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Chai Wah Wu
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Abstract

We study two recent consensus problems in multi-agent coordination with linear dynamics. In Saber

and Murray an agreement problem was studied with linear continuous-time state equations and a sufficient

condition was given for the given protocol to solve the agreement problem; namely that the underlying

graph is strongly connected. We give sufficient and necessary conditions which include graphs that are not

strongly connected. In addition, Saber and Murray show that the protocol solves the average consensus

problem if and only if the graph is strongly connected and balanced. We show how multi-rate integrators

can solve the average consensus problem even if the graph is not balanced. We give lower bounds on

the rate of convergence of these systems which are related to the coupling topology. Saber and Murray

also considered the case where the coupling topology changes with time but remain a balanced graph at

all times. We relate this case of switching topology to synchronization of nonlinear dynamical systems

with time-varying coupling and give conditions for solving the consensus problem even when the graphs

are not balanced.

Jadbabaie et al. study a model of leaderless and follow-the-leader coordination of autonomous agents

using a discrete-time model with time-varying linear dynamics and show coordination if the underlying

undirected graph is connected across intervals. Mureau extended this to directed graphs which are strongly

connected across intervals. We prove that coordination is possible even if the graph is not strongly

connected by utilizing recent results on the weak ergodicity of inhomogeneous Markov chains.

I. INTRODUCTION

Recently, there has been some activity in studying consensus problems of a group of interacting agents

where the underlying dynamics is linear and possibly nonautonomous [1], [2]. The goal is for the agents

to reach a consensus, expressed as some state variables in each agent agreeing to each other. The goals

of this paper are to study two such problems and to present results improving upon previously reported

results. As both these problems focus on the coupling topology expressed as a graph, we review some
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notation in graph theory in Section II. In Section III we study the agreement problem considered by

Saber and Murray [2] and in Section IV we study the coordination problem studied by Jadbabaie et al.

[1]. A preliminary version of this paper appears in Proceedings of IEEE International Symposium on

Circuits and Systems, 2005.

II. GRAPHS AND NETWORKS

A directed graph (digraph) or a networkG is defined as(V,E), whereV is the set of vertices and

E ⊂ V × V is the set of edges. A digraph can be weighted, i.e. there is a positive weight associated

with each edge. The cardinality ofV is called the order ofG and generally denoted asn. We assume

thatV = {1, . . . , n}. The reversalof a graph is the graph obtained by reversing the orientation of all the

edges, i.e. if a graph has adjacency matrixA, then its reversal has adjacency matrixAT . The outdegree

of a vertex is defined as the sum of the weights of all edges emanating from it. The indegree is defined

similarly. The Laplacian matrix of a graph is defined asL = D − A, whereA is the adjacency matrix

and D is the diagonal matrix of vertex outdegrees. This means thatL is a zero row sums matrix. A

digraph is a directed tree if it hasn vertices andn− 1 edges and there exists a root vertex with directed

paths to all other vertices. A directed treeH is a spanning directed tree of a graphG if H has the same

vertex set asG. A forest is a collection of trees. A graph is balanced if the outdegree of each vertex is

equal to its indegree. Unless the graph is balanced, the Laplacian matrix of the reversal of a graph is

generally not equal toLT . A digraph is strongly connected if there exists a directed path between every

ordered pair of distinct vertices. A digraph is weakly connected if ignoring the orientation of the edges,

the resulting undirected graph is connected. In [3] it was shown that for balanced graphs, these two

notions of connectivity are equivalent. We denote by1 the vector(1, . . . , 1)T . For a Hermitian matrix

A, we order the eigenvalues as asλ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A).

III. A N AGREEMENT PROBLEM WITH LINEAR DYNAMICS

In [2] an agreement problem amongn agents is modeled by the following continuous-time autonomous

linear dynamical system:

ẋ = −Lx (1)

wherex ∈ R
n andL is the Laplacian matrix of some graph of ordern. The coupling topology can be

expressed by a weighted digraphG (with no loops) as follows: Ifxi depends onxj for i 6= j, then there

is a directed edge of weight−Lij from vertexj to vertex i. In other words ifLij 6= 0, then there is

an edge inG from vertexj to vertexi. We call G the interaction graph ofL. It is clear thatL is the
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Laplacian matrix of the reversal ofG. We believe that the interaction graph is the proper way to define

the underlying coupling topology of the dynamical system in Eq. (1), in contrast to [2] where the graph

of L is used, i.e. the reversal of the interaction graph.

SinceL is a Laplacian matrix of a digraph, its eigenvalues have nonnegative real parts andL1 = 0. If

the zero eigenvalue is simple, then the kernel ofL is spanned by the vector1 and all other eigenvalues

of L have positive real parts due to Gershgorin’s circle criterion. In this case,x in Eq. (1) approach the

kernel ofL, andx → x∗ wherex∗
i = x∗

j , for all 1 ≤ i, j,≤ n. This is equivalent to saying that the system

solves anagreementor consensusproblem. In [2] it was shown that the zero eigenvalue is simple if the

graph ofL is strongly connected. SinceG is strongly connected if and only ifL is irreducible, this is

also a consequence of Perron-Frobenius theory [4].

Theorem 1:The multiplicity of the zero eigenvalue ofL is equal to the minimum number of directed

trees which forms a spanning forest in the interaction graph.

Proof: See [5].

Corollary 1: The zero eigenvalue ofL is simple if and only if the interaction graph has a spanning

directed tree.

Strong connectedness of the underlying graph is sufficient but not necessary to solve the agreement

problem. The next result gives a sufficient and necessary condition for Eq. (1) to solve the agreement

problem.

Theorem 2:The statex in Eq. (1) approachesspan(1) and thus solves an agreement problem for all

initial x if and only if the interaction graph ofL contains a spanning directed tree.

Proof: Follows from Corollary 1 and the above discussion. 2

This result is intuitive since the existence of a spanning directed tree in the interaction graph implies

that there is a root vertex which influences directly or indirectly all other vertices. If no such spanning

directed tree exists, then there exists two groups of vertices which do not influence each other [6] and

thus cannot possibly reach an agreement for arbitrary initial disagreement. This is one reason why the

interaction graph rather than the graph ofL is a useful tool to study the consensus criteria of Eq. (1).

Since the agent at the root vertex influences all other agents, it can be considered a leader, which might

not be unique if there are more than one spanning directed tree. In section IV we look at a case where

the root agent and thus the leader is unique. The following theorem extends the corresponding result in

[2]:

Theorem 3:Let L be the Laplacian matrix whose interaction graph contains a spanning directed tree.

Let wr and wT
l be the right and left eigenvectors ofL corresponding to the zero eigenvalue. Then
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limt→∞ e−Lt = wrwT
l

wT
r wl

.

Proof: The proof is essentially the same as in [2]. 2

If x → x∗ with x∗
i = x∗

j = 1
n

∑
i xi(0), then Eq. (1) is said to solve theaverage consensusproblem.

In [2] it was shown that ifG is a strongly connected balanced graph, then Eq. (1) solves the average-

consensus problem. The following result shows that ifG is strongly connected, but not balanced, then

by using multi-rate integrators we can still solve the average consensus problem.

Theorem 4:Let L be the Laplacian matrix of a strongly connected graph and letw be a positive

vector such thatwT L = 0. Let W = diag(w1, . . . wn). ThenW−1ẋ = −Lx solves the average consensus

problem.

Proof: Note that sinceL is irreducible, a positive vectorw exists by Perron-Frobenius theory. Next note

that 1T WL = wT L = 0 and thusWL has zero column sums, i.e.WL is the Laplacian matrix of a

balanced graph. Sincėx = −WLx, the result follows from the balanced graph case. 2

A. Rate of exponential convergence

We say thatx(t) converges exponentially towardsx∗(t) with rate k if ‖x(t) − x∗(t)‖ ≤ O(e−kt).

Since Eq. (1) is linear, clearlyx converges towardsx∗ with rate at least1 γ(L) = mini{Re(λi) : λi ∈
Spec(L), λi 6= 0} which is positive for interaction graphs with a spanning directed tree, with rate equal

to γ(L) for some initial conditions.

When the graph is balanced, in [6], [7] it was shown thatκ = λ2(1
2(L + LT )) ≤ γ(L), and thusx

converges towardsx∗ with rate at leastκ, a result which was proved directly in [2] using a quadratic

Lyapunov function. This can be generalized to strongly connected graphs as follows.

Theorem 5:Suppose the graph ofL is strongly connected, with a positive vectorw such thatwT L = 0

andmaxi wi = 1, andW = diag(w1, . . . , wn). Then in Eq. (1),x converges towardsx∗ with rateβ > 0

where

β = min
x⊥1,x 6=0

xT WLx

xT
(
W − wwT

wT 1

)
x
≥ λ2

(
1
2
(WL + LT W )

)

Proof: Follows from that fact thatβ ≤ Re(λ) for all nonzero eigenvalueλ of L [3]. 2

Note that for balanced graphs,W = I and β = λ2(1
2(L + LT )). For the case where the interaction

graph ofL contains a spanning directed tree, a lower bound onγ(L) can be found in [5]. See also the

quantitiesa4 andµ in [8] for other lower bounds. When the graph is undirected, adding extra undirected

1Or at least arbitrarily close toγ(L), if L has nontrivial Jordan blocks.
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edges cannot decreaseγ [9], [10]. However, this is not true for digraphs, as illustrated by the following

example.

First note that the Laplacian matrix of an acyclic digraph can always have its rows and columns be

simultaneously permuted to a upper-triangular matrix, sayL̃. SinceL̃ has zero row sums,̃Lnn = 0 and

thusγ(L) = γ(L̃) = mini<n L̃ii. Thus for an acyclic graphγ(L) = mini6=j Lii wherej is an index such

thatLjj = 0. SinceLii are the indegrees of the interaction graph, this in particular implies thatγ(L) = 1

if the interaction graph ofL is a tree.

For the directed path graph with Laplacian matrixL, γ(L) = 1 since it is a tree and is isomorphic to

its interaction graph:

By adding one edge we get the directed cycle graph with a circulant Laplacian matrixL and γ(L) =

1 − cos
(

2π
n

)
(See e.g. [11]):

Thus by adding a single edge,γ changes fromγ = 1 to γ = 1 − cos
(

2π
n

)
which decreases to0 as

O( 1
n2 ). One way this behavior can be explained is by studying the strongly connected components (SCC)

of these graphs. In the directed path graph, the SCC’s are single vertices. In other words, each vertex

influences directly the next vertex and thus the agreement problem is solved with the first 2 vertices,

and then consensus is reached between vertex 2 and 3, etc. In other words, consensus can be reached in

stages, each time considering a subgraph of two vertices. On the other hand, for the directed cycle graph,

there is a single SCC with each vertex influencing and influenced by vertices which are far apart, i.e.

the diameter of the SCC is large for largen. This long path of communication between agents is what

causes the consensus to take significantly more effort. In [12] it was shown that for undirected graphs

with bounded vertex degrees, if the diameter grows faster thanln(n) then γ(L) → 0 as n → ∞. In

addition, we can obtain bounds onγ that depend on the algebraic connectivities of the SCC’s and the

number of edges between the SCC’s [5], [8].

B. Time-varying topology

Ref. [2] also considers the case whereL(t) is a time-varying matrix. For this case, the following result

is proved:
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Theorem 6:If at each timet, L(t) is the Laplacian matrix of a strongly connected balanced di-

graphG(t) ∈ Γ whereΓ is a finite set, then Eq. (1) satisfies the agreement problem with rateκ∗ =

minG∈Γ λ2(1
2 (L(G) + L(G)T )).

We extend this result to graphs which are not necessarily balanced nor strongly connected by using

results in the synchronization of nonlinear dynamical systems. In the last decade or so, there has been

much activity in studying the synchronization in networks of coupled systems [10], [11], [13]–[16]. A

network of coupled systems synchronizes if the states of the individual systems approach each other. The

consensus problem can thus be considered as a synchronization problem.

Definition 1: A functionf(y, t) is V -uniformly decreasing if(y−z)T V (f(y, t)−f(z, t)) ≤ −µ‖y−z‖2

for someµ > 0 and ally, z, t.

Theorem 7 ([10]): Let Y (t) be a matrix andV be a symmetric positive definite matrix such that

f(x, t) + Y (t)x is V -uniformly decreasing. Then the state equationẋ = (f(x1, t), . . . , f(xn, t))T +

(C(t)⊗D(t))x synchronizes in the sense thatxi → xj ast → ∞, if there exists a symmetric irreducible

zero row sums matrixU with nonpositive off-diagonal elements such that(U⊗V )(C(t)⊗D(t)−I⊗Y (t))

is negative semidefinite for allt. Herex = (x1, . . . , xn)T and G ⊗ D is the Kronecker product of the

matricesG andD.

In the case of the agreement problem, we sety = xekt, and obtainẏ = ẋekt + ky = ky − L(t)y.

Applying Theorem 7 withf(xi, t) = kxi andV = D(t) = 1 and choosing−w > k, we obtainyi → yj

if there existsU such thatU(−L(t) + kI) is negative definite for allt. As x = ye−kt this implies that

xi → xj with ratek. By choosingU = I − 1
n11T , it was shown in [7] thatU(−L(t) + kI) is negative

definite if minx⊥1,‖x‖=1 xT L(t)x > k for all t. Thus we have proved the following Corollary to Theorem

7:

Corollary 2: Eq. (1) solves the agreement problem withxi → xj and rate at leastk, wherek =

inft,x⊥1,‖x‖=1 xT L(t)x.

Sinceminx⊥1,‖x‖=1 xT L(t)x = λ2(1
2 (L+ LT )) for balanced graphs, Corollary 2 generalizes Theorem

6.

C. Slowly-varying coupling topology

In contrast to the case of constantL, there might not be agreement even ifγ(L(t)) > 0 for all t.

However, agreement can be achieved ifγ(L(t)) ≥ α > 0 for all t andL(t) varies slow enough or the

variation ofL(t) is small enough.
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Theorem 8:Let L(t) be piecewise continuous as a function of timet and there existsα > 0 such that

all nonzero eigenvalues ofL(t) has real part larger thanα for all t ≥ 0. Suppose there existsm > 0

such that‖L(t)‖ ≤ m for all t ≥ 0. Then Eq. (1) solves the agreement problem if one of the following

conditions is satisfied:

1) α > 8m(n − 1);

2) L(·) is piecewise differentiable and

‖L̇(t)‖ ≤ δ <
α4n−2

(2n − 1)(2n − 2)4n−3m4n−4

3) For somek ≥ 0, 0 < η < 1, α > 4m(n − 1)η − n−1
k log η and

sup
0≤τ≤k

‖L(t + τ) − L(t)‖ ≤ δ <
ηn−1

2(n − 1)

(
α − 4m(n − 1)η +

n − 1
k

log η

)

4) α > n − 1 and for some0 < η < 1

sup
h>0

∥∥∥∥L(t + h) − L(t)
h

∥∥∥∥ ≤ δ <
ηn−1

n − 1
(α − 4m(n − 1)η + (n − 1) log η)

Proof: Let

C =




1 −1

1 −1

· · ·
1 −1




D =




1 1 1 · · · 1

0 1 1 · · · 1
. . . 1

1 1

0 0 · · · 0 1

0 0 0 0 0




andyi = xi − xi+1 for i = 1, . . . n − 1. Thereforey = Cx and thusẏ = −CL(t)x. In [11], [13] it was

shown thatCL(t) = A(t)C whereA(t) = CL(t)D and γ(L(t)) = mini{Re(λi) : λi ∈ Spec(A(t))}.

Thus ẏ = −A(t)y, and agreement is achieved ify → 0. The result is then proved by applying Theorem

3.2 in [17] and noting that‖A(t)‖ ≤ ‖L(t)‖‖C‖‖D‖ ≤ 2(n − 1)‖L(t)‖. 2

D. Nonlinear coupling

Consider the following state equations which extend Eq. (1) to the case where the coupling is nonlinear.

ẋi =
∑

j

φij(xj − xi) (2)
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Suppose eachφij satisfies:

1) φ(x) is continuous and locally Lipschitz,

2) φ(x) = 0 ⇔ x = 0,

3) φ(−x) = −φ(x) for all x,

4) (x − y)(φ(x) − φ(y)) > 0 for all x 6= y,

5) φij = φji.

then it was shown in [18] that Eq. (2) solves a consensus problem when the underlying graph is connected

for all x. We generalize this result by considering less restrictive conditions onφij.

Theorem 9:Considerφij such that

1) φij(0) = 0,

2) xφij(x) > 0 for x 6= 0.

Let G(x) be the matrix such that fori 6= j

Gij(x) =




φij(xj−xi)
xj−xi

xj 6= xi

1 otherwise

andGii(x) = −∑
j 6=i Gij(x). If infx,y⊥1,‖y‖=1 yT G(x)y > 0, then Eq. (2) solves a consensus problem.

Proof: First note that the state equation can be rewritten asẋi =
∑

ij Gij(x)(xj −xi) which is equivalent

to ẋ = G(x)x. The result then follows from Corollary 2. 2

Note that(x− y)(φ(x)−φ(y)) > 0 for all x 6= y implies thatxφ(x) > 0 for all x 6= 0. Also note that

φij needs not be equal toφji in Theorem 9.

Corollary 3: Considerφij such that

1) φij = φji,

2) φij(0) = 0,

3) xφij(x) > 0 for x 6= 0.

If x lies in a bounded closed setB for all t and the graph ofG(x) is connected for allx ∈ B, then Eq.

(2) solves a consensus problem.

Proof: If φij = φji, thenG(x) is symmetric andinfy⊥1,‖y‖=1 yT G(x)y is the algebraic connectivity of

the graph ofG(x) which is positive if the graph ofG(x) is connected. Compactness ofB implies that

infx,y⊥1,‖y‖=1 yT G(x)y > 0 and thus Eq. (2) solves a consensus problem by Theorem 9. 2
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IV. COORDINATION OF AUTONOMOUS AGENTS

In [1] a set of interacting agents is modeled as a nonautonomous linear discrete time system2. It was

shown that the agents’ states converge to each other if the agents are connected over a bounded time

period.

A. Leaderless coordination

The state equation is given by:

x(k + 1) = M(k)x(k) (3)

whereM(k) is a stochastic matrix (i.e. a nonnegative matrix with each row sum equal to1). To each

matrix M(k) we can again associate an interaction digraphG(k) with an edge(i, j) if Mji 6= 0. In [1]

the nonzero elements within each row ofM(k) are equal. This form ofM(k) corresponds to dynamics

where each componentxi(k + 1) is determined as the average ofxi(k) plus its neighborsxj(k) in the

graphG(k). In [1] the graphsG(k) are undirected and belong to a finite set.

In [1] it was shown that if there is a fixedN such that the union of the graphsG(kN + 1),G(kN +

2), . . . ,G((k + 1)N) is connected for eachk, then Eq. (3) solves a consensus problem. in the sense that

x → x∗ wherex∗
i = x∗

j for all i, j. The way this is proved is by showing thatM(n)M(n − 1) · · ·M(1)

converges to a rank one matrix of the form1cT asn → ∞. In [19] this is extended to the case where

G(k) are digraphs, and the requirement is that the union ofG(k), . . . ,G(k + N) are strongly connected

and in addition, for each edge(i, j) in G(k), there is a directed path fromj to i in the union of

G(k + 1), . . . ,G(k + N).

We extend these results in several ways. First we consider dynamics where, instead of settingxi(k+1) to

be the average ofxi(k) with its neighbors, we consider a weighted average, i.e. the nonzero entries in each

row need not be equal. Second, we consider digraphs which are not necessarily strongly connected. Third,

G(k) belong to a set of graphs which can be infinite. We use results from the theory of inhomogeneous

Markov chains which we will summarize next.

Definition 2: A matrix A is scramblingif A is stochastic and for each pair of indicesi, j there exist

a column ofA such that thei andj-th entries are both nonzero.

2In [1] these agents are termed “autonomous” since they can act on their own without centralized control. We refrain from

using this term to avoid confusion with its use in systems theory to denote systems that do not receive external (or equivalently)

time-varying stimuli.
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Definition 3: A matrix A is stochastic, indecomposable and aperiodic (SIA) ifA is stochastic and

limn→∞ An = 1cT for some vectorc [20].

Let µ(A) = minj,k
∑

i min(Aji, Aki) be the ergodicity coefficient of a matrixA [21]. Note that0 ≤
µ(A) ≤ 1 for stochastic matrices withµ(A) > 0 if and only if A is scrambling. For a set of matrices

S, let Sm denote the set of products of matrices fromS of length m. We start with a Lemma which

slightly generalizes the results in [20], [22]. Although not explicitly stated in [20], it was discussed in

the concluding remarks.

Lemma 1:Let S be a set of matrices such that products of matrices inS are SIA. If infA∈Sm µ(A) > 0

for somem > 0, thenAnAn−1 · · ·A1 with Ai ∈ S converges to a rank-one matrix of the form1cT as

n → ∞.

Theorem 10:Let S be a compact set of matrices such that product of matrices inS are SIA, then

AnAn−1 · · ·A1 with Ai ∈ S converges to a rank-one matrix of the form1cT asn → ∞.

Proof: SinceSm is compact, the argument in [20] shows thatinfA∈Sm µ(A) > 0 for large enoughm

and thus the result follows from Lemma 1. 2

In fact, it is not necessary for every matrixAi to be in S. It suffices that there are infinitely many

long stretches ofAi in S:

Theorem 11:Let S be a compact set of matrices such that product of matrices inS are SIA. LetAi be

a set of stochastic matrices. Letsi, ti be two sets of increasing integers such thatsi ≤ ti < si+1 ≤ ti+1

for eachi. If for eachi, Aj ∈ S for all si ≤ j ≤ ti andti−si+1 ≥ 1
2 (3n−2n+1+1) thenAnAn−1 · · ·A1

with Ai ∈ S converges to a rank-one matrix of the form1cT asn → ∞
Proof: The proof is essentially the same as in [20], [22] and we use the fact that products of at least

1
2(3n − 2n+1 + 1) matrices inS is scrambling. 2

Definition 4: Sd is defined as the set of stochastic matrices with positive diagonal elements.

Theorem 12:For a matrixA ∈ Sd, A is SIA if and only if the interaction graph ofA contains a

spanning directed tree. IfA, B are SIA matrices inSd, thenAB is SIA.

Proof: see [5]. 2

The next result shows that the bound of1
2(3n − 2n+1 + 1) in Theorem 11 can be reduced toO(n2)

for matrices inSd.

Theorem 13:For k = n(n − 2) + 1, let A1, . . . , Ak be SIA matrices inSd. Then the matrix product

A1A2 · · ·Ak is a scrambling matrix.

Proof: Let Gi be the interaction graph ofAi. Since eachGi contains a root vertex of a spanning directed

tree, it is clear that there aren − 1 graphs amongGi with the same root vertexr. Let us denote the
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corresponding matrices asAm1 , . . . , Amn−1 . SinceAi ∈ Sd, it suffices to show that the matrix product

Am1 · · ·Amn−1 is a scrambling matrix.

Let us denote the children ofr (in which we includer itself) in the interaction graph ofAm1 · · ·Ami

as Ci. Note thatC1 has at least two elements. Since the diagonal elements ofAi are positive,Ci+1 is

equal toCi plus the children ofCi in Gmi+1 . Sincer ∈ Ci and is the root of a spanning directed tree in

Gmi+1 , the children ofCi in Gmi+1 , must include some vertex not inCi (unlessCi = V ). This implies

that Cn−1 = V which implies that ther-th column ofAm1 . . . Amn−1 is positive3, which implies that it

is a scrambling matrix. 2

Definition 5: Sd(v) is defined as the set of stochastic matrices with positive diagonal elements where

each nonzero element is larger thanv.

The next results extends the result in [1], [19]:

Theorem 14:Let G(k) be the weighted interaction digraph ofM(k). Suppose there existsv > 0,

N > 0 and an infinite sequencek1 ≤ k2 ≤ · · · such that

1) M(k) ∈ Sd(v) for all k,

2) ki+1 − ki ≤ N ,

3) For eachi, the union of the graphsG(ki),G(ki + 1), · · · ,G(ki+1 − 1) contains a spanning directed

tree,

thenx → x∗ as t → ∞ in Eq. (3), wherex∗
i = x∗

j for all i, j.

Proof: Without loss of generality, assumev < 1. The productPi = Mki+1−1 · · ·Mki+1Mki
is in

Sd(vN ) and Pi are SIA matrices whose products are SIA [5]. Theorems 11 and 13 show thatBi =

Pm(i+1) · · ·Pmi+2Pmi+1 is a scrambling matrix for some integerm. Sinceµ(Bi) > 0 andBi ∈ Sd(vNm),

this means thatµ(Bi) ≥ vNm > 0. By Lemma 1limn→∞ Bn · · ·B0 = 1cT and the result then follows

from Lemma 3 in [23]. 2

The constantN < ∞ is important in Theorem 14. The example in [19] shows that if such anN does

not exist, then there could be no consensus among agents. In other words, it is not sufficient (although

it is easy to see that it is necessary) in order to reach consensus to have two sequenceski, ni such that

the union ofG(ki),G(ki + 1), . . . ,G(ki + ni) contains a spanning directed tree for alli. Furthermore,

a modification of the example in [19] shows that the hypothesis in Theorem 14 is sufficient, but not

necessary for consensus. On the other hand, if each digraphG(k) is a disjoint union of strongly connected

components, then the constantN is not necessary in Theorem 14, i.e.ki+1 − ki can be arbitrarily large

3A stochastic matrix with a positive column is calledMarkov.
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[24]. This occurs, for example, ifG(k) (after ignoring the weights on the edges) are undirected graphs.

In particular, there is no need for a uniform boundN in the results in [1].

Suppose that some of the matricesM(k) are stochastic matrices that are not SIA, while the rest satisfies

Theorem 14, would we still have consensus? The answer is no, as the following example indicates.

Consider the stochastic matrices:

A =




1 0 0

0.5 0.5 0

0 0.5 0.5


 , B =




1 0 0

0 0 1

0 0 1




The matrixA ∈ Sd is SIA and system (3) withM(k) = A reaches consensus. However, settingM(k) = A

whenk is even andM(k) = B whenk is odd will not result in consensus sinceBA is a decomposable

matrix and decouples the agents from interacting with each other.

On the other hand, Theorems 11 and 13 shows that we can still have consensus if the matrices that

are not SIA are sparse enough amongM(k).

B. Follow the leader dynamics and leadership in coordinated agents

Ref. [1] also considered a follow-the-leader configuration, wheren agents are connected via an

undirected graph. An additional agent, the leader, influences some of thesen agents, but is itself not

influenced by other agents. In other words, the state of the leader is constant.

This case is a special case of the discussion in Section IV-A since the state equation can still be written

asM(x) = I − 1
αL whereL is the Laplacian matrix of the underlying interaction graph. Since the leader

vertex has indegree0, every spanning directed tree must have the leader vertex as root. Spanning directed

trees exist since the subgraph of then agents is strongly connected.

This unifies both leaderless and the leader following dynamics considered in [1]. In fact, we can

generalize the concept of a leader as follows. A digraph can be partitioned into strongly connected

components (SCC) using linear time algorithms [25]. From this structure we create a condensation digraph

[26] by associating the SCC to vertices of the condensation digraph with an edge fromi to j if and only

if there are some edges from thei-th SCC to thej-th SCC. The condensation digraph does not contain

directed cycles and satisfies:

Lemma 2:The condensation digraphH of G contains a spanning directed tree if and only ifG contains

a spanning directed tree.

Proof: Suppose thatH contains a spanning directed tree. For each edge(i, j) in H, we pick an edge

from the i-th SCC to thej-th SCC. We also pick a spanning directed tree inside each of the SCC ofG
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such that the edges above end at the roots of these trees. It is clear that such a choice is also possible.

Adding these edges to the spanning directed trees we obtain a spanning directed tree forG. If H does

not contain a spanning directed tree, then there exists at least2 vertices inH with indegree zero. This

means that there are no edges into at least two SCC’s and thus no spanning directed tree can exist inG.

2

Thus whenG contains a spanning directed tree, the unique SCC which corresponds to the root of the

condensation digraph can be considered a “leading” strongly connected component (LSCC), with the

property that agents in the LSCC influencing all other agents outside the component, but not vice versa.

When G changes with time, the LSCC also changes with time. It is clear that the roots of spanning

directed trees are equal to the vertices in LSCC.

When G does not change with time, an alternative way of viewing the dynamics is the following.

First the agents in the LSCC reach a consensus. Their states are then “collapsed” into a single “leader”

state. The agents that the LSCC influences then reach a consensus following the “leader” state and are

absorbed into the “leader” state etc, until finally all agents reach a consensus. This reduces the problem

to the case of a single leader.

In addition, we can consider a range of “leadership” in the collection of agents, with the set of root

vertices of spanning directed trees as the leaders in the system. The system can be considered leaderless

if the size of this set (which is equal to LSCC) approaches the number of agents.

V. HIGHER DIMENSIONAL STATES

In [1], [2] each agent has a scalar statexi. This can be extended to multidimensional statesxi which

are vectors. In this case, the full statex is a concatenation of the state vectorsxi. Suppose that the state

equations are written aṡx = −(L(t)⊗A(t))x and that all eigenvalues ofL(t) are nonnegative. Since the

eigenvalues ofL(t) ⊗ A(t) are obtained by multiplying the eigenvalues ofL(t) with the eigenvalues of

A(t), we can ensure that the eigenvalues ofL(t) ⊗ A(t) have nonnegative real parts, if the eigenvalues

of A(t) have positive real parts. Similarly if all eigenvalues ofL(t) have nonnegative real parts, then

picking A to have positive eigenvalues will result in the eigenvalues ofL(t) ⊗ A(t) having nonnegative

real parts. Furthermore, it can be shown that in these cases under similar conditions as Sect. III,x → x∗

wherex∗
i = x∗

j for all i, j. Similar statements can be made for the case when the state equations are

written asx(k + 1) = (M(k) ⊗ A(k))x(k).
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VI. CONCLUSIONS

In this paper, we study in depth two consensus problems in networks of interacting agents where the

dynamics are linear and possibly nonautonomous. We show that properties of the interaction graph of

the linear operator is important in determining whether consensus is possible or not. In particular, the

intuitive idea that if there exists an agent which influences all other agents then consensus is possible is

expressed by the property of the interaction graph containing a spanning directed tree.
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