
RC23583 (W0504-045) April 11, 2005
Computer Science

IBM Research Report

Layering Advanced User Interface Functionalities
onto Existing Applications

Vittorio Castelli, Lawrence D. Bergman, Tessa A. Lau, Daniel Oblinger
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Layering Advanced User Interface Functionalities
Onto Existing Applications

Vittorio Castelli, Lawrence D. Bergman Tessa A. Lau, DanielOblinger
IBM T.J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598 USA

Phone: (914) 945-2396
[vittorio, bergmanl, tlau, oblio]@us.ibm.com

ABSTRACT
We explore the topics of user-interface instrumentation func-
tionality and design in support of advanced features such as
automation, adaptive documentation, intelligent tutoring, au-
tomated testing, and programming-by-demonstration. We
propose a description of the interaction between user and
computer applications in terms of a state-action model, we
show how it is sufficient to support advanced UI function-
alities, and we analyze the main points and trade-offs in the
design of an instrumentation layer based on the state-action
model. We discuss how the design principles could be prac-
tically applied using as supporting examples two systems,
Sheepdog and DocWizard, developed on different platforms.
We finally suggest a set of guidelines, intented for design-
ers of application platforms such as operating systems, that
facilitate the task of layering advanced UI functionalities on
top of existing applications.

ACM Classification H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General Terms Design, Algorithms, Measurement, Docu-
mentation.

KEYWORDS: Advanced UI features, instrumentation, au-
tomated testing, programming-by-demonstration.

INTRODUCTION
Intelligent tutors [9], adaptive documentation [5], automated
GUI testers [1], and programming-by-demonstration (PBD)
systems [3, 8] are examples of a class of systems that pro-
vide advanced UI functionality on top of existing applica-
tions. We shall refer to them using the AUIF acronym (for
Advanced User-Interface Functionality).

These functionalities are often built into the applications they
enhance and therefore are not easily ported to other appli-
cations. Moreover, extending an existing AUIF system to
simultaneously interact with multiple applications is a ardu-
ous task. One of the main difficulties is the fact that differ-

ent applications expose different APIs for obtaining data,for
performing specific actions, and for obtaining event notifi-
cations. Porting AUIF system therefore requires redesign-
ing the interface with the underlying application, which isa
costly and time-consuming proposition.

In this paper, we propose a unifying framework for interfac-
ing AUIF systems with underlying applications based on a
general model of user/application interaction. Figure 1 illus-
trates the main components of the framework: an instrumen-
tation layer and a state-action model of the user/application
interaction. The instrumentation deals with the specifics of
interaction with the application, by obtaining data and event
notification, and executing actions. The state-action pair
model combines the information produced by the instrumen-
tation into a standardized (i.e., application-independent) de-
scription of the application UI and of the user/applicationin-
teractions. This architecture therefore enables layeringmul-

Construction
Model

Tracking

Advanced UI Functionality

State−Action Model

Instrumentation

Execution
Task

ExecutionCapture Capture
State Action Action

API Messages/Events

Interaction

Application/Platform

Figure 1: Interfacing an advanced-UI-functionality sys-
tem with an application using the state-action model.

tiple AUIF systems onto an application and facilitates porting
an AUIF system to different applications.

In order for our approach to be successful, two requirements
must be satisfied. First, the general model of user/application
interaction must be sufficiently rich to support the main func-
tionalities of the systems of interest. Second, the instrumen-
tation must support the resulting requirements on the state-
action model.

We identify a set of functionalities for which our proposed
framework must provide support in order to serve as a gen-
eral interface for all the AUIF systems mentioned above:
task-model induction or construction, matching a sequence
of user/application interactions to a task model, and auto-
matic execution of operations on a GUI. Note that, while not
every system implements all three functionalities, our frame-
work needs to accommodate all of them in order to be usable
by a broad variety of systems.

To support these functionalities the instrumentation mustim-
plement three classes of operations. The first is retrievingthe
application GUI content. The second is observing the actions
performed on an application by a user executing a procedure.
The third is automatically executing actions on the user in-
terface. In simple terms, an instrumentation layer mustsee
what the user sees, see what the user does, anddo as the user
does. More specifically, the instrumentation must produce a
consistent, broad, and detailed representation of the content
of the screen; precisely capture the user operations on the ap-
plication interface; and automate the execution of individual
actions on behalf of the user. We devote separate sections
to the corresponding components of a UI instrumentation: a
data-capture layer, which extracts the content of widgets in
the application UI; an action-capture layer that observes user
action and, in conjunction with an abstraction layer, com-
bines the captured data into higher-level information; andan
execution layer, which interacts with the application to emu-
late user actions.

In this paper, we make the following contributions:

• We propose a formal description of user interaction with
computer applications using a state-action model;

• We describe a framework based on the state-action model
for layering AUIF systems onto existing application;

• We discuss the instrumentation required to support a state-
action model, discuss alternative approaches and trade-
offs, and identify difficulties and limitations;

• We present two implemented systems that make use of this
model on the WindowsR© and Eclipse[2] platforms;

• We propose a set of requirements for platform designers to
make it easier to develop intelligent interfaces.

The rest of the paper describes the issues that arise in design-
ing the proposed UI instrumentation layer, and is organized
as follows. After a brief notational digression, we introduce
a framework for describing the interactions between a user
and an application, thestate-action model. We then ana-
lyze the requirements that the state-action pair model must
satisfy to support task induction, action execution, and inter-
action tracking. We describe the main questions that arise
when designing a system that sees what the user sees, sees
what the user does, and does as the user does. We describe
our experience in instrumenting two different platforms for
programming-by-demonstation and adaptive documentation

applications, and conclude the paper with suggestions for
platform designers.

NOTATION
We use the termapplication to refer to the program or set
of programs with which the user interacts during the execu-
tion of a procedure; we use the termsystemto denote a sys-
tem that provides advanced UI functionalities on top of an
application. We also use the termplatform to denote the en-
vironment in which the application operates (e.g., Microsoft
WindowsR© or the Eclipse platform).

Note that both individual applications and whole platforms
can support advanced UI functionalities. In the rest of the
paper, we do not explicitly distinguish between interfacing
with applications and with platforms: our analysis and con-
clusions will hold in both cases.

THE STATE-ACTION MODEL OF INTERACTION
In this section we describe our model of user/application in-
teraction, the state-action model. We identify the main re-
quirements of task model induction, automatic task execu-
tion, and execution tracking. We then analyze how these re-
quirements reflect onto constraints on the state-action model.
Since PBD systems require induction, automatic execution,
and tracking, we will use them as a running example.

Most existing PBD systems use only information about user
actions to capture the target procedure. For example, Famil-
iar [11] captures user actions in the Macintosh Finder appli-
cation, and recognizes repetitive sequences of such actions.
The main limitation of this approach is the difficulty in infer-
ring constructs, such as decision points, that depend on the
content of the UI. A few systems, like SMARTedit [6], in-
stead capture states of an application, and build a procedure
model by identifying the actions that are consistent with the
observed state changes. The main limitations of these sys-
tems are the assumption that different actions produce differ-
ent state changes, and the need for a very precise model of
the target application (in fact, of the specific release of the
target application): in order to infer the procedure model,the
system must know exactly what actions are required to yield
the desired change in state.

In contrast, we propose to represent the model of user inter-
action by using a conversational turn-taking paradigm that
supersedes both approaches and overcomes their limitations.
At the beginning of each turn, the system resides in a par-
ticular state; the user chooses an action to perform, such as
clicking a button or selecting a menu item. In the next turn,
the system updates its internal state in response to the user’s
action and reflects the change in the user interface, thus com-
pleting the turn. A user interaction consists of a sequence of
such turns. The rationale for this model is the assumption
that the user performs an action based on a mental model of
the procedure, on the current location within the procedure,
and on the content of the screen. The application receiving
the action executes it, updates its internal (invisible) state,
and provides feedback to the user by changing the content of
the screen. Using a control theory analogy, the content of the
screen is the observable state of the application and, if the
UI is well designed, exposes all the information that the user

needs to decide which action to perform next.

Using both state and action information overcomes the above-
described limitations of using just one. State informationcan
influence a user’s decisions while interacting with an inter-
face. For example, a user may choose to perform different
actions depending on what is visible on the application in-
terface, or, equivalently, on features of the state: addingan
entry to a list only if it is not present or installing a soft-
ware package only if it is not already installed. Action in-
formation is required for application independence: without
it a system layered on top of an existing application needs a
specific model of the application to deduce user actions by
comparing the states obtained before and after each interac-
tion. Action information is therefore needed to support an
architecture that decouples the AUIF system from the target
application.

The resulting state-action model is somewhat similar to the
STRIPS representation used in planning [4], where the state
captures facts that are true in the world, and plan opera-
tors describe the possible means for altering the state of the
world.

We next analyze the main components of model induction,
action execution, and interaction tracking, and we show how
they impose requirements on the state-action model and for
the instrumentation.

SUPPORTING ADVANCED UI FUNCTIONALITIES
The interface framework must provide the information and
functions required by automatic task-model construction,task
execution, and interaction tracking. In this section, we sum-
marize the most significant ones.

Uniquely Identifying Widgets.The visual appearance of
an application, in particular its layout, typically variesde-
pending on user settings and environment differences. The
same widget might be in different positions or have a dif-
ferent look. Consider, for example, the same toolbar button
in two instances of the same application: it can be in differ-
ent positions within the toolbar, or can even be absent; the
toolbar can look different, can contain different buttons,or
can even be absent; the toolbar can be in a different posi-
tion relative to other toolbars or to the application frame,it
can be vertical rather than horizontal, etc.
Consistently identifying the same widget across different
instances of the same application is important for auto-
matic task-model construction and for automatic execu-
tion. In task-model induction, the content of widgets is
used to induce decision points. Hence it is important to
identify the same widget in execution examples obtained
from different application instances. Identical actions on
the same widget must also be recognized as being iden-
tical irrespective of the interface configuration. In auto-
matic execution, the execution engine must correctly find
the widget to be activated irrespective of its position and
look.
Similarly, different widgets should not be identified as one.

Activating Widgets.Automatic execution task execution on
the UI requires the ability to activate UI widgets.

Characterizing Widgets.Task model induction requires a
precise characterization of widgets. This characterization
includes: the functionality of the widget, which is typically
jointly determined by its type and the value of a collec-
tion of attributes; the knowledge of whether a widget state
can change or is always fixed; the widget content, such
as its text or, for container classes like lists, the contained
widgets; the state of the widget (active, grayed, checked,
expanded, collapsed, etc.). An accurate widget character-
ization additionally includes spatial and hierarchical rela-
tions between widgets. An example of spatial relation is
the proximity of a type-in field to its “label”, when the la-
bel is actually a different widget. As an example of hi-
erarchical relationship, think of the tree representationof
a directory structure in the “file open” dialogs. An accu-
rate characterization of widgets is also essential to widget
identification.

Associating states with actions.This is important in auto-
matic task induction: each action should be associated with
the state of the interface at the time when it started. Using
this information, the inference engine tries to induce struc-
tural constructs of the task, such as loops and branches.
State-action association is also required for task execution:
for example, an action should not be executed until the tar-
get widget is available and ready (think of the case in which
the widget is created as a consequence of the previous ac-
tion), and this information is typically available in the state.
Similarly, a decision point should not be evaluated during
execution until the previous action has completed, an event
that can typically be deduced from the state.

REQUIREMENTS OF THE STATE-ACTION MODEL
In order to provide the information and functionalities de-
scribed in the previous section, one must impose a set of re-
quirements on the state and action representations and on the
action execution.

Requirements of State Representation

Widget-Type Coverage.The state representation should
contain information on as many different widget types as
possible. Our interface layer cannot make assumptions
about what types of widgets are important, for example, to
a task-model-induction algorithm or to an automated GUI
testing system.

Richness of Detail.A rich description of the properties
of each widget is highly desirable in a variety of scenar-
ios. For example, a task-model-induction algorithm uses
state information to explain user behavior, and therefore
needs to accurately know the properties of the widgets that
can influence the user decisions. Other properties, like
the exact location of a widget, are important to automatic
task-execution engines that emulate mouse and keyboard
events, and to intelligent tutorial systems that highlight
portions of the UI for the benefit of the user. Finally, rich-
ness of detail is required to correctly identifying widgets.
For this purpose, structural information about the widget
hierarchy is also often required.

Screen Coverage.The state representation should broadly
cover the content of the application UI. In particular, all
widgets that are visible (i.e., not occluded or minimized)
can be both targets of execution and sources of information
for automatic task-model induction. Although not visible,
occluded widgets could be targets of execution.

Dynamic Updates.Changes in the UI should be quickly
reflected in the state representation. This requirement is
important, for example, to automatic execution, where an
action should not be performed before the effects of the
previous one are visible on the screen.

Synchronization with Actions.The state-action model of
user/application interaction is predicated on the assump-
tion that the user makes decisions based on a mental model
of the procedure, the current “place” within the procedure,
and what is visible on the UI just before the action is per-
formed. It is therefore imperative that the state representa-
tion satisfy this synchronization assumption.

Requirements of Action Representation

Action-type Coverage.Representations should be available
for all types of user actions, for every type of widget.

Richness of Detail.The representation of an action should
be sufficiently detailed to allow automatic discrimination
between similar actions. It should also contain sufficient
information to uniquely identify the widget or widgets in-
volved in the action, as required by automatic task execu-
tion and model induction. Finally, there should be enough
details to instruct the execution engine as to how to execute
the action.

Semantic-level Representation.Actions should be repre-
sented at the same level of abstraction used by a human
to describe the task. This substantially simplifies the in-
duction of a task model and the process of matching a se-
quence of interactions to a model, by retaining the essence
of what the user does while hiding the low-level details
of how it is done. For example, many actions can be
equivalently performed with the mouse or with hot keys:
considering these low-level details introduces a source of
variability that makes induction and tracking more difficult
without adding any benefit to either.

Uniformity of Representation.The descriptions of different
types of actions must be at the same or at a close semantic
level.

Requirements of Action Execution
The requirements of the action execution layer are diverse
and contrasting, and strictly depend on the goal of exeuction.
We can distinguish three classes of goals: 1. performing a
procedure on behalf of the user, were no further restrictionon
the action execution mechanism is imposed; 2. performing a
procedure in cooperation with the user, where the user can
take over at any point in time, namely, in “mixed initiative”;
and 3. emulating the user interaction with the application.

Visibility. Intelligent tutoring systems and adaptive docu-
mentation systems that can demonstrate to the user how
to interact with an application need support to execute ac-
tion in a way that is visible to the user. A somewhat more
stringent requirement is imposed by automatic GUI test-
ing systems, which actually need actions to be performed
by means of mouse and keyboard emulation. To execute a
procedure in mixed-initiative mode, the user must see the
system actions. Therefore, visibility is a requirement for
goals number 2 and 3.

Uninterruptibility of individual actions.Systems that com-
pletely automate task execution for the user should be im-
pervious to accidental user intervention (such as moving
the mouse). A similar requirement holds for intelligent tu-
toring systems and adaptive documentation systems that
demonstrate multi-step interactions with applications. The
only allowed violation of this requirement occurs when,
by design, the user is allowed, in mixed initiative mode, to
interrupt the system execution at any point in time.

Interruptibility of action stream.To operate a mixed initia-
tive mode, where the user can take over the execution at
any point in time, the action execution component should
allow the user to interrupt the execution flow between ac-
tions. In other scenarios, such as intelligent tutoring, the
execution should probably not be interruptible.

Speed.For purely automatic task execution, the speed of
execution of long procedures can contribute to enhancing
the user experience.

STATE CAPTURE
The purpose of the state-capture component is to “see what
the user sees”. It must satisfy five main requirements (widget-
type coverage, richness of detail, screen coverage, dynamic
updates, and synchronization with actions) without nega-
tively impacting the user experience. The first five requisites
can result in a complex and computationally heavy state-
capture layer.

To capture the state of a widget, the instrumentation relieson
exposed APIs that range from methods on a public interface
of the widget (such as the methods on theIAccessible
interface in WindowsR© , or theGetChecked()method on
an Eclipse check box), to messages (like theWM GETTEXT
message that retrieves the text of a window in WindowsR©).
Widget-type coverage and richness of details are the resultof
an extensive state-capture layer.

The last requisite, for a good user-experience, limits the
applicability of simple-minded, brute-force strategies (that
yield good screen coverage, dynamic updates, and synchro-
nization with user actions) to applications with simple UIs
(e.g., command-line-basedprograms). Two examples of these
strategies are: intercepting each user action and capturing the
entire state of the UI before allowing the action to be received
by the application; and sampling the entire content of the UI
at a high enough sampling rate (e.g., every1/20 of a sec-
ond). Although, when feasible, both strategies satisfy most
of the requirements, they are bound to severely impact the
user experience on the vast majority of applications.

Therefore, to ensure a high-quality user-experience the in-
strumentation must adopt strategies to adaptively monitor
parts of the UI, and to judiciously capture selected content.
The decisions of what to capture and when to capture must
try to satisfy all the desired requirements.

What to Capture
The advantage of capturing the entire GUI is that no informa-
tion is disregarded: this yields complete screen coverage and
richness of detail. The disadvantages are the computational
burden, which can be substantial and therefore affect the user
experience, and the presence of information that is irrelevant
to the task. In particular, if the model of the procedure is
inferred automatically, via machine learning techniques,the
well-known problem of the curse-of-dimensionality comes
into play, and statistical variations in the appearance of the
UI can make irrelevant information appear to be highly pre-
dictive of user decisions. The advantages of capturing re-
stricted parts of the GUI are the smaller computational bur-
den and the fact that many (but not all) irrelevant features
are automatically discarded. The disadvantage is that the rel-
evant features could be discarded too. To implement par-
tial capture, the instrumentation must adopt a strategy for
adaptively selecting which windows to monitor. To further
improve the user experience, the system could use different
strategies at procedure-demonstration time and at procedure-
playback time.

At demonstration time, the instrumentation must trade off
computational cost for risk of discarding relevant data. The
most conservative strategy, short of recording the state ofthe
entire UI, consists of including all the windows that are not
minimized, including those partially occluded by other win-
dows. The idea is that the user cannot make decision based
on information that is not visible. We use this approach in
both our systems described in later sections. At the opposite
end of the spectrum we find a strategy consisting of captur-
ing only the widget being interacted with (a strategy that we
do not advocate, as the risk of missing relevant information
is high). A somewhat safer approach consists of considering
the windows containing the widgets where the current and
previous actions are performed.

During playback time, when a procedure model exists which
is either executed automatically or used to track user ac-
tions, the system knows which widget content is relevant at
each point in time, for example to determine which path of a
branch needs to be taken. The system could therefore request
from the instrumentation only the content of these specific
widgets. This selective approach to state capture typically
requires the retrieval of a small amount of information in re-
sponse to each request, and therefore it has a small impact on
the user experience.

When to Capture
Even when it captures the entire GUI, the instrumentation
does not need to obtain the content of all tracked windows at
the same point in time. A strategy that substantially improves
the user experience is to maintain an internal representation
of the content of the UI, which can be thought of as a cache
of the visible widget states, and to update it incrementally, by
appropriately selecting the portions of the UI to be queried.

We use the term “World Model” to denote this cached repre-
sentation.

We distinguish two main approaches to deciding when to
capture the content of selected portions of the UI and update
the corresponding parts of the World Model, respectively
called “widget-notifies” and “instrumentation-requests”. In
both cases, the instrumentation registers callback functions
with specific widgets or in a system-wide fashion. Differ-
ent types of callback functions are invoked when different
aspects of the state of a widget changes and when user ac-
tions are detected. The notification mechanisms are differ-
ent depending on the platform. For example, WindowsR©

allows a user to register a callback for Accessibility events
which is invoked when a relevant event is generated. Ex-
ample of events that trigger an accessibility callback are:
changes in object text, state, and location, the creation and
destruction of an object, changes in selection within a con-
tainer object, etc. The forms of the callback functions also
differ depending on the environment. In Java, each class of
events is associated to a specific “listener” interface (derived
fromEventListener) that specifies one method per each
event of the class: the PopupMenuListener has three meth-
ods invoked respectively when a popup menu become visi-
ble, when it becomes invisible, and when it is canceled. In
WindowsR© callbacks are just regular functions with specific
signatures.

The widget-notify paradigm In a widget-notifies technique,
instrumentation isreactive: whenever a callback function is
invoked, the instrumentation retrieves the offending widget
state by sending it appropriate inquiries. In this approachthe
World Model is updated one widget at a time.

Provided that the platform supports callback functions that
are both exhaustive (that is, the instrumentation can be no-
tified of all desired changes for all types of widgets) and
consistent (that is, notifications are both deterministic and
happen under all circumstances), and provided that the wid-
gets respond to the inquiries under all circumstances, this
approach satisfies the dynamic updates and synchronization
with actions requirements. In general, however, a designer
cannot assume that the notification mechanism is well-behav-
ed in the sense just described, and should carefully verify that
these conditions hold. Even if the conditions hold, the down-
side of the approach is the potentially high computational
cost: typically, the stream of notifications is substantialand
most captures performed by the instrumentation are unnec-
essary.

The instrumentation-request paradigm In a technique of
this class the instrumentation isproactive. The instrumenta-
tion observes a stream of events from the application widgets,
exactly as in the widget-notify approach. Instead of perform-
ing a capture whenever an event notification is received, the
instrumentation selectively decides when to capture part of
the content of the application UI. The retrieved information
can include content of widgets other than those generating
the observed events. A variety of strategies can be used to
implement an instrumentation-request approach. The most
simplistic one consists of performing the capture at predeter-
mined, equally spaced intervals, irrespective of the received

messages. This approach is simple to implement, but results
in unnecessary state captures, and is either computationally
expensive (if the sampling frequency is too high) or has a
high risk of missing relevant information (if the sampling fre-
quency is too low). It is therefore limited to applications with
a simple or small UI (e.g., text), for which event-notification
support is poor.

A more reasonable strategy consists of capturing the GUI
when the user performs an action, by preventing the action
from being executed until the state-capture is completed. As
discussed previously, this strategy yields a poor user expe-
rience unless the state capture is targeted to a limited num-
ber of widgets. For example, the instrumentation could keep
track of all the messages indicating widget-state changes dur-
ing the interval between adjacent user actions, and retrieve
only the content of the affected widgets. This approach guar-
antees that all the changes in the content of the UI are cor-
rectly recorded, but it does not ensure that the number of wid-
gets to be queried is sufficiently small to guarantee a good
user experience.

A third approach consists of performing an initial capture
when the system is activated, when new windows or widgets
are created, and after the results of a user action are visible on
the UI. The last event is difficult to assess unless the instru-
mentation has an accurate model of the application, or if the
application has a notification mechanism for completed ac-
tions (as is the case, for example, for a database). A heuris-
tic that approximates the detection of the completion of an
action consists of waiting for “quiescence”: the instrumenta-
tion would observe notification of changes to the GUI after
the user performs an action, and performs a capture when no
change is observed for a heuristically selected period of time.

In general, the instrumentation could adopt a hybrid be-
tween the second and third strategy: it could capture the GUI
when predetermined events occur (e.g., startup and window
creations); when specific sequences of event notifications
are detected (e.g., the sequence window-deiconify, window-
focus, window-repaint); when a large number of widget-state
changes is detected; and when a user performs an action.
These hybrid approaches have the advantages of limiting the
interference with the user experience (by incrementally ac-
quiring small amounts of data and ensuring that the cost of
state-capture when an action is detected is small), of keep-
ing the computational cost under control, and of yielding a
consistent model of the UI content. The downside is the
complexity of the design. In particular, the types of events
that trigger the state capture are in general widget-dependent
(and different parts of the state can be available when differ-
ent notifications are issued), and a careful design is required
to match notifications and available aspects of the state.

ACTION CAPTURE
The second main function of the instrumentation is “seeing
what the user does”. Recall the desiderata of the action rep-
resentation: type coverage, richness of detail, semantic-level
representation, and uniformity of representation. The re-
quirement on the richness of detail, in particular the availabil-
ity of a low-level step-by-step description, is in contrastwith
the need for a high-semantic-level representation. The so-

lution is to distribute the burden between the action-capture
and the action-execution module: the action-capture module
is responsible for generating the high-semantic-level repre-
sentation, while the action execution module is responsible
for decomposing a high-level action into a sequence of low-
level interactions with the application.

An action-capture architecture that yields both high-level and
uniformity of representation consists of an data-gathering
component, which retrieves action information, and an ab-
straction component, which combines the gathered data into
high-level, coarse-grained description. In this section,we
first describe the data-gathering component, then we describe
the abstraction subsystem and discuss the trades in the com-
mon design of these two elements.

The Action-Data Gathering Component
The basic mechanism of action-data gathering consists of
registering appropriate callback functions with individual wid-
gets or in a system-wide fashion. These callback functions
are invoked upon the occurrence of events caused by the in-
teraction of the user with the UI. Event notifications and call-
back functions are conceptually identical to those discussed
in the data-capture section.

The information obtainable from the action-data-gathering
component can be categorized in terms of cause and effect.
Certain callback functions are invoked when an action per-
formed by the user is detected, for example, when the user
clicks the left mouse button. Other callback functions are in-
voked when the direct effects of the user action are observed,
for example, when the system menu pops up in response to
the left mouse button click. It is important to note that many
state-change events are not direct consequences of user ac-
tions, but are rather due to reactions of the application. For
example, consider an e-mail program with an inbox and a
preview window: when the user selects a message in the in-
box, the content of the message appears in the preview win-
dow. Say that two events are generated: the first signals that
the selection in the inbox list has changed, the second sig-
nals the change in content of the preview window. The first
event is a direct consequence of the user action, and should
be captured by the action-capture layer; the second is an in-
direct consequence, and should not be captured by the action
capture layer.

In practice, callback functions that detect user actions typ-
ically yield low-semantic-level information, such as mouse
moves and clicks, and key presses. In contrast callback func-
tions that detect the effects of user actions typically yield in-
formation at a higher semantic level. For example, depending
on the characteristic of the widget and on the mouse pointer
location within the widget, a mouse click could result in a
button press, a checkbox check, a tree-item expansion, a win-
dow minimization, etc.

In an ideal application platform, callback functions would
exist that yield information at the same semantic level thatan
expert would use to describe interactions with the GUI. This,
unfortunately, is usually not the case: for example, double-
clicking on a desktop icon can result in launching an applica-
tion or opening a document, depending on the nature of the

icon; the existing notifications do not provide sufficient in-
formation to discriminate between the two cases. Hence, the
available callbacks that provide information at this desirable
high semantic level collectively do not satisfy the coverage
requirement, and therefore the action-data gathering cannot
by itself satisfy coverage, high-semantic level, and unifor-
mity of representation. These requirements, however, can be
met by means of an abstraction layer.

The Abstraction Layer
The purpose of the abstraction layer is to combine the in-
formation retrieved by the data-gathering component into a
comprehensive, uniform high-level descriptions of the user
actions. The designer must distribute the burden across ab-
straction layer and data-gathering instrumentation.

At one end of the spectrum, we find a solution consisting
of collecting only the lowest-level user actions, and making
the abstraction component responsible for most of the work.
This approach has two advantages: the data-gathering instru-
mentation is very simple (one can construct a full instrumen-
tation by registering just the callback functions for the fol-
lowing four events: mouse-down, mouse-up, keyboard key
down, keyboard key up), and it is uniform across applica-
tions and widget types. The downside is the need for a very
complex abstraction mechanism to produce the desired high-
level description of the task from a sequence of mouse clicks
and key presses.

As an example of the complexity involved in this approach,
consider the simple task of detecting double clicks from
mouse-down/mouse-up events (abstracting more complex
mouse actions, such as hover and drag-and-drop, is sub-
stantially more involved). The abstraction mechanism must
consider a variety of information: the event time stamps,
the mouse location, the system settings for the double click
speed and maximum mouse movement, and the type of the
widget receiving the action. If the widget reacts to a dou-
ble click, and if the individual clicks were sufficiently close
in space and in time, the abstraction layer declares a dou-
ble click and proceeds to further analyze the action. Here,
a detailed description of the widget and platform-specific in-
formation on how different widgets operate are necessary:
for example, in WindowsR© double clicking a desktop icon
results in launching an application or opening a document,
while double-clicking the titlebar of a window maximizes the
window or restores its pre-maximization size.

At the opposite end of the spectrum, we find an approach
where the instrumentation gathers information at the high-
est possible level of abstraction available, which, as men-
tioned, varies across widgets and types of user actions, and
use the abstraction layer to “equalize” the results. The lack
of uniform coverage and of uniform interfaces provided by
the available callback functions can reduce the effectiveness
of this strategy. In the worst-case scenario one needs to sep-
arately deal with each type of widget and each type of user
action, thus making the instrumentation potentially complex
and difficult to maintain.

Based on this discussion and on our practical experience, we
can reach some broad conclusions. An approach that favors

simplicity of the data-capture layer is better suited for very
diverse environments, such as the WindowsR© operating sys-
tem. In contrast, an approach that favors capturing actionsat
a high-level of abstraction is very effective for environments
with a restricted, well-defined widget set, such as the Eclipse
platform.

ACTION EXECUTION

The third main function of the instrumentation is to “do as
the user does”. Recall that automatic execution is somewhat
different from the other two functionalities, since its actual
mode of operation strictly depend on the goal of the exe-
cution. We identify three such goals: performing a proce-
dure on behalf of the user, executing a procedure in mixed-
initiative, and emulating the user interaction with the applica-
tion. Recall that we also identified visibility, interruptibility
of individual actions, interruptibility of action streams, and
speed as additional requirements.

Broadly speaking, there are three approaches to automatic
interaction with an application: via an API that exposes the
internal operations of the application, via an API that exposes
the UI functionalities, and via mouse/keyboard emulation.

Using an API that operates on the internal data structure of
an application or a platform (e.g., programmatically modi-
fying the registry) is not suitable for most types of system
considered in this paper, and therefore we will not elaborate
on it.

Interacting with an application by calling appropriate meth-
ods of the widget, or, equivalently, by sending appropriate
messages to the widgets, is an approach with a variety of ben-
efits. In particular, the execution is typically faster thanwith
mouse/keyboard emulation and is not susceptible to errors
due to human interference. The main downsides are com-
plexity and size of the instrumentation, which requires spe-
cific methods to interact with specific widget. Additionally,
this approach is entirely unsuitable for emulating the user
interaction, for instance for automated testing, and poorly
suited for tutoring purposes.

Mouse-and-keyboard emulation is a fairly general purpose
approach to action execution. Its main benefits are the sim-
plicity of the action execution layer, and the ability to show
the user how to perform the task. A downside is the some-
what slower execution, especially of “actions” that require
multiple elementary interactions, like selecting an item in a
combo-box. Also, this method is vulnerable to a user’s de-
structive interference, which can be caused by accidentally
moving the mouse or clicking a key. A potential solution
for the last problem consist of “completely taking over the
machine”, namely, of temporarily disabling mouse and key-
board while each action is executed. More complex solutions
involving retries are also possible.

EXAMPLES

We now illustrate the principles described in the previous
sections in the context of two actual systems, Sheepdog and
DocWizard.

Sheepdog
The Sheepdog system [7] is a MicrosoftR©WindowsR© 2000-
based application that learns technical support procedures
from multiple expert demonstrations. Sheepdog’s inference
engine combines sequences of state-action pairs (calledexe-
cution tracesor simply traces) gathered by its instrumenta-
tion layer into a probabilistic model of the procedure. This
model belongs to a special class of Hidden Markov Models,
and is induced, roughly speaking, by finding the best possi-
ble alignment of state-action pairs from different traces based
on both similarity and the usefulness to predict the next ac-
tion (more details can be found in [10]). The inference algo-
rithm relies on a collection of statistical classifiers thattake
as inputs the state and predict the action, and on a distance
function that measures the similarity between the state-action
pairs.

Sheepdog is intended as an application-independent (in fact,
cross-application) system that can perform technical support
tasks in cooperation with the user, namely, in mixed initia-
tive.

The state-capture component is intended to work with any
Windows-based application. As a consequence, a fundamen-
tal design point was to select uniform strategies for deciding
when to capture the UI content and what to capture in the UI
content.

To understand the design decisions of the selected architec-
ture we need to briefly review how WindowsR© supports in-
strumentation. To capture the content of windows, WindowsR©

offers two main mechanisms: inquiry messages and Active
AccessibilityR© functions. A user can send a specific in-
quiry message to a specific window requesting a specific
piece of information: the message is queued on the mes-
sage queue of the window and processed asynchronously.
Active AccessibilityR© is a framework for enabling the use
of a WindowsR©-based application to people with disabil-
ity, which allows the instrumentation to programmatically
query the content of windows and widgets using a uniform,
widget-independent API. Active AccessibilityR© (which also
provides a collection of callback functions, discussed later)
is a very appealing framework, but has several limitations:
not all standard window classes are accessible, not all the
content of standard window classes is visible through Active
AccessibilityR© , and third-party applications that use propri-
etary widgets are not required to provide Active Accessibility R©

support to be WindowsR© compliant. The inquiry messages,
on the other hand, have a typically wider coverage than ac-
cessibility methods both in terms of widget types and of re-
trievable content. However, each class of widget responds to
specific messages and this makes the instrumentation com-
plex and onerous to maintain. WindowsR© provides a mecha-
nism for registering platform-wide callback functions, called
hooks. A user can register a variety of hooks, including Ac-
tive AccessibilityR© hooks, which together yield a partially
redundant set of notifications of user actions and application
responses. Some of the hooks callback provide generic low-
level information. Those that provide higher-level, specific
information generally require knowledge of the internal data
structure of the specific application with which the triggering

event is associated in order to be useful to the instrumenta-
tion. Registering all the available hooks also yields a volu-
minous stream of callbacks.

The WindowsR© instrumentation support has several limita-
tions. First, the system messages and calls do not necessarily
behave as specified in the documentation (the main example
is the call that retrieves the handle of the window receivinga
mouse click, which ofter returns a sibling of the window).
Also, callback functions not called uniformly and consis-
tently: for example a double click sometimes results in four
callbacks (mouse down, mouse up, mouse down, mouse up)
and sometimes in three (mouse down, mouse down, mouse
up); callbacks of specific events are known to be unreliable;
the Active AccessibilityR© hooks work only with accessible
windows, and sometimes in an non-uniform fashion (drag-
and-drop events are produced by applications but not by the
system).

Since Sheepdog is cross-application, it needs to capture the
content of all system and application windows. To mini-
mize its impact on user experience, Sheepdog’s instrumen-
tation must perform state capture selectively and incremen-
tally. The volume, lack of uniformity, and unreliability of
the notifications led us to discard a reactive (widget-notify)
approach to state capture. We selected instead a proac-
tive (instrumentation-request) approach in which only se-
lected hooks are registered. The instrumentation observes
the stream of callbacks, and decides accordingly when to se-
lectively retrieve the content of windows. The rules for de-
ciding when to retrieved were constructed to be general (i.e.,
application and widget-type independent), and the rules for
selecting which windows to capture when a rule fires were
constructed to avoid missing widget state changes for which
no consistent notification exists.

The action-capture instrumentation of Sheepdog detects
mouse clicks and keyboard key presses. Detecting events at
higher levels of abstraction would require a very complex
analysis of the stream of widget change notifications, as well
as actual knowledge of the internal data structures of indi-
vidual applications, and therefore was not deemed feasible.
As a consequence, an abstraction layer is used in Sheepdog
to combine low-level user-generated events into high-level
action descriptions.

Generality and uniformity were again the guiding principles
in designing the action execution layer of Sheepdog. As
a consequence, a mouse-and-keyboard-emulation approach
was selected. This approach actually allows seamless ex-
change of initiative between the user and the system, which
proved to be effective and useful to incrementally construct
a model of the task.

Sheepdog’s instrumentation suffers from a variety of limi-
tations. Timing issues are somewhat problematic: window
messages used to retrieve window contents are not processed
synchronously, and there is no guarantee that the response
reflects the actual window state at the time the request was
issued. Inconsistent behavior of the notification mechanisms
requires a variety of strategies to overcome the resulting
limitations. The content of certain windows, including the

client areas of many applications, cannot be obtained using
the mechanisms described above (the alternative is to take a
bitmap of the screen, segment it, and apply OCR techniques
to extract the text). Capturing the content of certain windows
is extremely time consuming. In particular, it is possible to
capture the content of an HTML page displayed by a browser
using Active AccessibilityR© calls, but if the page is large,
this might take several seconds, which totally destroys the
user experience.

DocWizard
The second system we consider is “Follow-me Documen-
tation Wizard” or DocWizard, an intelligent documentation
system authored by demonstration. DocWizard is imple-
mented on the Eclipse platform, a Java-based environment
for developing and running applications. During an author-
ing phase, DocWizard observes one or more experts perform-
ing a procedure, captures the content of the Eclipse-based
applications, performs selected bitmap captures of appropri-
ate windows, and constructs a model of the procedure repre-
sentable as a script. During playback, DocWizard observes
a user performing the recorded procedure, matches the ac-
tions to the procedure model, and suggests the next actions to
take. The user is presented with a script-like high-level pro-
cedure representation, and is presented in-context documen-
tation. This documentation includes the appropriate screen
shots obtained during recording, where the widget to be acti-
vated is highlighted. At the same time, DocWizard identifies
and highlights the widget on the GUI of the actual applica-
tion. DocWizard can also perform part or all the procedure
on behalf of the user, except for steps that explicitly require
user input.

The Eclipse environment differs from the WindowsR© envi-
ronments in two main respects. First, the number of widgets
provided with the standard widget toolkit (SWT) is limited.
Second, the source code is available and modifiable, and bugs
can be clearly identified using the debugger, reported, and
quickly corrected through a formal process.

Eclipse supports registering system-wide callback functions,
which work consistently and uniformly. Therefore, DocWiz-
ard can use a reactive (widget-notifies) approach to decid-
ing when to capture GUI content. The exception is when
DocWizard starts operating: here it actually captures the en-
tire GUI. To retrieve the content of widgets, the DocWiz-
ard instrumentation uses Java introspection. Timing issues
are entirely avoided by executing the callback function in the
GUI thread: the capture of the widget state is therefore syn-
chronous with the operation of the GUI and the instrumen-
tation can obtain a description of the widget content at the
time of the callback invocation. Since the number of stan-
dard widgets is limited, the DocWizard instrumentation con-
tains widget-specific state-capture methods. The main design
decisions were the selection of the events that trigger state
capture, which in general are widget-dependent. Most of the
problem encountered with the Sheepdog state-capture instru-
mentation did not appear in DocWizard, because of the more
restricted widget set, and of consistency of the notifications
and of the general behavior of inquiry functions.

Action captures are done at the highest semantic level avail-

able from the callback functions. In particular, actual mouse
clicks are ignored; instead their effects (list selection,check-
box checks, menu popups, etc.) are observed and used as
action description. A lightweight abstraction layer is used to
create actions corresponding to typing strings, selectingmul-
tiple items, and navigating a sequence of nested menus. The
availability of reliable notifications of high-level events that
exhaustively cover all SWT widgets was the enabling factor
that allowed the design of an efficient and compact action-
capture instrumentation.

Action execution relies on an open-source GUI test frame-
work called Abbot for SWT. Abbot emulates mouse clicks
and keyboard presses on the SWT widget set, and provides
an almost full coverage of the desired operations. Keyboard
and mouse emulation is desirable, since a main intended use
for DocWizard is intelligent tutoring. The principal limita-
tion of the execution layer is brittleness to user interference.
This behavior is partially by design: DocWizard is meant as a
mixed-initiative cooperative tool where the user can take over
the execution at will. An open problem is how to discrimi-
nate between an intentional and an accidental interferenceof
the user with a procedure execution.

SUGGESTIONS FOR PLATFORM DESIGNERS
Based on our experiences with instrumentation we can pro-
pose a set of requirements for future operating system and
application platform development. Fulfilling these require-
ments would greatly enhance the ability to layer intelligent
systems on top of existing applications.

1. Remove the need for keeping a separate world model by
providing hooks at the right points. This would require an
ability to register callbacks that are to be invoked prior to
any effects of actions on the UI (prior to all application
callbacks, as well as any changes to widget state).

2. Provide high-level events. It should be possible to register
for events such as ”select menu item” in addition to lower-
level mouse and keyboard events.

3. Provide a uniform introspection mechanism for the widget
hierarchy. All widget types should expose all state infor-
mation, with a consistent API for information access.

4. Provide high-level mechanisms for specifying hierarchical
UI structure, including specification of semantic relation-
ships between entities. For example, the API should allow
the developer to specify that a particular label is the cap-
tion of an input field. Note that web-based UI-specification
languages such as XForms [2] do exactly that.

5. Provide an application model that exposes high-level ac-
tions and application state. The ability to capture actions
at the application level would allow semantically equiva-
lent UI actions (e.g., either typing a hot key sequence, or
selecting a menu item) to be identified as equivalent. Mak-
ing state available would allow for richer interpretation of
user actions; non-visible information as well as visible in-
formation could be used to inform inferences of user be-
havior.

6. Provide consistent high-level ways of actuating widgets.
Actuation at the same semantic level as that reported by the
API (described in 2) would allow good support for mixed
initiative, minimize problems with user interference with
automated execution, and simplify the planning task for
automated execution modules.

DISCUSSION AND CONCLUSIONS

We have described a framework for supporting advanced
user-interface functionalities. This framework is centered on
a state-action model of the user/application interaction.It
provides a uniform view of the user operations and system
responses while hiding the specific details of how individual
applications (or even a platform) actually works.

We have identified the characteristics required of the state-
action model to support a diverse set of advanced UI fea-
tures, including intelligent tutoring, automated GUI testing,
programming-by-demonstrationand adaptive documentation.
We have translated these characteristics into requirements for
an instrumentation layer, and we have discussed the trade-
offs involved in how to satisfy these requirements. Finally,
we have described two systems, the WindowsR©

−based Sheep-
dog and the Eclipse-based DocWizard, that rely on the state-
action model.

We believe that the state-action model is very general and
widely applicable. It has, nevertheless, some intrinsic limi-
tations. The most important, which has impact on the instru-
mentation, is that states and actions need not be synchronized
in the way assumed by the model. In particular, an advanced
user might be able to perform a procedure more quickly than
the application can display the result of the actions. The in-
strumentation is therefore notified of a user action before the
effects of the previous one are visible. An action would then
be associated with a state in flux. Short of heavily interfer-
ing with the user, the instrumentation cannot typically correct
problems of this nature, and other components of the system
must address them.

We finally remark that an interface such as the one described
in this paper can be more than just an enabling technology:
in some classes of systems it is the key component. In par-
ticular when automatic task-model induction from observa-
tions is involved, one can safely bet that a mediocre induction
algorithm provided with high quality data will consistently
outperform a high quality induction algorithm provided with
mediocre data: thus, the interface layer plays a role that is
even more important than that of the induction mechanism.
Similarly, when a good user experience is desired, the inter-
face should be sufficiently optimized and efficient to mini-
mize its interference with the user/application interaction. A
poorly designed instrumentation, for example, can producea
low-quality user experience even if the rest of the design is
exemplary.

ACKNOWLEDGMENTS

We would like to thank Dr. John J. Turek for the numerous
insightful discussions.

REFERENCES
1. The Rational approach to automated testing. White Pa-

per TP-303, Rational Software Corporation, Cupertino,
CA, Jan 1999.

2. Eclipse platform technical overview. White paper,
www.eclipse.org, February 2001.

3. A. Cypher, editor.Watch What I Do. The MIT Press,
Cambridge, MA, U.S.A., 1993.

4. R. Fikes and N. Nilsson. STRIPS: a new approach to
the application of theorem proving.Artificial Intelli-
gence, 2:189–208, 1971.

5. E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and
K. Rommelse. The lumiere project: Bayesian user
modeling for inferring the goals and needs of software
users. InProc. Fourteenth Conf. on Uncertainty in
Artificial Intelligence, pages 256–265, Madison, WI,
U.S.A., July 1998. Morgan Kaufmann.

6. T. Lau, S.A. Wolfman, P. Domingos, and D.S. Weld.
Programming by demonstration using version space al-
gebra. Machine Learning Journal, 53(1–2):111–156,
2003.

7. Tessa A. Lau, Lawrence D. Bergman, Vittorio Castelli,
and Daniel Oblinger. Sheepdog: Learning procedures
for technical support. InProc. of 2004 Int. Conf. on
Intelligent User Interfaces (IUI 2004), pages 106–116,
2004.

8. H. Liebarman, editor.Your Wish is My Command. Mor-
gan Kaufmann, San Francisco, CA, U.S.A., 2001.

9. Tom Murray. Authoring intelligent tutoring systems: an
analysis of the state of the art.International Journal of
Artificial Intelligence in Education, 10:98–129, 1999.

10. D. Oblinger, V. Castelli, T.A. Lau, and L.D. Bergman.
Similarity-based alignment and generalization: A new
paradigm for programming by demonstration. Techni-
cal Report RC23140, IBM Research Division, 2004.

11. G.W. Paynter.Automating iterative tasks with program-
ming by demonstration. Ph.D. dissertation, The Univer-
sity of Waikato, New Zeland, 2000.

