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Visualizing Supply Chains: A Design Study

Donna L. Gresh ∗

IBM T.J. Watson Research Center

ABSTRACT

Suppy chains describe the process by which materials are turned
into products, and occur in a wide variety of contexts. As an ex-
ample, consider the manufacture of desktop computers. Each com-
puter is comprised of a variety of subcomponents, each of which is
typically manufactured from a further set of components (and us-
ing various “capacities,” for example, fabrication machinery). Each
part has a cost and possibly limited availability; similarly each ca-
pacity has a cost and a maximum throughput. Sometimes one com-
ponent may be allowed to be substituted by another, perhaps at a
greater cost or with some lead time. The computers to be manu-
factured have projected demands as well as expected revenue when
sold.

In the Mathematics department at IBM Research our particular
focus is onoptimizing supply chains, making recommendations on
the best parts and capacities to use to produce a particular final
product, and to predict shortages with enough lead time to do some-
thing to fix it. We can also recommend, based on limited available
supply, which end products to manufacture, and when to manufac-
ture them. As part of our asset base for solving such problems, we
have the Watson Implosion Technology library, which allows one
to model the supply chain, setting the relevant priorities, costs, con-
straints, etc. As one can imagine, real-life supply chains can be
enormously complex, and there is a need for the optimization mod-
elers to be able to visualize the model, as it is being constructed, to
verify its accuracy and check for anomalies.

We have created a visualization application, which we call
WitViz, which directly reads a supply chain model and presents
an interactive, simple to understand graphical view of the supply
chain, based on the Draw2D/GEF framework, after experimenting
with alternative representation methods based on spanning trees.
It allows the modeler to traverse the chain interactively, probe at-
tributes, and see relationships quickly. The graphical representa-
tion closely matches the mental model that users hold about the
relationships between objects in the supply chain. We also provide
linked statistical views that allow users to see the range of node
or link attributes, to look for outliers, or highlight particular values
of interest. These highlights can also be fed back to the graphical
representation.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

Keywords: visualization, information visualization, optimization

1 INTRODUCTION

The management and optimization of both internal and customer
supply chains are an important business for IBM. For large, com-
plex, manufacturing situations, the ability to model the supply
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chain, and respond dynamically to changes in it (for example, com-
ponent shortages, demand changes, etc.) is critical to achieving
profitability. The mathematics department within the IBM T.J. Wat-
son Research Center has contributed to IBM’s work in this area
through the development of mathematical tools to model and opti-
mize supply chains. For example, the management of the manufac-
turing of computer systems needs to take into account component
supplies and costs, component substitution possibilities, demand
forecasts, inventory costs, production costs, scrap value of unused
parts, and a host of other variables. Both linear programming and
heuristic models are used to find an optimal solution for manufac-
turing the computers, taking into account all of the attributes of
the supply chain. (Heurstic models tend to be used in preference
to linear programming models when it is difficult or impossible to
specify quantitative values for some of the attributes. For example,
practicioners are often able to specify a preference for the use of
one part over another, but have great difficulty in assigning a mon-
etary penalty to such a use. In such cases, heuristic models, which
specify a preference, rule-based, ordering, can be helpful). These
models are deployed in a wide variety of contexts beyond just the
manufacturing of computers. For example, supply chain methods
can be used to model staffing requirements, where one is interested
in what the long-term needs for skilled personnel may be, given
projected demand for such skills, and the possibility of geographic
or other forms of flexibility in staffing. In addition, IBM operates a
successful consulting business helping other companies model and
optimize their supply chains. During the development of supply
chain models, there is a need for modelers to be able to understand
what they are building. Up until now there has been no way for the
modelers to visualize the model they have built other than through
“dumps” of the model as described by, essentially, “set attribute”
methods. The application we have built allows the modelers to see
the form of the model as it exists in-memory.

An outline of this paper is as follows: Section 2 discusses the
requirements of the visual representation along with some of the
characteristics of the typical supply chains we analyze. Section 3
discusses various approaches which have typically been used to an-
alyze tree and network data. Section 4 dicusses the application as
we have designed it, and shows some of the interaction mecha-
nisms. Section 5 discusses the integration of more traditional infor-
mation visualization views with the graphical representation, while
Section 6 summarizes our contributions and suggests future direc-
tions.

2 OVERVIEW OF THE PROBLEM

Our overall goal was to design a simple-to-understand visual rep-
resentation of a “WIT Model,” which would also allow interroga-
tion of any attribute existing in the model. WIT stands for “Wat-
son Implosion Technology,” and is a software tool developed at the
IBM T.J. Watson Research Center that aids in constrained materi-
als management and production planning. Input to WIT is a list of
demands for products, supplies of product components, and a multi-
level bill-of-manufacturing, which describes how to manufacture a
new component from a set of inputs. Typically, the list of demands
for products is much smaller than the list of components required
for these products. WIT “implodes” the list of supplies of compo-



nents, via the BOM, into a relatively small list of feasible shipments
of demanded products. Judicious trade-offs must be made between
different demands, given limited supplies, to best satisfy manufac-
turing objectives. WIT is used internally at some IBM divisions,
and has also been deployed at external customers around the world.

WIT models consist of parts, which may be of either material
or capacity type (which simply indicates whether, if a part is not
used in a given period, it is available for use in the next period, or
is of a “use it or lose it” nature), operations, which create new parts
from a set of materials and capacities, and demands for parts. In
addition, WIT models contain BOM (bill of manufacturing) arcs
which connect required inputs for an operation to the operation it-
self, and BOP arcs (bill of products) which specify the list of out-
put products from an operation. Each component of a WIT model
has a large range of possible attributes describing it, which allows
a wide range of possible scenarios to be modeled. For example,
parts can have a stock cost (inventory cost), a scrap cost (cost to get
rid of them), a supply volume, an indication of whether a part can
be shipped late, along with a dozen or so other attributes. Opera-
tions can have an execution cost, an incremental lot size (indicating
whether fractional output is allowed), etc. BOM arcs may spec-
ify substitutes, indicating that it is allowed to use a different part
or capacity, perhaps with a time or financial penalty, or a prefer-
ence ordering. BOM arcs may also specify that a part is required
in an earlier (or even later) period than an operation is executed,
to model extended periods of manufacture time. Demands may be
associated with financial rewards, which may depend on when the
part is shipped.

Figure 1 shows a simple WIT model for products available at a
diner. We will use this simple model, or a variant of it, in this paper
to simplify the task of understanding the supply chain visualizer for
the reader. In Figure 1, the final “parts” are various sorts of food
items (circles near the top of the diagram), each with a demand (di-
amonds). To create these food items, “operations” (rectangles) are
necessary, each of which requires both material parts (food items)
and a capacity part (a pan, which is dedicated to the making of the
food item for some unit of time). In addition, the BOM arc connect-
ing American cheese to the operation for making a ham and cheese
sandwhich also specifies a substitute arc of Swiss cheese. However
the BOM connecting American cheese to the operation for making
a cheese omelet does not, indicating that Swiss cheese is not an
acceptable substitute for this operation.

Not explicitly shown is that most of these elements have at-
tributes which depend on time. For example, the model may conver
10 periods of time (for the purposes of the diner example, these
might be 2 minutes each), and the demand for bacon and eggs may
be one unit in the third period, two units in the fifth period, one unit
in the ninth period, and zero otherwise.

Watson Implosion Technology would take into account all the
demands, all the constraints (for example, that it takes 2 periods to
make bacon and eggs, and that no other operation can use the skillet
during that time) and determine the optimal sequencing and use of
materials and capacities. It can also take into account the profit
margins and supply constraints, and, if necessary, decide to make
one end product in preference of another. (One would hope that in
a diner, as well is in a manufacturing supply chain, this would not
occur too often to avoid alienating customers!)

Conceptually, this is the mental model of a WIT supply chain.
As much as possible, the WIT visualizer maintains the essential
characteristics of this mental model to aid in understanding, as we
will describe below.

3 PREVIOUS WORK

Since a WIT model is a network, we will give an overview of vari-
ous approaches to the visualization of networks. (An excellent sur-

Figure 1: A simple WIT model to illustrate a conceptual visual rep-
resentation using diamonds (demands), circles (material parts), tri-
angles (capacity parts), operations (rectangles), BOP (bill-of-parts)
arcs (upward lines from operations), BOM (bill-of-material) arcs
(downward lines from operations), and substitute arcs (curved line).
There are also a wide variety of possible attributes for each of these
components, not shown in this representation.

vey may be found in [11].) In many applications for network visu-
alization, for example, telephony, the goal is to see unusual patterns
of connectivity,e.g., points with more than the usual number of
connections ([6],[7]). In addition, there is often a real spatial (ge-
ographic) relationship between nodes and where they are drawn in
the visual representation. In contrast, for our application the desire
is not necessarily to see a global view of the network (which is al-
ready known to be highly dense in some areas; that is, that some
parts are used in a multitude of different operations) but rather to be
able to see the datails and the relationships in the model and confirm
that they match what was planned. In fact it is critical thatevery de-
tail be accessible in order to verify the model. Also, in our applica-
tion, there is no natural spatial meaning to the positions of the nodes
needing to be expressed, though there is a natural “parent/child” re-
lationship between nodes, and final products are typically thought
of as being at the top of the network, while parts which are not pro-
duced by any operation (raw materials) are typically thought of as
being at the bottom, as has been drawn in Figure 1.

Some graphs have attributes which simplify (or complicate) their
graphical presentation. For example, for graphs which naturally
have some degree of clustering, visualization can exploit that clus-
tering in laying out the graph, as described by [8]. “Small world”
graphs exhibit clustering, but also exhibit long-range connections
between nodes in different clusters, significantly complicating their
presentation, as described in [19].

A completely different approach to graph visualization is pre-
senting the graph as a matrix, of sizeN2 whereN is the number of
nodes, and the presence of a connection between two nodes indi-
cated by a positive value in the matrix [2]. Alternatively attributes
of nodes may be presented in a similar manner, as described in [1].

Significant work has been done in visualizing trees, as opposed
to networks. Trees differ from networks in having a hierarchical
pattern. For example, [16] and [22] discuss methods for visualizing
and navigating in hierarchical graphs. Our supply chains are clearly
not trees, and a minimal spanning tree is of limited usefulness in un-
derstanding a WIT model, in whichall of the interconnections are



of equal importance. H3Viewer [14] attempts to fill this gap be-
tween networks and trees using a spanning tree approach to lay out
the graph, with non-tree edges shown on demand. This approach
is of use mainly when there is a way to choose the “best” parent
for a node. A novel tree comparison technique was described by
[15]. We did experiment to some degree with tree-oriented visual-
izations, as we will describe below. In the Discussion section we
will describe the relative pros and cons of our solution with other
work.

There has been some previous work in the specific area of supply
chain visualization. For example, the Supply Chain Visualization
project at MIT ([17]) uses a tactile system to allow users to build
their supply chain in a truly physical sense. This application is quite
different from the complex supply chains our department typically
deals with. Their project is more appropriate for allowing users to
understand the mechanisms of supply chains in a high level way,
but is not realistic for our problems. [23] describes a supply chain
visualization system that also uses rather concrete metaphors to dis-
play components of a supply chain in a virtual reality framework.
Again, this level of realism is impractical for the sorts of supply
chains we deal with.

4 THE WIT VISUALIZER

The simple example of Figure 1 uses the standard shapes and ar-
rangements which WIT modelers use in drawing ideas on a white
board. One design decision was whether or not to try and maintain
this overall character in the WIT visualization.

An early prototype we created was to use a tree visualization
paradigm. While the WIT model is not a tree, but is rather a net-
work, our first version used the TreeView available as part of Mi-
crosoft’s standard GUI components (but of course also available
in very similar form in Java Swing or SWT). We started with this
paradigm because the TreeView is familiar to users, allows sim-
ple iconographic labels for rapid understanding, and deals natu-
rally with situations in which the number of subitems may be quite
large. (In the case of a network drawing, along the lines of Figure 1,
we were concerned that layout problems would be severe for large
models). In addition, it allowed an easy way to label items in the
tree with the attributes, through a context menu accessible through
a right-mouse click.

Typically, the modeler does not want or need to see the entire
network at a time, but rather needs to see the “inputs” and “out-
puts” for a given part or operation under consideration. Even using
a fisheye [18] or hyperbolic [13] view of the network is unlikely
to be of help here, simply because the network is likely to have
far-flung, criss-crossing connected nodes; these techniques tend to
be more applicable for trees than for networks, although [19] did
discuss a distortion-based approach to networks, as we will discuss
in Section 6. Another complication is that for some operations,
the bill-of-material may include an extremely large number of parts
and capacities, and the possibility of substitutes adds another whole
level of interconnectivity.

Our initial approach was related to the idea of creating a span-
ning tree of the network ([11]), however it differs in certain funda-
mental ways. First, we did not choose a single “root” node based on
some objective criteria about the “goodness” of the resulting tree as
in [3]. Rather we had a number of root nodes defined in a natural
way by the WIT model itself, consisting of either all the “end prod-
ucts,” or all of the “raw materials.” Second, we handled the issue
of multiple connections from a leaf to different parts of the tree by
simply replicating the leaf. All of each leaf’s attributes were ac-
cessible from any place it existed. If the user wished to see where
the leaf was connected, he or she can simply ask the visualizer for
an “upward” view, which would be presented in a second window,
paired with the first. We avoided an exponential explosion in the

size of the tree by having an internal representation of only a small
part of the tree at any one time.

In a WIT model, as described on a white board, for example,
parts are shown as circles or triangles, for material or capacity parts,
respectively. Operations are shown as squares or rectangles, and de-
mands are shown as diamonds. This is as is shown in Figure 1. We
felt strongly that a first requirement for a WIT Visualizer is to main-
tain these shapes, to reduce the cognitive overhead in understanding
what was being shown. We did this with small icons attached to the
nodes of the tree.

In order to represent the network nature of the WIT model using
a tree, we presented two views of the tree, one looking “down,” and
one looking “up.” This naturally fit with the typical tasks a modeller
is engaged in. For example, one goal may be to determine why a
particular end product is not being built. In order to understand this,
one would drill down from that part to the operations which pro-
duce it. Context menus provide information on which operations
produce this part, and which parts they require. The result was that
it was relatively easy to navigate to find out, for example, that a
particular part required to make the desired end product is in short
supply. Similarly, another task might be to determine the effect of
a shortage of a particular part or capacity. In this case, an “upward”
view is useful in order to determine the cascade of outputs which
depend on this part.

The initial prototype is shown in Figure2, where we are interro-
gating the attributes of the “Peppers,” which are one of the com-
ponents of an operation to “Produce Veggie Omelet,” along with
a skillet and mushrooms, plus the components of a generic “Plain
Omelet” (presumably eggs and butter). BOM arcs, which have at-
tributes of their own, are indicated by the black stick figures corre-
sponding to each part. User reaction was lukewarm, due to the lack
of corresondance to the mental model shown in Figure 1. We thus
decided to revisit the idea of using a network drawing approach,
with modifications as necessary to deal with more complex graphs.

Figure 2: Detail of the initial WIT visualizer prototype. Informa-
tion about a particular entry, in this case “Peppers,” can be accessed
through a right mouse click. Throughout this visualizer, there was
a separation of object attributes, visible via context menus such as
these, and object connections (e.g. parent/child relationships), vis-
ible via the tree hierarchy. The top level of the tree consists of the
“final products” in the model, from a cheese omelet (Chs Omelet) to
a ham and egg sandwich (HamEgg Sand). Not shown is the second,
paired, window to the right of this one, which allowed the user to
navigate “upward” (showing the outputs) of any selected item in this
view.



We turned to an approach of using the Draw2D/GEF (Graphical
Editing Framework) algortithms which are part of the Eclipse open
development platform ([21], [20]).

For small models (which is often how the modeling process be-
gins, with the understanding that the models are being developed
programmatically, and thus are not necessarily always large) we
recognized that we could begin by loading and drawing the entire
model. The Draw2D layout algorithm creates a given sources and
targets.

Some details that needed to be customized to match the WIT
paradigm are that in WIT, sources are typically drawn at the bot-
tom of the figure rather than the top, requiring that we redefine the
interpretation of “source” and “target,” and leading to some com-
plications in dealing with the entrance and exit points of arcs. In
addition, the typical WIT paradigm for drawing substitute arcs re-
quired the addition of invisible nodes to which to attach the arcs.
However, overall, the Draw2D capabilities were well suited to the
WIT models, and in fact the typical Draw2D layouts were eerily
similar to what one would draw by hand. A typical small model is
shown in Figure 3.

We build our graph as an instance of the class DirectedGraph in
Draw2D, and apply a correponding layout algorithm to it. This al-
gorithm lays out the nodes such that, as much as possible, source
nodes appear above target nodes and edge crossings are minimized.
Because the algorithm requires the graph to be fully connected (a
requirement not shared by legal WIT models), we added invisi-
ble nodes and edges to complete the graph. All non-product parts
(those not produced by any operation) are joined to one invisible
node, and all operations with no BOM entries are joined to an-
other invisible node. These two invisible nodes were then joined.
Finally all demands are joined to another invisible node. The in-
visible nodes also had the desirable effect of pulling all demands
toward the top and pulling all raw materials and BOM-entry-less
operations toward the bottom of the graph.

One big advantage of this layout algorithm, over, for example, a
force directed algorithm (which is commonly used to lay out net-
works) [5] is that it preserves the directed nature of a wit model:
raw materials flow upward toward final products. While a force-
directed approach could certainly attach arrows to indicate flow,
the overall pattern of increasing complexity as parts are combined
to make other parts would be difficult to perceive.

Figure 3 illustrates some of the characteristics and capabilities
of the WitViz Visualizer. Context information pops up on a “mouse
hover,” in this case over with the mouse over an “operation” part,
whose name might in some cases be too long to appear on the label.
Each type of object is drawn with a graphical indication of its type:
squares for operations, triangles for capacity parts, circles for ma-
terial parts, and diamonds for demands (not shown in this figure).
Colors are chosen to be distinct; red for operations, green for both
capacity and material parts (which are more similar in a WIT model
than they are different), and blue for demands. This particular WIT
model contains a feedback loop near the bottom right of the im-
age. In addition, this model has multiple BOM (Bill of Material)
arcs from each “working” capacity to each engagement operation
(near the top of the figure). (This particular model is modeling the
assignment human resources to service engagements; an indication
of the variety of application areas for which WIT is used). Multiple
BOM or BOP arcs can occur in a multi-period problem, where a
particular operation requires inputs over a span of time, rather than
just one period, to complete its production. In this case it models
a multi-month engagement which requires skilled personnel over
a three-month period. It is possible that the quantities or other at-
tributes can vary over those periods.

A design decision needed to be made as to how to handle such
multiple arcs between the same two nodes. Our first approach
was to avoid drawing multiple arcs between nodes, simply drawing

Figure 3: A typical small WIT model. Operations are indicated
by squares, capacity parts by triangles, material parts by circles, and
demands by diamonds (not shown). A mouse hover displays the full
name of the object under the mouse. Note the multiple BOP arcs
(circled); compare to Figure 4.

a thicker line to represent multiple arcs, to reduce screen clutter.
However, we found that deviating from the conceptual model of the
WIT model in this way was a poor design decision. It is perfectly
possible for different BOM arcs to have different attributes. This
was initially handled by simply listing the attribute information for
all of the arcs represented by a single visual arc, in the “Details”
text box shown in Figure 5. However, it is also possible for differ-
ent BOM arcs between a single operation and part to havedifferent
substitute possibilities. We could think of no good way to show this
graphically, other than by explicitly drawing the individual arcs.

We also found that visually, drawing multiple arcs was a more
faithful representation of the data than a thick line representation,
and in fact a model containing multiple arcs in an unexpected place
was only noted to have multiple arcs once a switch to a multiple-
arc drawing paradigm was made. Figure 4 shows a detail from
earlier version of the visualizer which used a thick line to represent
multiple BOP and BOM arcs. We did not even notice the multiple
arcs connecting the “scrap: r2 operation” to the “scrap: r2 part”
(circled) until we changed to a fanned representation of the arcs, as
in Figure 3.

The full application window is shown in Figure 5. The left
panel shows the full WIT model; the right half shows a “detail”
view of the currently selected object (the pink highlighted “Veggie
Omelet”), in a “Focus + Context” arrangement ([4]). The detail
view shows the selected node, along with all of its children (inputs)
and parents (outputs). This detail view is especially useful for larger
models, where the inputs and outputs to a node may be widely sep-
arated. While the graph layout heuristic attempts to minimize the
distances between connected nodes, this is clearly not always pos-
sible to achieve. Parent and child relationships are shown by darker
blue colors for parents, and lighter blue colors for children. High-
lighting the inputs and outputs in this way helps guide the eye to
the relevant connections at the given moment, mitigating some of
the inherent complexity in the graph. We also see in Figure 5 that
the part “mushrooms” in the vegetable omelet allows several substi-
tutes: eggplant, peanuts, and tofu. The fact that they are substitutes
is indicated by a dotted line. We also see that details about the
highlighted node are shown in the Details text field below the fig-
ure. The division between the “focus” and “context” windows, as



Figure 4: Detail of an earlier version of the WIT visualizer where
multiple BOM and BOP arcs are indicated by a thicker line. The
circled BOP arc(s) were not even noticed to be multiple until they
were drawn separately; compare to Figure 3.

well as been the graph and the details windows, is movable by the
user, thus allowing space to be used optimally. Figure 6 shows the
view with the detail expanded fully.

As the user selects different objects in the “Full Model” view, the
“Model Focus” view is updated to show the family of the current
selected object (parents and children). At any time the user can
also navigate in the detail view by selecting a node and pressing
the “Refocus” button above (arrow symbol). This will cause a new
detail family to be drawn, with the selected node as the new center
of the family. In addition, the main view will be updated to bring the
new focus node into visibility. (Simply clicking on a detail node,
without requesting a “Refocus,” will highlight the node in the main
view and present attribute information about the node selected, but
will not change the viewpoint, to avoid excessive context switching
as a user simply queries information in the Model Focus view.)

We also recognize that, while the full view of the model is valu-
able, there will be times when it is impractical to show the entire
model. In this case we offer the option to build a partial model of
the data. In this case, the full model is read into memory, but the
user is then offered a palette of, for example, parts or operations
from which to choose a focus node. In this mode, the “Full Model”
part of the canvas is not used, and the user navigates either by refo-
cusing on selected objects, using the refocus, or arrow, button or by
returning the part/operation list dialog to choose a new focus. We
note that a searching for a new focus object is also available when
using a full model view, which can be handy for finding a desired
node quickly.

One can also iteratively expand on a node in the detail view
to bring the selected node’s parents and children into the dis-
play (using the expand, or “+” button). Figure 7 shows a
model where an initial focus on the “Ham” material showed
that part being a component in a number of operations, from
Ham Omelet to HamEggSand. A click on the “Expand” button
while HamEggSand is selected results in the expansion of that op-
eration to show all the parts it requires (from ham to egg) as well
as well as what the operation produces (a ham and egg sandwich).
Both the focus and expand options are available via double-click or
right click mouse actions, respectively, for ease of navigation.

In a WIT model, edges have an importance equal to that of nodes,
and carry a variety of attributes. For example, BOM, or Bill of Ma-
terial, arcs may describe the number of items of a particular part
needed by an operation, or the offset between when a part is neces-
sary and the operation is completed. Of course the WIT visualizer
must allow query of these attributes. In much the same way that a
node may be selected, and its parents and children highlighted, an

Figure 7: Iterative expansion of nodes allows exploration of graphs
too large or unweildy to be drawn in full. Here, the neighborhood of
Ham was requested first, then the user expanded the HamEgg Sand
operation, then the HamEgg San part to see further details. This
process can be repeated as many times as desired. Already expanded
nodes are indicated with a darker border.

edge can also be selected, and its family shown. Figure 8 shows
the result of selecting one of the BOM entries to the diner exam-
ple. The source and target are highlighted in blue, analogously to
selecting a node, and information about the BOM arc is displayed
in the text box. In this example, the user has chosen to show all
attributes, but to highlight those attributes which have non-default
values. WIT allows a great deal of flexibility in modeling, with the
result that typically, most attributes are defaulted, and generally the
only “interesting” attributes are those which have been explicitly
set. The user may also choose to show only non-default values.

Figure 8: Result of highlighting a BOM (Bill of Material) arc in the
context window. The source and target of the arc are highlighted
in a way analogous to selecting a node (see Figure 5). The detail
window (not shown here) would also display the local family selected.



Figure 5: The WitViz visualization application window. The focus window (on right) or context window (on left) can be changed in relative
size, or maximized or minimized to optimize screen real estate. Veggie Omelet is the highlighted node, with its parents (outputs) shown in a
darker color and its children (inputs) shown in a lighter color. A similar color scheme is used on the associated arcs. As is standard for WIT
models, flow proceeds upward from initial materials to final products. Details of the attributes of the highlighted node are shown in the lower
text box. The contents of the text box can be personalized by the user, to for example, show only non-default values. One of the inputs of
Veggie Omelet is Mushrooms, which allow substitute values of Eggplant, Peanuts, or Tofu. Substitute BOM entries are indicated by dotted
lines.

Figure 6: Detail view (focus) resulting from the selection of Veggie Omelet in the context view (Figure 5).



5 INTEGRATION OF INFORMATION VISUALIZATION VIEWS

In addition to the graphical representation of the WIT model, we
have also integrated information visualization views. These allow
the user to explore the characteristics of attributes associated with
elements in the WIT model. For example a histogram can be dis-
play the distribution of scrap costs for a part. This might be used
to find outliers (for example, a part with a unreasonably large cost),
or simply to focus on all parts of a price greater than a particular
value. Brushing and linking allows the user to associate highlighted
elements in one view with attributes in another view (such as an ag-
gregate view akin to a pie chart). We used the Opal information
visualization toolkit more completely described in [10]. Figure 9
shows the dialog for these views, where we have brushed in green
all parts with a relatively large scrapping cost. We see the distri-
bution of attributes of the highlighted parts in some of the other
variables in this view, as well as in a complementary “proportional”
view shown below (available on a separate tab of the dialog), which
is particularly well-suited to categorical data. For example, we see
that the highlighted, high-scrap cost parts are more represented in
the second period of the model than in the first. In Figure 10, we
have switched to another tab in the “Part Attributes” dialog which
immediately shows us which parts have been colored; we have also
chosen to highlight those same parts in the network view.

One design decision (though not an irrevocable one), was how
much sophistication in brushing to expose. The Opal toolkit we
are using allows brushing in multiple colors, with either mixed or
partioned colors. We decided that for the current version we would
allow brushing in a single color (green) rather than expose multi-
ple brushing colors. We felt that this would simplify the learning
process for this unfamiliar visualization technique.

6 DISCUSSION

We have implemented a visualization application for WIT supply
chain models using a fairly standard directed graph layout algo-
rithm, combined with a Focus + Context window layout and brush-
ing and linkage in information visualization views. The disadvan-
tage of our graph drawing method is that for very large graphs
(larger than about one hundred nodes), layouts become too com-
plex to easily understand in an overall, global view, and may be
very slow to lay out for graphs with more than several hundred
nodes. In this case the user may switch to a mode of investigat-
ing the local neighborhood around any desired node, and iteratively
expanding the nodes in the view. The big advantage of the presen-
tation we chose is that it closely matches the characteristics of our
users’ mental model of a WIT model. Sources appear low in the
drawing, and targets higher up; substitute arcs are drawn much as
they are in a “white board visualization,” and any attributes may be
easily queried. An earlier representation based loosely on a span-
ning tree approach was disliked by users, who could not relate the
presentation to their mental model.

Of relevance is whether a matrix representation would be appro-
priate to consider in this context. [9] performed a study comparing
user performance using both a traditional “force directed graph”
layout to the same graph represented using a matrix. They found
that for graphs of size larger than approximately 20 nodes, the ma-
trix representation allowed the tasks to be completed more quickly
and with fewer errors. We note that the specific tasks assigned
to the users were of a fairly generic nature (“estimate the number
of nodes,” or “find a particular link,” or “find the most connected
node.”) While we apreciate the difficulty of designing good stud-
ies to measure user performance, we do note that some of these
tasks are better accomplished separately from the graph presenta-
tion. For example, we explicitly compute the number of parts and
operations, and present that information on demand, which seems

Figure 9: Information visualization views of the WIT model part
attributes. Different linked views are presented as tabbed panels,
two of which are visible here. Parts with relatively large values for
scrap cost have been painted green. The “Proportions” view (lower)
indicates that somewhat more of these high cost parts are found in
the second period of the model.

Figure 10: High cost parts are been brushed in the histogram view;
here we see the names of the brushed parts, and we have also re-
quested that the brushed parts be indicated in the graphical repre-
sentation.



preferable to expecting a user to estimate this by eye. Similarly, the
task of searching for a particular node (or link) is aided in our ap-
plication by a search dialog that lists all elements (in a sorted list)
and allows the user to zoom the graph directly to the selected ele-
ment. (We note that in [12], where the authors investigated relative
performance in understanding trees, as opposed to networks, using
various visualization paradigms, that a “search” capability was one
of the crucial elements missing in one of the techniques, causing
much poorer performance on several tasks). The tasks which our
users are engaged in typically relate to interrogating the attributes of
elements, and seeing the relationship between elements; in this case
we argue that having a more direct correspondence between the rep-
resentation and the mental model is critically important. While a
matrix representation would allow users to quickly find a particular
node or link, and interrogate its attributes, moving up or down the
supply chain from there would be highly non-intuitive, as compared
to the same task using our approach. As one user put it, “Basically, I
don’t really understand a WIT problem unless I see a WIT diagram
of it. I don’t know any other way to comprehend the structure of a
WIT problem. In the past, when users of WIT would ask me ques-
tions about WIT’s behavior, I would ask them to provide a WIT data
file of an example of a small problem (or problems) that illustrated
the behavior in question. Sometimes they would also provide a WIT
diagram. But since some of the users are in Japan and communi-
cate with me by e-mail, they often only provide the data file and no
diagram. In this case, historically, I would draw the WIT diagram
myself, based on the data file. Not so easy to do: I can’t predict the
proper layout and of course, there’s no way to be sure that I didn’t
get something wrong or leave something out. With WitViz, I get a
reliably correct and well laid-out diagram very conveniently. This
will be invaluable as time goes on.”

We note that [19] explicitly addressed the problem of represent-
ing a graph that exhibited small world characteristics, using a vari-
ant of a force directed layout along with some distortion-based tech-
niques to expose detail on demand. While an excellent improve-
ment on standard force directed approaches for this class of data,
it does not seem appropriate for our class of data, where a) the
hierarchy, or “upward” flow is important, and b) clusters are not
well-defined, and in any case are not “continuously zoomable” as
they are in the small-world example. We note that our data sets are
unlikely to be “small-world” in character (at least in the strict defi-
nition of the clustering index), if only because parts are never con-
nected to other parts, only to operations, and vice versa. Thus, for
example, an operation’s children will never be directly connected
to one another.

In the future, we would like to incorporate additional function-
ality to allow “debugging” of WIT models. For example, a simula-
tion facility would allow stepping through a heuristic (rules-based)
model time-step by time-step, and priority by priority in order to
see how the rules influence the final result.
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