
RC23588 (W0504-062) April 13, 2005
Computer Science

IBM Research Report

A Stochastic Newton Method for Control of Stream Processing
and Multimedia Systems through Network-Level Actuation

Dimitrios Pendarakis, Jeremy Silber, Laura Wynter
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Stochastic Newton Method for Control of Stream Processing and
Multimedia Systems through Network-level Actuation

Dimitrios Pendarakis, Jeremy Silber, and Laura Wynter

Abstract— We introduce a novel scheme for control of
high performance distributed systems, seeking to achieve
processing (CPU) goals through network controls. This
is particularly valuable when the network becomes a
constrained resource as happens in stream and multimedia
processing systems. Our technique involves the develop-
ment of a highly efficient and non-intrusive stochastic
Newton-type algorithm for simultaneous approximation
and optimization of the processing objective.

I. INTRODUCTION

Large-scale distributed systems, such as stream pro-
cessing and multimedia systems, are extremely data in-
tensive. Successful operation of these systems critically
depends on the ability to meet service level agreements
on application performance. New, effective means for
managing such large and heavily-loaded processing sys-
tems has become an urgent need.

While substantial prior work exists on controlling pro-
cessing and networking resources separately, our work
is novel in that it recognizes the dependencies between
these resources. Rather than develop goals for network
management, and goals for processing management and
treat each through its own control mechanism, we pro-
pose a new, hybrid paradigm for achieving processing
goals through network controls. This is particularly valu-
able when the network becomes a constrained resource.

In addition to the high load imposed on distributed
systems, demands on the networking and processing
resources vary widely across the applications at any
point in time; some are compute-intensive but require
little communication resources, while others are the
opposite. Moreover, the dependency between applica-
tion processing utilization and allocated bandwidth is
not only complex, but subject to random perturbation.
However, knowledge of this dependency is necessary to
efficiently allocate networking resources. Hence, while
interaction between multiple applications cannot be de-
scribed analytically as a function of bandwidth, given
a set of applications and their relative processor priori-

IBM Watson Research Center, Hawthorne, NY, USA,
{dimitris,jeremy.silber,lwynter}@us.ibm.com

ties, we propose to learn the implicit relation between
processor utilization and allocated bandwidth.

The contributions of this work are as follows: (i) we
introduce a very low-cost dynamic learning procedure
to determine the relation between performance and
the communication resources; (ii) we develop a novel
stochastic Newton-type optimization algorithm that ro-
bustly and rapidly drives the system towards a desirable
operating point through bandwidth control. Our algo-
rithm scheme is designed to provide both stability and
adaptability in the presence of incomplete information
or noise.

With respect to relevant literature, the authors in [3],
[4] consider the interaction of traffic with the network
and propose using a simple feedback mechanism based
on local buffer occupancy levels to control the progress
of different processes. Multimedia applications have of-
ten been developed with build-in adaptation mechanisms
to handle network or system congestion. [6] describes
application-level quality adaptation techniques and [7]
presents adaptive mechanisms for real-time applications.
Abeni and Buttazzo in [8] propose a framework for
dynamically allocating CPU resources to tasks whose
execution times are not know apriori. The motivation
for learning the tasks’ CPU requirements is similar to
our work; however the authors consider only the CPU
bandwidth and not that of the network and do not
address the dependency between the two resources.

This paper is organized as follows: in Section II we
present the problem formulation and model. Section
III summarizes the stochastic Newton-type algorithm
that simultaneously learns the complex relation between
processing power, bandwidth allocation and optimizes a
target-level criterion and presents a convergence proof,
and Section IV presents our experimental results.

II. PROBLEM FORMULATION

Consider n applications running on a node, each
corresponding to a process which uses (local) link
bandwidth to send and receive data to and from one or
more remote nodes. We make the following assumption.

Assumption 1: [Pseudo-Stationarity] The set of ap-
plications, i = 1 . . . n remains constant throughout a
time epoch of given length, where the length exceeds
the convergence period of the algorithm.

In other words, the behavior of the stochastic system has
some minimal degree of stationarity, enough to allow our
algorithm to learn the application resource requirements
and drive the sytem to the target operating point.

While our method can be applied to any system
management goal, we will focus on the goal of achieving
a set of desired processing capacity (CPU) allocations
among different applications. This goal is akin to what
workload managers or load balancers try to achieve
in distributed systems. Specificically, we assume a set
of desired processing capacity (CPU) allocations, for
n processes, c1, c2, . . . , cn, is provided; ci denotes the
percentage of processing resources allocated to process
i. For an allocation to be feasible,

∑

i=1...n ci ≤ 1;
however, it is not necessary to impose this condition ex-
plicitly, as the actual CPU utilization levels are observed
variables, rather than explicitly controlled; hence, the
condition is always satisfied. We assume for the target
CPU levels the following:

Assumption 2: The input target CPU levels, ti, i =
1 . . . n, satisfy

∑

i=1...n ti ≤ 1.

Each of the n applications (processes) has an as-
sociated bandwidth allocation percentage, denoted by
b1, b2, . . . , bn, where bi denotes the percentage of (local)
network bandwidth allocated to process i. Naturally,
∑

i=1...n bi ≤ 1. In general, CPU utilization of any
process, i is a complex function of the bandwidths,
b ∈ <n, allocated to all processes, ci : <n

+ 7→ <+, which
depends on overall system load, number of concurrent
processes and their interactions, memory allocation,
choice of network transport protocol, etc.

If the relation of an application’s CPU usage to its
allocated bandwidth were known, our optimization task
would be relatively straightforward: we could then seek
to allocate the bandwidth vector, b, that minimizes some
norm of the CPU percentages and the target. In practice,
however, the relation of CPU utilization to bandwidth is
not a known and deterministic mapping.

The main goal and contribution of our work is the
joint learning and optimization of a function of this
mapping. We define the problem as one in which the
CPU-bandwidth relation is initially some (simple) a pri-
ori approximation. Through our adaptive algorithm, the
CPU-bandwidth relation is updated iteratively, thereby
learning the shape of this surface as a function of the

Bandwidth of Apps 1 and 2 vs. CPU Usage of App. 2

 0
 2

 4
 6

 8
 10Bandwidth of App. 1(Mb/s) 0

 20
 40

 60
 80

 100

Bandwidth of App. 2 (Mb/s)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

CPU use of App. 2 (%)

Fig. 1. Observed relation between bandwidth allocated to two
different applications running concurrently and the CPU usage of one
of the applications.

control variable, the bandwidth allocation vector, b.

1

2
E

[

∑

i=1...n

[ti − ci(b)]
2

]

=
1

2
E‖t − c(b)‖2. (1)

where, as before, the target CPU levels for each appli-
cation i are ti, i = 1, . . . n.

Note that each step in the algorithm’s operation will
involve assigning a new bandwidth each application.
This procedure causes perturbation and, as such, the
number of iterations should be minimized. In addition,
the CPU-bandwidth relation is not deterministic; rather it
includes many sources of randomness including transient
queueing effects associated and variations of an applica-
tion’s CPU utilization due to application state changes
as well as random changes in (wide-area) network state.

Figure 1 illustrates the CPU utilization surface of
one application as the bandwidth allocations for two
applications running jointly on a node are increased. The
piecewise-linear form of the curve is due to the sampling
granularity in bandwidth space of the data. However,
notice that the mapping C1 is increasing individually in
each variables, b1 and b2.

We shall optimize a distance criterion such as (1).
We refer now to the stochastic, learned function of CPU
usage, C(b). The mathematical definition of the learnt
CPU usage function will evolve at each iteration, j, of
our algorithm. That is, for each i = 1 . . . n,

Cj
i (bi) = ci(bi) + εj

i (2)

where we assume that the εj
i are i.i.d. random variables,

and where the sequence of functions {Cj
i (bi)} converges

to ci(bi) for all i = 1, . . . n as j → ∞. Further, let C̄i(bi)

be an empirical expectation of the CPU utilization for
application i; that is,

C̄i(bi) ∼ ci(bi).

At each iteration, j, we shall seek to minimize

E[f j(b)] =
1

2
E

∑

i=1...n

(ti − Cj
i (bi))

2

=
1

2
E‖t − Cj(b)‖2

=
1

2
‖t − C̄j(b)‖2. (3)

The function (3) must be optimized subject to constraints
on the control variable, b. That is, we impose the
following set of polyhedral constraints:

b ∈ B := {b |
∑

i=1...n

bi ≤ 1, bi ≥ 0, i = 1 . . . n}. (4)

The model defined by (3)–(4) is a stochastic, nonlinear
program with polyhedral constraints. As we shall see in
the next section, it is globally non-differentiable, due to
the construction of the adaptive mapping, C̄, but using
our approach, the non-differentiability does not hinder
the optimization procedure.

III. ADAPTIVE OPTIMIZATION AND APPROXIMATION

ALGORITHM

The objective of the algorithm is as follows: given
a target CPU allocation vector, starting from an initial
bandwidth allocation vector b1, b2, . . . bn, dynamically
adjust the bandwidth allocations in such a way that the
n applications consume the target amount of processing
capacity. The solution we propose is thus to adaptively
construct a learnt model of the {C(b)} mapping. Over
this evolving set of surfaces, our algorithm searches for
the optimal operating point, given by the minimization
of the Euclidean distance to the target operating point
(3).

A. Adaptive model of the CPU utilization mapping, C

As shown in Figure 1, the CPU utilization surface
exhibits some regularity, in spite of its complexity. In
particular, we observe that Ci(b) increases in bi. The
learning procedure is based on improving piecewise-
linear approximations of each mapping, Cj

i , at each
iteration, where j is the iteration number. Specifically,
at iteration j, Cj

i is given by:

Cj
i (bi) =

αq(j−1)+1bi + γq(j−1)+1, 0 ≤ bi ≤ b
q(j−1)+1
i

αq(j−1)+2bi + γq(j−1)+2, b
q(j−1)+1
i ≤ bi ≤ b

q(j−1)+2
i

...

αq(j)bi + γq(j), b
q(j)
i ≤ bi ≤ 1,

where q(j) is an iteration-dependent index, defined as
follows:

q(j) =

j
∑

i=1

i. (5)

Hence, in iteration j = 1, the function C1
i (bi) has only

one slope, α1
i . In iteration j = 2, there are two pieces,

each potentially different from α1
i , so that the pieces

are numbered 1 + q(1) to q(2) which, from (5), gives
2 to 3. Similarly, using (5), the pieces at iteration 3 are
numbered 4 to 6, and so on.

For the system under consideration, the optimization
problem (3) exhibits the following properties.

Proposition 1: The processing power function,
Cj

i (bi) is piecewise linear, continuous, and
nondifferentiable in bi.
Proof: The mapping Cj(b) is constructed iteratively. At
the first iteration, Cj

i (bi) is a line passing through (0, 0)
and, possibly, the point (1, 1), for each i = 1, . . . n.
In each iteration, when a new bandwidth point is deter-
mined, the resulting CPU utilization is measured and the
slopes on either side of each Cj

i updated to insert the
new point, i.e., the mapping, Cj

i will have j linear pieces
at iteration j. Consequently, each Cj

i is continuous and
piecewise-linear in bi, its argument. Nondifferentiability
follows from the piecewise-linearity.

We have described the CPU utilization function, Cj
i ,

in terms of a scalar argument, bi, only. Although there
are clearly cross effects, i.e., Ci indirectly depends
on bj , j 6= i, as mentioned previously, the algorithm
treats the problem as if the functions were separable
across applications, i and cross effects are dealt with as
stochastic variations.

We shall make the following assumption for the sake
of convergence of the algorithm, an assumption that has
been empirically justified, e.g. in Figure 1.

Assumption 3: [Monotonicity of each Cj
i (bi)] As-

sume that the mapping Cj
i : <n

+ 7→ <+ is increasing
in its argument, bi. for all bi ∈ B, i = 1 . . . n.

Typically, a CPU utilization Ci increases in bi, but
decreases in bk, for k = 1, . . . n, k 6= i. Cross derivatives
are not used in our algorithm, though as CPU utilizations
cannot exceed 1, they are implicitly present.

Remark 1: [Singularity of the Hessian of f] Due to
the presence of the simplex constraint on the bandwidth
vector,

∑

i=1,...n bi = 1, the Hessian of the objective
function is of rank n − 1, since the nth term of the
gradient, expressed as f(1−

∑

i=1,...n−1), is 0. To avoid
singularity of the Hessian, it is sufficient to redefine the
problem in a reduced space, of n − 1 applications, the
nth application bandwidth thus being derivable from the
remaining n − 1.

B. Steps of the stochastic Newton-type simultaneous
approximation and optimization algorithm

Our approach is to replace the unknown CPU uti-
lization function with a linear, separable approximation
of it. Let C̄i(bi) be a smoothed estimate of the CPU
utilization for application i; that is,

C̄i(bi) =
1

m

m
∑

l=1

Ci(bi, ε), (6)

for some number m of observations. We make use
of multiple observations of the CPU utilization at a
single bandwidth level to obtain an estimate of the
expectation of the subgradient of C, ζ, with minimal
system perturbation.

1) Initialization. Let the number of applications be n
and the target CPU values be referred to by the
n−vector, t. Set iteration counter, j = 1. Set initial
bandwidth vector to a given starting point b0

i or set
to b0

i = 1/n for every i = 1, ..n if no intial point is
provided. Define the initial values C̄0

i (LB(i)) = 0
and C̄0

i (UB(i)) = 1, for all i = 1, ..n.
2) Main loop. While the stopping criterion has not

been reached, repeat:

a) Sample the CPU usage of each process i
with the current bandwidth vector b. For each
process i = 1, ..n, set C̄i(bi) to the smoothed
CPU usage of process i.

b) For each i = 1, ..n, if C̄j
i (bj

i)) > ti then set
UB(i)=j. Conversely, if C̄j

i (bj
i)) < ti then set

LB(i)=j.
c) Direction finding. Determine the search di-

rection, gj(b) such that gj(b) = (cj(bj) −
t) ∗ ζj = (cj(bj) − t) ∗ mj where m is
the vector of slopes of the piecewise-linear
function c(b), evaluated in the direction to-
wards the target value, t; i.e., if, for appli-
cation i, the current iteration counter j is
the upper bound, then mj

i is the gradient

of the segment between point C̄j
i (bj) and

C̄
LB(i)
i (bLB(i)) That is mj

i = α`
i for some

active piece `. Conversely, if j= LB(i), then
mj

i is the gradient of the segment between
point C̄j

i (bj) and C̄
UB(i)
i (bUB(i)).

d) Newton step. The Newton step is given by
the (sub)-gradient scaled by the norm of the
Hessian. Since we assume our objective to be
seaparable, the norm of the Hessian is given,
for each application i, by the second deriva-
tive of the objective function f j(b) evaluated
at the active piece. hence, the Newton direc-
tion is given by Ni(b

j) = (1/mj)2gj
i (b

j
i) =

(cj(bj) − t)/mj

e) Step size. Use a divergent-series step, sj =
γ/(j + 1), for some scalar constant, γ.

f) Update. Set bj+1 = bj − gj(b) ∗ sj , and set
j = j + 1.

A list of some or all (bj
i , C̄i(b

j
i)) pairs may be kept in

a sorted list for each i = 1, ..n. This makes it possible to
quickly look up a bandwidth allocation bi and estimated
local slope mi when a target ti changes.

Figure 2 illustrates the steps of the algorithm. In the
first step, the initial bandwidth value b0 is set, and the
CPU is measured as C0. The upper bound (UB) is
updated to be the current point, and a new bandwidth
b1 is chosen as the intersection of the target CPU level
and the estimated function. In the second step, the CPU
usage with bandwidth b1 allocated is measured (C1) and
again is above the target, so the upper bound is set to
the new point, and a new bandwidth b2 is chosen. In the
third step, we find that bandwidth allocation b2 leads to a
measured CPU usage C2 below the target. The new point
thus becomes the new lower bound (LB), and the next
bandwidth allocation b3 is chosen as the intersection of
the target CPU line and the line between LB and UB. In
the actual algorithm, this movement is moderated by a
divergent-series step, which dampens the perturbations.
The use of a Newton-type step as a search direction
speeds up considerably convergence of the algorithm.

Proposition 2: Let

ζj
i (bi) = E[ξj

i], (7)

where ξj
i is the ith component of a stochastic quasi-

gradient of the CPU utilization mapping at iteration j.
Then, ζj

i (bi) = C̄ ′(b) is a smoothed estimate of the
stochastic quasi-gradient of Cj(b) at iteration j.

Fig. 2. Illustration of the steps of the algorithm.

Proof: Let the current iterate, bj
i for application i and

iteration j be such that C(bj
i) > ti. Then, an estimate

of the expectation of a subgradient of C is, for some
number m samples,

ζi =
1

m

m
∑

l=1

ξj
i (bi, ε), (8)

=
1

m

[

m
∑

l=1

Cl,j
i − LBj

bl,j
i − bj(LB)

]

, (9)

=
C̄j

i − LBj

bj
i − bj(LB)

, (10)

= (C̄j
i)′(bj

i) (11)

where the second line comes from the definition of the
subgradient of the piecewise-linear function Ci on the
active segment, LB indicating the lower bound of the
active segment. The last line follows from the fact that
the samples are taken at the same bandwidth, hence
bl,j
i = bj

i for all l = 1, . . . k.

Under Assumption 3, we have the following property
of the algorithm.

Proposition 3: If for any iteration, j, the stochastic
quasi-gradient vector, gj = 0, then the current iterate,
bj is a solution to optimization problem (3).

By construction, we have that, for each i = 1 . . . n,
at every iteration, j,

Cj
i (LBj

i) ≤ ti ≤ Cj
i (UBj

i). (12)

In addition, due to the definition of the constraint set B,
we have that

LBi ≤ bi ≤ UBi, (13)

for every i = 1 . . . n. Under Assumption 3, the slopes of
the piecewise CPU utilization mapping, (Cj

i)′(bj)+ ≥ 0
and (Cj

i)′(bj)− ≥ 0. Hence, if, at some iteration j, for
every i = 1 . . . n,

gj
i = 0, (14)

(ti − Cj
i (bj))mj

i = 0, (15)

then either ti − Cj
i (bj), i = 1 . . . n, in which case

the target has been reached, or mj
i = 0, i = 1 . . . n.

In the latter, there are two cases, (i.) Cj
i (bj

i) ≤ ti ≤
Cj

i (UBj
i) or (ii.) Cj

i (LBj
i) ≤ ti ≤ Cj

i (bi
j). In case (i.)

if mj
i = 0, then Cj

i (UBj
i) = Cj

i (bj). Under Assumption
3, Cj

i (UBj
i) = ti = Cj

i (bj), and analogously in case 2,
which completes the proof.

The following assumptions are needed to prove con-
vergence of the algorithm.

Assumption 4: The set of stochastic quasi-gradients,
at any iteration j, {g(bj , ε)} is bounded. That is, for all
j, ε, ‖g(bj , ε)‖ ≤ ξ, for some constant ξ > 0.

Assumption 4 holds when the feasible region, B is
compact. See proposition B.24 in [1]. Hence, in our
problem setting, Assumption 4 is always satisfied.

Assumption 5: [Functional convergence of approx-
imation] The sequence of learnt functions, f j(b) →
f(b) uniformly over B.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

C
P

U
 U

sa
ge

 (
P

er
ce

nt
)

Iteration

Algorithm Convergence to CPU Targets

Application 1
Application 2
Application 3
Application 4

Fig. 3. CPU usage (top) and bandwidth usage (bottom) of four
applications. Convergence in the control variable (Bandwidth) is very
rapid. The CPU measure exhibits natural random variation as the
application is running.

Under Assumptions 4 and 5, we are able to prove
the convergence of the algorithm to the set of optimal
solutions of the original problem. In the convergence
proof, we do not make use of the Newton-type search
direction but rather a first-order subgradient direction,
i.e., without scaling by the norm of the Hessian.

Theorem 1: [Convergence of the algorithm to opti-
mal solution] Suppose that Assumptions 4 and 5 hold.
By proposition 1, Cj

i are continuous for all i = 1, . . . n.
Suppose further that f(b) and the learnt functions, f j(b),
for all iterations j, are convex. Then, f j(bj) → f(b∗) =
min{f(b) : b ∈ B}.

Proof: The feasible set, B, is convex and compact by
contruction. The successive bandwidth vectors, bj are
given by the iteration bj+1 = ΠB [bj − sjgj(ζj , bj)],
where gj(ζj , bj) is the expected subgradient of the
objective function, f j(bj), and the steps sj satisfy
∑

j=1,...∞ sj = ∞,
∑

j=1,...∞(sj)2 < ∞. Hence,
according to [2], the iterations of the simultaneous
stochastic optimization and approximation procedure
converge to the optimal solution value of the original
problem.

IV. EXPERIMENTAL RESULTS

In order to produce a realistic testing environment,
we experimented with a set of common stream process-
ing applications that exhibit different CPU-bandwidth
utilization functions, such as cryptographic, multimedia
and text searching applications.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40

N
or

m
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

Iteration

Normed Mean Squared Error

4 Applications
8 Applications

10 Applications
12 Applications
16 Applications

Fig. 4. Iteration vs Error (normalized sum of squared distances
from target value) for controllers managing 4, 8, 10, 12, and 16
simultaneous processes.

From Figure IV it is clear that, in the four-application
instance, the control variable converges very rapidly.
After some vaccilation around the target values, the CPU
usage of each process settles in close to the target. CPU
utilization for all four applications converges to within
5% of the targets in only three iterations, and stays
within that range for the remainder of the experiment.
Each iteration takes on the order of 2-5 seconds; hence
overall convergence of the algorithm takes, in the case
of 4 applications on the node, less than 15 seconds.

Figure IV shows the effect of increasing the number
of processes under management on the convergence of
the processes to their targets. Increasing the number of
applications being controlled increases both the time
required to reach convergence and the error measured
when that convegence is achieved, although both criteria
remain well within the range of acceptable for such
a system. Indeed, convergence even for a relatively
heavily-loaded node takes less than 1 minute. Typical
nodes would run somewhere between these numbers of
applications simultaneously, and convergence between
15 and 60 seconds allows for real-time use of this
method in most instances.

In summary, the paradigm of using network filters
as control variables in stream processing and multi-
media systems was proven to be remarkably effective
and accurate, in that we obtain convergence of CPU
levels to within 5% of their targets, despite minimal
fluctuations around those values and natural randomness
in both measurements and CPU requirements of real ap-
plications. At the same time, the control/approximation
algorithm which we have developed converged rapidly

enough to operate this level of control in a real-time
stream processing or multimedia system.

REFERENCES

[1] Bertsekas, D. Nonlinear Programming, Athena Scientific, Bel-
mont, MA, USA, 1998.

[2] Ermoliev, Y. “Stochastic quasi-gradient methods”, Chapter 6 of
Numerical Techiniques for Stochastic Optimization, Y. Ermoliev
and R. J-B. Wets, Eds., Springer-Verlag, Berlin, 1988.

[3] Ashvin Goel, Molly H. Shor, Jonathan Walpole, David C. Steere,
Calton Pu, ”‘Using Feedback Control for a Network and CPU
Resource Management Application”’, In Proceedings of the 2001
American Control Conference, Alexandria, Virginia, June 2001.

[4] David Steere, Molly H. Shor, Ashvin Goel, Jonathan Walpole,
Calton Pu, ”‘Control and modeling issues in computer operating
systems: resource management for real-rate computer applica-
tions”’, In Proceedings of 39th IEEE Conference on Decision
and Control (CDC2000), Sydney, Australia, December 2000.

[5] Jiani Guo, Laxmi N. Bhuyan, ”‘Load Sharing in a Transcoding
Cluster”’, In Proceedings of IWDC, pp. 330-339, 2003.

[6] A. Fox, ”‘Adapting to Network and Client Variability via On-
Demand Dynamic Distillation”’, in Proceedings of Seventh Intl.
Conf. on Arch. Support for Programming Languages and Oper-
ating Systems (ASPLOS-VII), Cambridge, MA, 1996.

[7] D. Rosu, K. Schwan, S. Yalamanchili, R. Jha, ”‘On adap-
tive resource allocation for complex real-time applications”’, in
Proceedings of the 18th IEEE Real-Time Systems Symposium
(RTSS ’97), December 1997.

[8] Luca Abeni, Giorgio C. Buttazzo, ”‘Adaptive Bandwidth Reser-
vation for Multimedia Computing”’, in Proceedings of 6th In-
ternational Conference on Real-Time and Embedded Computing
Systems and Applications (RTCSA), 1999.

