macro package with LLNCS style



CONJUNCTS
({C�(1)

� , C©(2)
� , C©(3)

� }, 10, 2)

The successive values taken by P ′
� are:

P ′
�={(�, 1), (©, 2)}, P ′

�={(©, 2)}

The post-processing results are:
(1) From P ′

� = {(�, 1), (©, 2)}
L�1

�(1) = {{v5}, {v4}}
� �

L�1
0 = {{v4}, {v5}}

� �
L�1

©(2) = {{v9, v10}}
(2) From P ′

� = {(©, 2)}
L�2

0 = {{v1, v2, v3}, {v4, v5}, {v3}}
� � �

L�2
©(2) = {{v6, v7, v8}, {v9, v10}, {v6, v7, v8, v9}}

(3) From (2) (L�2
©(2)) (by MAXIMALIZE)

L�3
0 = {{v1, v2, v3}, {v3}}

� �
L�3

©(3) = {{v6, v7, v8}, {v6, v7, v8, v9}}
(4) From (2) (L�2

©(2)) (by MAXIMALIZE)

L�4
0 = {{v3}}

�
L�4

©(4) = {v6, v7, v8, v9}}
(5) From (2) (L�2

0 ) (by MAXIMALIZE)
L�5

0 = {{v1, v2, v3}, {v4, v5}}
� �

L�5
©(2) = {{v6, v7, v8}, {v9, v10}}

CONJUNCTS
({C�(2)

© , C�(3)
© , C©(1)

© }, 10, 2)

The successive values taken by P ′
© are:

P ′
©={(�, 2), (©, 1)}, P ′

©={(�, 3)},
P ′

©={(�, 3), (©, 1)}
The post-processing results are:
(1) From P ′

© = {(�, 2), (©, 1)}
L©1

©(1)
= {{v10}, {v9}}

� �
L©1

0 = {{v9}, {v10}}
� �

L©1
�(2)

= {{v3, v4, v5}, {v4, v5}}
(2) From P ′

©={(�, 2)}
L©2

0 = {{v6, v7, v8}, {v9, v10}, {v9}}
� � �

L©3
�(2)

= {{v1, v2, v3}, {v4, v5}, {v3, v4, v5}}
(3) From (2) (L©3

�(2)
) (by MAXIMALIZE)

L©3
0 = {{v6, v7, v8}, {v9}}

� �
L©2

�(3) = {{v1, v2, v3}, {v3, v4, v5}}
(4) From P ′

© = {(�, 3), (©, 1)}
L©4

©(1)
= {{v10}}

�
L©4

0 = {{v9}}
�

L©4
�(3)

= {{v3, v4, v5}}

Fig. 5. Continuing the example of Figure 4 (Step 1): Since the graph has two distinct
attributes, the two CONJUNCTS calls are as shown. Note that h = 10, K = 2 for the
calls. The two-way link between the conjugate elements is shown by �.



Compact location lists with attribute �:
L�1

�(1) = L�1
0 = {{v5}, {v4}}

L�2
0 = {{v1, v2, v3}, {v4, v5}, {v3}}

L�3
0 = {{v1, v2, v3}, {v3}}

L©1
�(2) = {{v3, v4, v5}, {v4, v5}}

L©2
�(3)

= {{v1, v2, v3}, {v3, v4, v5}}
L©3

�(2)
= {{v1, v2, v3}, {v4, v5}, {v3, v4, v5}}

L�4
0 = {{v3}}

L©4
�(3)

= {{v3, v4, v5}}
L�5

0 = {{v1, v2, v3}, {v4, v5}}

XTION
({L�1

�(1), L�2
0 , L�3

0 , L©1
�(2)

, L©2
�(3)

, L©3
�(2)

,

L�4
0 , L©4

�(3)
, L�5

0 }, 5,2)

A new list from the join is:
(1) L�1

new = {{v3}, {v4, v5}}
(Join of L�2

0 , L©1
�(2)

, L©2
�(3)

, L©3
�(2)

,L�5
0 is

L�1
new ;

All, except with L�2
0 , are complete-joins)

The new list from conjugation is:
(1) Conjugate of L�1

new :
L©3

new = {{v6, v7, v8, v9}, {v9, v10}}

Compact location lists with attribute ©:
L©1

©(1)
= L©1

0 = {{v9}, {v10}}
L�1

©(2) = {{v9, v10}}
L�2

©(2) =
{{v6, v7, v8}, {v9, v10}, {v6, v7, v8, v9}}
L�3

©(3) = {{v6, v7, v8}, {v6, v7, v8, v9}}
L©3

0 = {{v6, v7, v8}, {v9}}
L©2

0 = {{v6, v7, v8}, {v9, v10}, {v9}}
L�4

©(4) = {v6, v7, v8, v9}}
L©4

©(1)
= {{v10}}

L©4
0 = {{v9}}

L�5
©(2) = {{v6, v7, v8}, {v9, v10}}

XTION ({L©1
©(1)

, L�1
©(2), L�2

©(2), L�3
©(3),

L©2
0 , L©3

0 , L�4
©(4), L©4

©(1)
, L©4

0 , L�5
©(2)}, 5,2)

A new list from the join is:
(1) L©1

new = {{v9}, {v9, v10}}
(L©1

new is the join of L�2
©(2) and L©2

0 )

A new list from conjugation is:
(1) Conjugate of L©1

new :
L©2

new = {{v10}, {v9, v10}}

Fig. 6. Continuing the example of Figure 4 (Step 2): The two groups of compact loca-
tion lists generated in the last step are shown first. To avoid clutter, we have omitted
the join labels on the connection between the compact lists. The iteration stops when
no more new compact lists are generated.


