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ON WEAK CONVERGENCE OF ITERATES IN QUANTUM
Lp-SPACES (p ≥ 1)

GENADY YA. GRABARNIK, ALEXANDER A. KATZ, AND LAURA SHWARTZ

Abstract. Equivalent conditions are obtained for weak convergence of it-
erates of positive contractions in the L1 spaces for general von Neumann
algebra and general JBW -algebras, as well as for Segal-Dixmier Lp-spaces
(1 ≤ p < ∞) affiliated to semifinite von Neumann algebras and semifinite
JBW -algebras without direct summands of type I2.

1. Introduction and Preliminaries

This paper is devoted to a presentation of some results concerning ergodic type
properties of weak convergence of iterates of operators acting in L1 space for general
von Neumann algebras and JBW -algebras, as well as Segal-Dixmier Lp-spaces
(1 ≤ p < ∞) of operators affiliated with semifinite von Neumann algebras and
semifinite JBW -algebras.
The first results in the field of non-commutative ergodic theory were obtained

independently by Sinai and Anshelevich [21] and Lance [15]. Developments of the
subject are reflected in the monographs of Jajte [13] and Krengel [14] (see also
[8],[9],[10],[18]).
We will use facts and the terminology from the general theory of von Neumann

algebras ([5],[7],[17],[19],[22]), the general theory of Jordan and Real operator alge-
bras ([2],[3],[11],[16]), and the theory of non-commutative integration ([20],[24],[23]).
Let M be a von Neumann algebra, acting on a separable Hilbert space H, M∗

is a pre-dual space of M , which always exists according to the Sakai theorem [19].
It is well known that M∗ could be identified with L1-space for M.
Spaces L1 and L2 of the operators affiliated with the semifinite von Neumann

algebraM with semifinite faithful trace τ were introduced by Segal (see [20]). This
result was extended to Lp space of operators affiliated with von Neumann algebra
M , τ and integrated with p-th power by Dixmier (see [6]). For an alternative
exposition of building Lp based on Grothendieck’s idea of using rearrangements of
functions see also [24]. The theory of Lp spaces was extended further to the von
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Neumann algebras with faithful normal weight ρ. However, these spaces luck some
of the properties, for example, in general, these spaces do not intersect.
Recall some standard terminology ([8],[9],[10],[14]).

Definition 1. A linear mapping T from M∗ in itself is called a contraction if its
norm is not greater then one.

Definition 2. A contraction T is said to be positive if

(1.1) TM∗+ ⊂M∗+.

We will consider the two topologies on the space M∗: the weak topology, or the

σ(M∗,M) topology, and the strong topology of the M∗-space norm convergence.

Definition 3. A matrix (an,i), i, n = 1, 2, ... of real numbers is called uniformly
regular, if:

(1.2) sup
n

∞X
i=1

|an,i| ≤ C <∞;

(1.3) lim
n→∞

sup
i
|an,i| = 0;

(1.4) lim
n→∞

X
i

an,i = 1.

2. Main Result- the case of quantum L1-spaces

2.1. The case of non-commutative L1-spaces. The following theorem is valid:

Theorem 1. The following conditions for a positive contraction T in the pre-dual
space of a Complex von Neumann algebrasM are equivalent:

i). The sequence {T i}i=1,2,... converges weakly,
ii). For each strictly increasing sequence of natural numbers {ki}i=1,2,...,

(2.1) n−1
X
i<n

T ki ,

converges strongly,

iii). For any uniformly regular matrix (an,i), the sequence {An(T )}n=1,2,...,

(2.2) An(T ) =
X
i

an,iT
i,

converges strongly.
Proof of the Theorem 1. We first prove the following lemma:

Lemma 1. Let there exists a uniformly regular matrix (an,i) such that for each
strictly increasing sequence {ki}i=1,2,... of natural numbers,

(2.3) Bn =
X
i

an,iT
ki ,

converges strongly. Then the sequence {T i}i=1,2,... converges weakly.
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Proof. Let (an,i) be a matrix with the aforementioned properties. Then the limit
Bn is not dependant upon the choice of the sequence {ki}i=1,2,.... In fact, let
{ki}i=1,2,... and {li}i=1,2,... be the sequences for which the limits Bn are different.

This means that for some x ∈M∗,

(2.4)
X
i

an,iT
kix→ x1,

and

(2.5)
X
i

an,iT
lix→ x2,

for n → ∞. For a matrix (an,i) let us build increasing sequences {ij}j=1,2,... and
{nj}j=1,2,..., such that

(2.6) lim
j→∞

(
X

i<ij−1

¯̄
anj ,i

¯̄
+
X
i>ij

¯̄
anj ,i

¯̄
) = 0.

Let

(2.7) mi = ki for i ∈ [i2j−1, i2j) and mi = li for i ∈ [i2j , i2j+1), j = 1, 2, ....
Then

(2.8) lim
j

°°°°°X
i

an2j+1,iT
mix− x1

°°°°° = 0;
(2.9) lim

j

°°°°°X
i

an2j ,iT
mix− x2

°°°°° = 0,
which contradicts (2.3), and therefore x1 = x2. Let now y ∈M is such that

(2.10) (Tnx− x1, y)→ 0,

when n→∞. Let us choose a subsequence {ki} such that

(2.11) (T kix− x1, y)→ γ 6= 0,
where γ is a real number. Then, from the uniform regularity of the matrix (an,i) it

follows that

(2.12) lim
n
(
X
i

an,iT
kix− x1, y) = γ,

which contradicts the choice of the matrix (an,i). ¤

Proof of the Theorem 1 (cont.) The implication iii) =⇒ ii) is trivial, because the
matrix (an,i),

(2.13) an,i =
1

n

X
i<n

δj,ki ,

is uniformly regular. Applying the above Lemma 1 to the matrix

(2.14) an,i =
1

n
,

i ≤ n and an,i = 0 for i > n, we get the implication ii) =⇒ i). ¤
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To prove the implication i) =⇒ iii), we would need the following lemma:

Lemma 2. Let Q be a contraction in the Hilbert space H. Then the weak conver-
gence of Qnx in H,where x ∈ H, implies the strong convergence of

(2.15)
X
i

an,iQ
ix

for any uniformly regular matrix (an,i).

Proof. If the weak limit Qnx exists and equal to x1, then

(2.16) Qx1 = Q( lim
n→∞

Qnx) = x1,

where the limit is considered in the weak topology, i.e. x1 is Q- invariant. Replacing
x on x − x1 (if necessary), we may suppose that Qnx converges weakly to 0, and
hence

(2.17) (Qnx, x)→ 0.

We are going to show that

(2.18)
X
n

ai,nQ
nx

k.k−→ 0,

where (ai,n) uniformly regular matrix. One can see that
(2.19)°°°°°X

i

aN,iQ
ix

°°°°°
2

≤
X
i

X
j

aN,iaN,j(Q
ix,Qjx) ≤

X
i

X
j

¯̄
aN,iaN,j(Q

ix,Qjx)
¯̄
.

Let us fix ε > 0. Because Q is a contraction, the limit kQnxk does exist. Now, we
can find K > 0, such that for k > K and j ≥ 0,

(2.20)
°°Qkx

°°− °°Qk+jx
°° ≤ ε2

and

(2.21)
¯̄
(Qkx, x)

¯̄
≤ ε.

Then, ¯̄
(Qkx, x)− (Qk+jx,Qjx)

¯̄
=
¯̄
(Qkx, x)− (Q∗jQk+jx, x)

¯̄
≤

≤
°°Qkx−Q∗jQk+jx

°° · kxk = (°°Qkx−Q∗jQk+j
°°2) 12 · kxk =

= (
°°Qkx

°°2 − 2°°Qk+jx
°°2 + °°Q∗jQk+jx

°°2) 12 · kxk ≤
(2.22) ≤ (

°°Qkx
°°2 − °°Qk+jx

°°2) · kxk ≤ ε · kxk ,
and therefore

(2.23)
¯̄
(Qk+jx,Qjx)

¯̄
≤ ε · (1 + kxk)

for all k > K and j ≥ 0, or for |i− j| ≥ k, the inequality

(2.24)
¯̄
(Qix,Qjx)

¯̄
≤ ε · (1 + kxk),

is valid. We will fix η > 0, and let N be such a natural number that

(2.25) max
i
|an,i| < η,
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for n ≥ N . Then the expression (1) for n ≥ N could be estimated the following

way: X
i

X
j

¯̄
aN,iaN,j(Q

ix,Qjx)
¯̄
=

=
X

|i−j|≤k

¯̄
an,ian,j(Q

ix,Qjx)
¯̄
+

X
|i−j|>k

¯̄
an,ian,j(Q

ix,Qjx)
¯̄
≤

≤
X
i

|an,i| · η · kxk2 · (2k − 1) +
X
i

X
j

|an,ian,j | · ε · (1 + kxk) ≤

(2.26) ≤ C · η · kxk2 · (2k − 1) + C2 · ε · (1 + kxk).
From the arbitrarity of the values of ε and η it follows that the strong convergence
is present and the lemma is proven. ¤

Proof of the Theorem 1 (cont.) Let us prove the implication i) =⇒ iii). Let x ∈
M∗+ and the sequence {T ix}i=1,2,... converges weakly. Without the loss of gener-
ality we can consider kxk ≤ 1, and let

(2.27) x = lim
n→∞

Tnx,

where the limit is understood in the weak sense. Let us consider

(2.28) y =
∞X
n=0

2−nTnx.

The series that defines y is convergent in the norm of the space M∗. From the
positivity of x and the properties of the operator T it follows that

(2.29) Ty ≤ 2y,
and, therefore, for all k = 1, 2, ...,

(2.30) s(T ky) ≤ s(y),

where by s(z) we denote the support of the normal functional z. ¤

Lemma 3. Let u ∈M∗+ and s(u) ≤ s(y). Then s(u) ≤ s(x), where

(2.31) u = lim
n→∞

Tnu.

Proof. In fact, let us fix ε > 0. From the density of the set

(2.32) Ly = {w ∈M∗+, w ≤ λy, for some λ > 0},

in the set

(2.33) S = {w ∈M∗+, s(w) ≤ s(y)},
in the norm of the space M∗ it follows that there are λ > 0 and w ∈ Ly such that

(2.34) kw − uk ≤ ε and w ≤ λy.

Let

(2.35) w = lim
n→∞

Tnw.
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Then
w(1−s(x)) =

= lim
n→∞

(Tn(w))(1−s(x)) ≤

≤ λ · lim
n→∞

(Tny)(1−s(x)) ≤

≤ λ · lim
n→∞

(
∞X
k=0

2−k · (Tn+kx)(1−s(x))) =

(2.36) = λ ·
∞X
k=0

2−k lim
n→∞

(Tn+kx)(1−s(x)) = 0.

Because the operator T does not increase the norm of the functionals from M∗, we
get that

u(1−s(x)) = lim
n→∞

(Tnu)(1−s(x)) ≤

(2.37) ≤ lim
n→∞

(Tnw)(1−s(x)) + lim
n→∞

kTn(w − u)k ≤ ε.

The needed inequality follows from the arbitrarity of ε. ¤

Proof of the Theorem 1 (cont.). Let us introduce the following notion. For µ ∈M∗,
we will denote by µ.E, where E is a projection from the algebra M , the functional

(2.38) (µ.E)(A) = µ(EAE),

where A ∈M .
Let us fix ε > 0. We will find a number N , such that

(2.39) (Tnx)(1−s(x)) < ε2

for n > N .

Than °°TNx.s(x)− TNx
°° =

sup
A∈M

kAk∞≤1

¯̄
(TNx)((1−s(x))A(1−s(x)))+

+(TNx)((s(x))A(1−s(x))) + (TNx)((1−s(x))A(s(x)))
¯̄
≤

(2.40) ≤ ε · (ε+ 2 kxk
1
2 ),

because

(2.41) |µ(AB)|2 ≤ µ(A∗A) · µ(B∗B),
where µ ∈M∗+ and A,B ∈M .

Let w ∈ Ly is such that
(2.42) w ≤ λx

for some λ > 0 and

(2.43)
°°TNx.s(x)− w

°° ≤ ε.

Then, for n > N , the following is valid:
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°° ≤ °°Tn−N (TNx− TNx.s(x))

°°+
(2.44) +

°°Tn−N (TNx.s(x)− w)
°° ≤ 4 · ε.

By taking the weak limit in the inequality (2.40) and because the unit ball of

M∗ is closed weakly, we will get

(2.45) kx− wk ≤ 4 · ε,
where

(2.46) w = lim
n→∞

Tnw.

Let us now consider the algebraMs(x). The functional x is faithful on the algebra
Ms(x). We will consider the representation πx of the algebra Ms(x) constructed

using the functional x [7]. Because the functional x is faithful, we can conclude

that the representation πx is faithful on the algebra Ms(x), and therefore πx is

an isomorphism of the algebra Ms(x) and some algebra A. The algebra A is a

von Neumann algebra, and its pre-conjugate space A∗ is isomorphic to the space

M∗.s(x) ([19]). Let us note now that

(2.47) TM∗.s(x) ⊂M∗.s(x).

In fact,

(2.48) TLy ⊂ Ly,
and therefore, by taking the norm closure, we get

(2.49) TS ⊂ S;

by taking now the linear span, we get

(2.50) TM∗.s(x) ⊂M∗.s(x).

Let denote by T the isomorphic image of the operator T , acting on the space A∗.

Let

(2.51) u ∈ A∗+ and u ≤ λx

for some λ > 0. Then there exists the operator B ∈ A0, where A0 is a commutant
of A, such that

(2.52) (ABΩ,Ω) = u(A)

for all A ∈ A. Note, that from the lemma 2

(2.53) (Tu)(A) = u((T )∗A) = (((T )∗A)BΩ,Ω) = (A((T
∗
)0B)Ω,Ω).

Also, from

(2.54) TA∗+ ⊂ A∗+,
°°Tu°° ≤ kuk and Tx = x

it follows that

(2.55) (T )∗A+; (T
∗
)1 ≤ 1 and

°°(T )∗A°°∞ ≤ kAk∞
for all A ∈ A. Based on the lemma we now conclude that
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(2.56)
°°°(T ∗B)°°°

∞
≤ kBk∞ ;T

∗0
A0+ ⊂ A0+;T

∗0
1 ≤ 1

for all B ∈ A0.

The space A0sa is a pre-Hilbert space of the self adjoint operators from A0 with
the scalar product

(2.57) (B,C)x = (CBΩ,Ω),

and, using the Kadison inequality [5] we have

(2.58) ((T
∗0
B)(T

∗0
B)Ω,Ω) ≤ (T ∗0(B2)Ω,Ω) ≤ (BΩ, BΩ),

i.e. the operator T
∗0
is a contraction in the pre-Hilbert space (A0sa, (., .)x).

We will identify M∗.s(x) and A∗. Because w ∈ L, i.e.
(2.59) w ≤ λx

for some λ > 0, then

(2.60) w ≤ λx

as well. Let

(2.61) w(A) = (BAΩ,Ω) and w(A) = (BAΩ,Ω)

for all A ∈ A, where B, B ∈ A0.
Let now (an,i) be a uniformly regular matrix. Using lemma 2 we will find k ∈ N

so that °°°°°X
i

a0k,iT
iw − w

°°°°° = sup
A∈A

kAk∞=1

¯̄̄̄
¯(
∞X
i=1

a0k,i((T
∗0
)i(B −B)AΩ,Ω)

¯̄̄̄
¯ ≤

≤ (
∞X
i=1

a0k,i(T
∗0
)i(B −B)Ω,

∞X
i=1

a0k,i(T
∗0
)i(B −B)Ω)

1
2 · sup

A∈A
kAk∞≤1

(AΩ, AΩ)
1
2 ≤

(2.62) ≤ (x(1)) 12 ·
°°°°°
∞X
i=1

a0k,i(T
∗0
)i(B −B)

°°°°°
(.,.)x

< ε

for k > K, where by (a0n,i) we will denote a matrix with the elements

(2.63) a0n,i = (
X
i>N

an,j)
−1an,j+N .

It is easy to see that the matrix (a0n,i) will be uniformly regular as well.
Then, for a big enough k > K we will have°°°°°X

i

ak,iT
ix− x

°°°°° ≤X
i≤N

|ak,i|
°°T ix− x

°°+X
i>N

|ak,i|
°°T ix− T i−Nw

°°+
+
X
i>N

|ak,i|
¯̄̄̄
¯1− (X

i>N

ak,i)
−1

¯̄̄̄
¯ °°T i−Nw

°°+
°°°°°°
∞X
j=1

ak,j+N · (
X
i>N

ak,i)
−1T jw − w

°°°°°°+
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+

°°°°°°(
X
i≤N

ak,i) · w

°°°°°°+
¯̄̄̄
¯X
i>N

ak,i

¯̄̄̄
¯ kw − xk ≤

≤
X
i≤N

2 · ε
N
+
X
i>N

|ak,i| · 4ε+
X
i>N

|ak,i| (1− (1+ ε)−1) · 2+
X
i≤N

2 · ε
N
+(1+ ε) · 4ε ≤

(2.64) ≤ 2ε+ (1 + ε) · 4ε+ ε · 2 · (1 + ε) + ε+ 2ε+ (1 + ε) · 4ε ≤ 25ε.
The arbitrarity of ε proves the needed statement. The proof of the theorem is

now completed. ¤

2.1.1. The case of L1-spaces for JBW -algebras. The L1-spaces for semifinite JBW -
algebras were considered by [4] (see also [1],[12]), were it has been proven that they
do coincide with predual spaces. A semifinite JBW -algebra A always represented
as

(2.65) A = Asp uAex,

where Asp is isometrically isomorphic to operator JW -algebra, and Aex is isomet-
rically isomorphic to the space C(X,M8

3 ) of all continuous mappings from a Hy-
perstoanean compact topological space X onto the exceptional Jordan algebra M8

3

([11]). In th case when A does not have direct summands of type I2, it is going to be
a self-adjoint part of a Real von Neumann algebra R(Asp), whose complexification

(2.66) R(Asp)u iR(Asp) =M,

where M is the enveloping von Neumann algebra of Asp, and the predual space of
A, the space

(2.67) A∗ = (Asp)∗ u (Aex)∗,

where (Asp)∗ is the predual space of Asp, and (Aex)∗ is the predual space of Aex (see,
for example [11] and [2]). The main result for the summand Aex follows immediately
from the result for C(X), and the fact that the algebra M8

3 is finite-dimentional.
So, without the loss of generality we are interested in the operator case only. But
in the operator case, the space (Asp)∗ is a self-adjoint part of R∗ = (R(Asp))∗, and

(2.68) M∗ = R∗ u iR∗,

(see [2] and [16] for details). So, the main result for R∗ is thus follows from the
complex case by restriction of scalars, and we obtain the main result for L1-spaces
affiliated to semifinite JBW -algebras without direct type I2 summand.

3. The case of quantum Lp-spaces, (1 < p <∞)
In the case of a non-commutative Lp-space for a semifinite von Neumann algebra,

the main result is disscussed in [25].
We will disscuss here the non-associative case.
In this section A denotes a semifinite JBW -algebra without direct summands

of type I2, with a faithful normal trace τ . By Lp we denote the space of operators
affiliated to A, and integrated with p-th power (p > 1, see for example [1],[2],[12]).
Space Lq (here q =

p
p−1 ) is a dual as Banach space to Lp ([1],[12]). The following

theorem is valid:
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Theorem 2. The following conditions for a positive contraction T in the Lp are
equivalent:

i). The sequence {T i}i=1,2,... converges in σ(Lp, Lq) topology,
ii). For each strictly increasing sequence of natural numbers {ki}i=1,2,...,

(3.1) n−1
X
i<n

T ki ,

converges in norm of Lp,

iii). For any uniformly regular matrix (an,i), the sequence {An(T )}n=1,2,...,

(3.2) An(T ) =
X
i

an,iT
i,

converges in norm of Lp.

For the sake of completeness we give the following definitions (see, for example
[25]), and sketch of the proof. Let φ be a gauge function

(3.3) φ : R+ 7→ R+,

with

(3.4) φ(0) = 0,

and

(3.5) lim
t→∞

φ(t) =∞.

Hahn-Banach theorem implies for strictly convex Banach spaces E with conjugate
E0 that there exists a duality map

(3.6) Φ : E 7→ E0,

associated with φ such that

(3.7) hx,Φ(x)i = kxkkΦ(x)k,
and

(3.8) kΦ(x)k = φ(x).

Definition 4. Map Φ is said to satisfy property (S) uniformly if, for every � > 0
there exists δ(�) > 0, such that for any x, y ∈ E,

(3.9) |hx,Φ(y)i| < δ(�),

implies

(3.10) |hy,Φ(x)i| < �.

Proof. From section 4 in [12], it follows that the duality map defined as

(3.11) Φ(a) = s|a|p−1,
for

(3.12) a = s|a| ∈ A,

where a = s|a| is a polar decomposition of element a, satisfies the property (S)
uniformly. Hence, the statement of the theorem follows from Theorem 3.1 in
[25]. ¤
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