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Abstract 
In this paper, we first present a linear programming 

based approach for modeling and solving the resource 
matching problem in grid environments with 
heterogeneous resources. The resource matching problem 
described here takes into account resource sharing, job 
priorities, dependencies on multiple resource types, and 
resource specific policies. We then propose a web service 
style architecture for on-line matching of independent jobs 
with resources in a grid environment and describe a 
prototype implementation.  Our preliminary performance 
results indicate that the linear programming based 
approach for resource matching is efficient in speed and 
accuracy and can keep up with high job arrival rates – an 
important criterion for on-line resource matching systems. 
Also, the web service style architecture makes the system 
scalable and extendable. It can also be integrated with 
other existing grid services in a straightforward manner.       

1. Introduction 
As grid environments become more popular, the size 

and the diversity in terms of resources and jobs are 
increasing as well. By their nature, individual resources 
are not under central control and they can enter and leave 
the grid system at any time. Similarly, job arrivals and job 
mix are much less predictable than in a dedicated parallel 
or cluster environment. Because of this, dynamically 
matching jobs with available resources plays an important 
role in the management of a grid environment. The 
resource matching mechanism must take into account 
dynamically changing conditions – both in terms of 
demand on resources and available supply of resource 
capacity. It must also accommodate resource specific and 
system wide policies. 

In this paper, we consider the resource matching 
problem arising in grid environments where jobs require 
multiple heterogeneous resources and system managers 
expect resource sharing, load balancing, high resource 
utilization and/or  throughput. The problem of matching 

independent jobs to heterogeneous resources is known to 
be NP-complete, if maximizing throughput is the 
optimization criteria [4]. Other optimization criteria such 
as load balancing, maximizing utilization, or minimizing 
resource cost also give rise to the same level of difficulty. 
While the problem is hard, for grid environments, fast 
efficient on-line resource matching algorithms that can 
quickly adapt to changes in the system are highly desirable. 
In this paper, we discuss a class of such algorithms that are 
well suited for this type of environment.  

The contributions of this paper are as follows. We 
describe a novel approach to model the resource matching 
problem applicable to a grid environment consisting of 
heterogeneous resources. Using our approach, we can 
handle a rich class of job resource requirements, resource 
preferences or affinities, job priorities, capacity constraints, 
resource sharing, and a class of resource specific policies. 
Our approach allows resource sharing in the presence of 
on-line and asynchronous job arrivals. A second 
contribution of this paper is the architecture and a 
prototype implementation of a resource matching and 
allocation system suitable for large-scale grid 
environments. 

We model resource matching as an Integer-
Programming (IP) problem and apply integer-
programming techniques to solve the resulting 
optimization problem. Previous work [12, 13] illustrates 
the benefits of using IP techniques to solve job-scheduling 
problems on dedicated resources of a single type (such as 
compute resources). However, grid environments present 
some unique challenges. These include: 

• Resources in a grid environment are often shared 
among multiple concurrent jobs. Thus, instead of 
matching just one job with multiple resources all 
dedicated to run the job as in [8], general grid 
resource matching mechanisms must be able to 
match multiple jobs to a single resource, provided 
the resource has enough capacity to handle the 
matched jobs simultaneously. On the other hand, 
resource matching must take into account resource 
usage by each matched job so the capacity 
consumed by the matched jobs does not to exceed 



 

the total resource capacity. We call this the 
resource capacity-constraint rule. 

• A grid job usually needs multiple types of 
resources to run. A match is successful only if all 
required resources meeting the minimum capacity 
constraints are found. The match is unsuccessful 
even if a single resource cannot satisfy one of the 
constraints. Thus, a resource matcher should return 
either all required resources or none. We define 
this requirement as the gang matching constraint. 

• Jobs may arrive continuously and compete for 
resources. Instead of matching jobs one by one to 
resources, we need to consider a batch of jobs, 
their requirements and provide a globally optimal 
matching scheme. For example, if resources are not 
enough to satisfy all jobs, we may want to match as 
many jobs as possible and give advantage to high 
priority jobs, or if the usage of multiple resources 
results in higher cost, it may be more desirable to 
match jobs with as few resources as possible. We 
call the metric used to measure the quality of a 
matching scheme as the business-value objective 
function. The matching process needs to 
maximize/minimize the objective function to 
achieve a globally optimal matching, in an on 
going continuous manner. 

• In a grid environment jobs arrive and depart 
asynchronously. Thus, the degree of capacity 
sharing on a given resource varies continuously 
and it is not the same across multiple resources. 
Modeling the resource capacity constraints is more 
difficult because of the asynchronous resource 
sharing among multiple jobs. 

• Jobs and resources in a grid are heterogeneous. 
Grid enables aggregation of different types of 
resources; e.g., a grid system may consist of 
compute servers, network resources, storage 
resources, application servers, etc. Similarly, a grid 
job may require more than one type of resource 
and these requirements vary from job to job. 
Because of this, typical approaches based on 
greedy algorithms do not work well. IP techniques 
provide means for expressing the global 
abstractions succinctly. However, modeling the 
resource-matching problem as an IP problem is 
much more challenging because of the 
heterogeneity across jobs and resources. 

In the following sections, we describe how we handle 
these challenges. In Section 2, we discuss the scope of 
resource matching problem considered in this paper and its 
practical significance. In Section 3, we describe our 
approach to model the resource matching problem as a 
mixed integer linear program (MILP). In Section 4, we 
describe an architecture for on-line resource matching for 
jobs in a heterogeneous grid environment. We discuss a 

proof-of-concept implementation of a prototype and the 
preliminary performance results in Section 5. We discuss 
the related work in Section 6 and conclude the paper in 
Section 7. 

2. Problem statement 
In this paper, we consider the problem of matching jobs 

with available resources taking into account job resource 
requirements, job specific resource preferences, job 
priorities, resource capacities, resource specific policies, 
and system wide global objectives. 

 The workload considered here consists of a set of 
independent jobs with jobs arriving with some unknown 
arrival pattern. A job consists of a request, an executable, 
and some input data (or references to these). The request 
specifies the requirements and preferences to run the job. 
For simplicity, in this paper, a job means both the request 
and the actual executable. Priority is assigned to a job, 
when it enters the system. 

Resource types are defined to classify all the resources 
in the system. Some common examples of resources types 
are computer system, network subsystem, file system, 
application, and database system. Each resource type is 
associated with one or more attributes with specific values. 
Examples of attributes of a computer system are CPU 
architecture, total and available memory, maximum and 
current degree of multi-programming, and so on. Thus, 
each resource instance in the system has a resource type 
and has specific values for the attributes of that resource 
type. Some attribute values are invariants while others 
change their values as jobs are run using the resource. In 
addition to attributes, a resource may also be associated 
with policies specifying preferences and usage permissions 
by job class. The policies can be dynamic as a function of 
time and/or jobs running on that resource. In this paper, 
we permit resource sharing by multiple jobs to the extent it 
is possible with the existing resource capacity and current 
policy associated with the resource.  

The job requirements consist of a set of dependencies 
and constraints associated with each dependency. Each 
requirement is a dependency on a resource instance of a 
particular resource type. By associating constraints with 
each dependency, a job may specify the minimum criteria 
for selecting a resource instance of a particular resource 
type. For example, a request with a dependency on a 
computer system may specify minimum 400 MB available 
memory as a constraint. For the jobs considered in this 
paper, we restrict one dependency per resource type, but 
we do not have any restrictions on the number of different 
resource types a job may depend upon or the number of 
constraints a job may specify per resource type, as long as 
the constraints are independent. 

In addition to the hard constraints for selecting 
resources, a job may also specify resource preferences 



 

among the qualifying resource instances. For example, a 
job may request a computer system with minimum 400 
MB available memory and preference to the one with the 
highest CPU speed. 

Finally, system administrators may want to enforce 
some global objectives to achieve certain business goals. 
Some examples of global objectives are maximizing 
resource utilization using the smallest number of resources, 
maximizing throughput, allocating best resources to high 
priority jobs, balancing load among fixed number of 
resources, and so on.   
In summary, in this paper, we are addressing a general 
resource-matching problem, which we define as the 
process of systematically selecting resources while 
conforming to job and resource specific requirements and 
constraints as well as optimizing site-wide objectives. 
However, there are some restrictions:  (1) the workload 
considered here consists of independent jobs. Each job has 
at most one dependency per resource type. (2) Jobs are 
treated as non-preemptive. (3) Also not considered here is 
the issue of fairness. Even if necessary resources are 
available, the resource matcher may not match the 
resources with a job, but instead it may match the 
resources with one or more other jobs. This may repeat 
indefinitely depending on the workload and resource 
availability. We have extended our work to take into 
account jobs requiring multiple instances of a single type 
of resource and the problem of avoiding job starvation. We 
discuss this work elsewhere. 

3. Resource matching as an IP problem 
Integer programming is a technique for solving certain 

kinds of problems: maximizing the value of an objective 
function subject to constraints, where the objective 
function and constraints are all linear expressions. In the 
following, we describe models based on mixed-integer 
programming techniques and discuss how these models 
can be used to overcome the grid specific challenges, 
discussed in the introductory section, in solving the 
resource matching problem.   

3.1. Basic model 
An IP model includes input parameters, variables, a set 

of constraints on the value of variables, and an objective 
function. The goal of the model is to find values for every 
variable such that all constraints are satisfied and the value 
of the objective function is maximized/minimized. 

Figure 1 describes our basic model for the resource 
matching problem. Given a set of jobs and resources, this 
model finds a best feasible match between the given set of 
jobs and resource.  

Input parameters:   
1. J is the set of jobs to be matched. 
2. R is the set of resources available. 
3. Pj is the priority of job j, for each j ∈  J. 
4. N(r, t) is the capacity of type t for resource r,  r ∈  R. 

A resource may be associated with multiple types 
of resource capacities.  

5. U(j, t) is the amount of resource capacity of type t 
consumed by job j, for each j ∈  J. 

Output variables: 
6. X(j, r) is 0/1 variable, for each resource r ∈  R and 

job j ∈  J. X(j, r) is equal to 1 if job j is matched to 
resource r, and is equal to 0 otherwise.  

7. Zj is 0/1 variable, for each job j ∈  J. Zj is equal to 
1 if job j is matched to its required resources, and 
is equal to 0 otherwise. 

Maximize/Minimize: 
8. An objective function such as the number of 

matched jobs.  

Subject to:   
9. Resource capacity constraints on resource r, for 

each r ∈  R 
10. Gang matching constraints on job j, for each j ∈  J   
11. Jobs’ requirements on satisfying resources. 

Figure 1. Basic model for resource matching 

More specifically, we describe a job j by its priority 
(line 3) and the amount of resource capacity it is going to 
consume (line 5). We describe every resource r by its 
available capacity (line 4). A resource may have multiple 
capacity limitations, for example, a machine may allow at 
most 6 jobs to run at the same time and provide at most 1 
GBytes memory in total. Thus, we describe resource 
capacity of resource r by N(r, t) where t indicates the type of 
capacity. In the same way, we describe the resource 
consumption of a job j by U(j, t). 

We define a set of variables to represent a matching 
scheme in lines 6-7. The value of variable X(j, r) indicates if 
a job j is matched to a resource r, and the value of Zj 
indicates if a job j is matched to required resources. The 
search for a matching scheme is converted to the search 
for feasible variable values such that the objective function 
is maximized or minimized. 

Constraints in line 9-11 define a feasible matching 
scheme. Because there may exist multiple feasible 
matching solutions, we use the objective function in line 8 
to measure the quality of a scheme.  

The model in Figure 1 can be used to represent a wide 
range of grid resource matching problems. If we 
instantiate the values of job and resource parameters, this 
model becomes a particular resource-matching problem. In 
order to solve it using IP techniques, we need to formalize 



 

the basic model in Figure 1 by linear expressions and 
constraints.    

3.2. Dependency initialization 
To run successfully, a job may require multiple 

resources each with particular characteristics and capacity. 
We refer to the job requirement on a resource type as a 
dependency. Thus, a job may have multiple dependencies.  

Many resources may satisfy the requirements of a 
dependency. We define these resources as equivalence set 
for this dependency. For convenience, we represent the 
equivalence set for dependency d of job j as E(j, d). 
Resources in an equivalence set are feasible resources and 
are candidate matches for that resource type.  

As the first step of the IP modeling, we classify 
available resources into equivalence sets based on job 
requirements. However, we cannot pick a random resource 
and assign it to this job because we also need to satisfy the 
gang match constraints (described in Section 3.3) and 
resource capacity constraints (described in Section 3.4) for 
a batch of jobs, and find a globally optimal solution 
(described in Section 3.5). 

3.3. Gang matching constraints 
Gang match constraints ensure that, for a job requiring 

multiple resources, we match all required resources to this 
job, or none. We formalize the gang match constraint for 
each job j as a set of linear equations: 

j
Er

rj ZX
dj

=∑
∈ ),(

),( ,  

for each dependency d of each j ∈  J  
Note that Zj, is equal to 1 if job j is matched with all 

required resources, and is equal to 0 otherwise. As defined 
in Figure 1, X(j, r) is equal to 1 if resource r is matched to 
job j, and is equal to 0, otherwise. Thus, the left side of the 
equation, the sum of X(j, r) over resources in an equivalence 
E(j, d), is the number of resource matched to the 
dependency d. Thus, these equations guarantee that for 
every dependency of job j, exactly one resource is matched 
when this job is matched with all required resources and 
none of the dependencies is matched if any one of the 
dependencies is unsatisfied. 

3.4. Resource capacity constraints 
Resource capacity constraints ensure that the sum of the 

fraction of the capacity consumed by all supported jobs by 
a resource does not exceed the total available capacity.  

Given a resource r and a job j, job j will consume U(j, t) 
unit of capacity type t of resource r if this job is matched to 
this resource; and consume 0 otherwise. Thus, the resource 
consumption of a job on a resource can be expressed by a 
linear expression U(j, t) * X(j, r).  The resource capacity 

constraints can be expressed by the following set of 
inequalities:  

),(),(),( * trrj
Jj

tj NXU ≤∑
∈

,  

for each r ∈  R and its capacity t. 
This set of inequalities express resource capacity 

constraint on all resources.  

3.5. Objective functions 
The objective function defines the quality of a 

matching scheme when multiple feasible solutions exist.  
The matching algorithm uses objective function to select 
the best matching scheme. We model four types of 
objective functions.  
Throughput. This objective function is defined as the 
number of jobs matched. When maximizing the value of 
this objection function, the matching process will find a 
matching scheme that matches as many jobs as possible. 
We formalize the throughput as a linear expression∑

∈Jj
jZ .  

When jobs have different priority, we use a weighted 
throughput, defined as j

Jj
jPZ∑

∈

. In this way, we give 

more advantage to jobs with higher priority.  
Number of resources used. This objective function is 
defined as the number of resources used to match jobs. In 
some cases, users may want to run a batch of jobs on as 
few resources as possible. For example, if resource owners 
charge users for the use of resources, the user may want to 
limit jobs to a small set of resources to reduce the cost. 
Minimizing the value of this objective function, the 
matching process will find scheme using as few resources 
as possible.  

In order to calculate the number of resources used, we 
define a new 0/1 variable Sr, which is equal to 0 if 
resource r is not matched to any one of jobs, and is equal 
to 1 otherwise, for each resource r∈R by the following 
two sets of linear inequalities: 

r
Jj

rj SX ≥∑
∈

),(   

and 
 ),(*),( JCardSX r

Jj
rj ≤∑

∈

 

for each resource r∈  R, where Card(J) is the number of 
jobs considered.  

These inequalities ensure that Sr behaves as defined.. 
For a resource r, the sum of X(j, r) over jobs is equal to the 
number of jobs matched to this resource. If no job is 
matched with this resource, its value is equal to 0. In this 
case, based on the first inequality, Sr is equal to 0 because 
Sr must be less than or equal to 0 to make the inequality 
stand. On the other hand, if some jobs get matched to this 



 

resource, the sum of X(j, r) over all jobs is greater than or 
equal to 1. Based on the second inequality, Sr is equal to 1 
because Sr must be greater than 0 to satisfy the inequality.  

Then, we can formalize the number of used resource as 
a linear expression, ∑

∈Rr
rS . 

Load balance. This objective function is defined as the 
percentage of unused capacity on the most heavily loaded 
resources. Trying to maximize the value of this objective 
function, the matching process will move jobs from the 
most heavily loaded resources to less loaded resources so 
as to achieve a load distribution as even as possible.  

We define a new variable G(r, t) for each resource r ∈  R 
to represent the percentage of used capacity type t in this 
recourse. We modify the linear inequalities for resource 
capacity constraint in Section 3.4 to calculate the value of 
variable G(r, t).  

),(),(),(),( ** trtrrj
Jj

tj GNXU =∑
∈

, 

0),( ≥trG , 1),( ≤trG   
for each resource r ∈  R and its capacity type t 
As described in Section 3.4, the left side of the equation 

is the amount of capacity used by all jobs, and N(r, t) is the 
total available capacity of the resource. Thus, G(r, t) is the 
used percentage.  

We then define another new variable F to represent the 
percentage of unused capacity on the most heavily loaded 
resources by the following set of inequalities:  

),(1 trGF −≤  
for each resource r ∈  R and its capacity type t.  
The right side of the inequality is the percentage of 

unused capacity of a resource r and its capacity type t. 
Since the most heavily loaded resources have the least 
percentage of unused capacity, F is less than or equal to 
the right side.  
Job preferences on resources. This objective function is 
defined as the sum of ranks of all resources matched to 
jobs. A job may provide a criterion to rank all satisfying 
resources.  For example, a job may prefer a machine with 
higher CPU speed and use CPU speed as a ranking 
criterion. We can formalize this objective function by a 
linear expression: 

),(
,

),( * rj

Rr
Jj

rj XQ∑
∈
∈

, 

where Q(j, r) is the given rank of resource r by job j.   
Maximizing this objective function, the matching 

process will find a matching scheme containing as many 
preferred resources as possible.   

By using these four objective functions, users can 
configure the matching process to find different optimal 
matching scheme. Using MILP techniques, we show that it 
is possible to realize different resource matching processes 

each configured to optimize a specific business objective. 
System administrators can easily modify these objective 
functions or create their own objective function to adapt to 
their specific needs. 

4. Architecture of an on-line resource 
matching system 

We now describe an on-line resource matching system 
that accepts multiple job requests in a batch, models the 
matching problem as a MILP problem, and then generates 
a matching scheme that is optimal based on a given 
objective function. The architecture of the matching 
system is shown in Figure 2.  
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Figure 2. Architecture of the on-line resource matching 
system 

The on-line resource matching system consists of three 
functional modules, with each implemented as a web 
service.  

Resource State Repository (RSR). Resource State 
Repository stores soft real time status of all resources. Our 
current implementation of RSR is shown in Figure 3.  It 
uses IBM DB2 to store the up-to-date status of resources 
and organizes resource data based on resource types. RSR 
provides a web service interface to allow resources to 
update their status, clients to query resource status, and 
administrators to manage the resource data, such as 
defining new resource types, adding/deleting resources, etc.  

DB2
Resource

Repository
Manager

query

RSRManagement
JDBC

Resource pool  
Figure 3. Structure of Resource State Repository 

Resource Matcher (RM). Resource Matcher is the 
decision making part of the matching system. Its structure 
is shown in Figure 4.  RM performs following functions: 
(1) it accepts job matching requests through it web service 
interface, (2) queries the Resource State Repository to 
obtain current resource status, (3) instantiates the model 
created in Section 3 with the actual job and resource data, 
(4) submits the model to a MILP solver to solve for the 
variables in the model, (5) maps the variable values to a 
matching scheme, and (6) sends the matching results back 
to clients.  
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Figure 4. Structure of Resource Matcher 

In our implementation, we use a standard modeling 
language AMPL [3] to present the model we propose in 
Section 3, and use  CPLEX solver [1] to solve it. Because 
the output of the solver is a set of 0/1 variables, we use a 
mapper to translate the variables to more meaningful 
values of jobs and resources. For example, if X(j, r) is equal 
to 1, we translate it as resource r is matched with job j.     

GUI interface. The GUI interface provides a friendly web 
interface to help users to submit jobs, configure the 
objective function in Resource Matcher, and manage the 
Resource State Repository.  

Since the three functional modules are implemented as 
web services, they can work as standalone services or can 
easily be integrated with other services. Also, the 
architecture is not limited to the current implementation. 
For example, we can replace our RSR by other 
information systems such as MDS [10] and Ganglia [11] 
etc. by simply wrapping their interface in a web service 
defined by Resource State Repository.      

5. Performance results and discussion 
To validate our architecture and design, we have 

implemented a prototype version of the Resource Matcher, 
Resource State Repository, and the GUI. In this section, 
we describe our prototype implementation and present 
some preliminary performance results. The experimental 
set up is shown in Figure 5.  

Resource Matcher and Resource State Repository are 
deployed as web services on an IBM WebSphere 
Application Server (Version 5.1) [14]. The application 
server itself is installed on a Windows 2000 server. GUI 
interfaces for administrative tasks and for job submission 
purposes are defined using java server pages (JSPs) and 
are deployed on the same application server. Users can 
submit job requests using a web browser, or using a 
standalone application client that interacts directly with the 
Resource Matcher using its web services interface. The 
database for the repository is installed on an IBM DB2 
Server (DB2 UDB version 8.1.4) running on a separate 
Windows 2000 server [15].  The Resource State 
Repository web service interacts with the repository on the 
DB2 using JDBC protocol.  

In our experiments, Resource Matcher is configured to 
use throughput as its objective function. The client is a 
java program that can run on any system supporting JDK 

1.4 and that has network access. In our experiments, we 
used an IBM Thinkpad T23 to submit jobs to Resource 
Matcher using the RM client.  

W e b G u i R M  W e b  S e rv ic e R S R  W e b  S e rv ic e

D B 2
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Figure 5. Deployment of the online matching system. 

We simulated several resources in the Resource State 
Repository. For the experiments reported in the following, 
we defined four resource types: (i) compute server 
(attributes: network location, OS version, CPU type, CPU 
speed, memory, maximum and available application 
capacity), (ii) file system (attributes: network location, 
type, size, maximum and available capacity), (iii) database 
(attributes: network location, type, maximum and available 
number of connections), and (iv) network subsystems 
(attributes: network domain, type, maximum and available 
bandwidth). Further, we defined five instances of compute 
servers, five instances of file systems, four database 
instances, and five network subsystems. The resource 
instances belonging to the same resource type differ in 
their total and available capacities that can be consumed 
by a user submitted job.  

For workload generation and job submissions, we used 
a standalone client. This client generates a batch of jobs, 
submits these in a batch to Resource Matcher, receives the 
matched results, and then repeats this cycle. The workload 
generator was configured to generate jobs with random 
resource requirements with the following constraints: each 
job has a dependency on one computer system and zero or 
more dependencies on other types of resources (i.e., 
database, network, or file system). For each dependency, 
the capacity requirements were determined randomly 
within a specified range. 

In the client, we varied the number of jobs submitted at 
a time in a batch and measured the time between the 
submission of a batch of jobs and the return of matched 
results, which we call Resource Matcher response time. 
For a given number of jobs N, the experiment was 
repeated 20 times (by submitting 20 consecutive batches) 
and the Resource Matcher response time was determined 
by taking the average over the 20 runs. Figure 6 shows the 
average response times for a batch of 10, 20, and 30 jobs, 
respectively. The response time shown on the Y-axis is in 
milliseconds. In addition to the total response time, we 
show the breakdown of the response time into three parts: 
(i) time spent in querying the repository for resource 
instances meeting the minimum criteria (shown as RSR 



 

query), (ii) time spent in the optimizer that computes the 
actual matches, and (iii) the rest of the time which includes 
the cost of marshalling the individual components, web 
service overhead, and networking delays.    
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Figure 6. Measurement of time to match N jobs 

Note that since the jobs in the workload have random 
job requirements, the resulting workload has a mix of jobs 
with varying resource requirements and job mix changes 
randomly from batch to batch. Because of this, the average 
response time for a given batch size should be viewed as 
an estimate of the expected performance of the Resource 
Matcher in matching N jobs with corresponding resources. 
We also note that the performance also depends on the 
number of resources in the repository and the number of 
resources identified as feasible resources meeting the 
minimum criteria for running a job. The number of 
resources in the repository affects the query time and 
number of feasible resources affects the optimization time. 
In our experiments, we had a fixed number of resources in 
the repository and therefore, the performance results 
shown in Figure 6 are a function of the repository we used.  

Our preliminary performance results indicate that 
current implementation can handle resource matching for 
tens of jobs in several seconds.  We break down the 
service time into three parts: web service, which is the time 
spent on communications among client and Resource 
Matcher web service; solve, which is the time used to 
solve the MILP problem for the resource matching, and 
RSR query, which is the time spent on querying Resource 
State Repository to get resource status.  

From Figure 6, we can see that most of time is spent on 
communications among client and Resource Matcher web 
service. It is almost the same for different number of jobs 
because all job submissions make the same web service 
call with different parameters.  The second largest part of 
the time is spent on querying Resource State Repository. It 
increases linearly with number of jobs. This is because in 
current implementation, Resource Matcher makes one 
query for each dependency of each job request. Currently, 
we are optimizing the query process by caching query 
results in Resource Matcher such that Resource Matcher 
does not have to query Resource State Repository every 

time. The smallest part of time, tens milliseconds, is spent 
on finding an optimal matching scheme. This result 
indicates that modeling and solving resource matching as a 
MILP problem is time efficient.   

Our preliminary results shows that, using MILP, we 
can model the resource matching problem for a grid 
environment in a flexible and general way, and solve the 
problem efficiently. In our current implementation, we 
have used the trial version of CPLEX [1]. It only supports 
solving small size MILP problem (up to 300 constraints). 
However, this is not a major limitation even for realistic 
grid environments. This is because by grouping jobs into 
appropriate size batches, the size of the optimization 
problem can be managed. The problem size becomes large 
only if a job is associated with a large number of 
dependencies and constraints. In the future, we plan to use 
the full version of CPLEX to measure the performance of 
our system with jobs with complex dependencies.   

6. Related work 
Parallel job scheduling and resource allocation are well 

studied areas of research [2]. However, in most cases the 
resources considered are of only of one type -- processors 
and these are typically homogeneous. Moreover, on 
dedicated high performance systems, resource sharing is 
not considered. In our work, we consider jobs requiring 
multiple types of resources and we allow resource sharing, 
which is more common to grid environments. Maheswaran 
et al. [8] have considered the problem of mapping jobs to 
heterogeneous computing systems. In their work, they 
compare performance of several matching heuristics. 
Again they consider only one type of resource and they do 
not take into consider simultaneous resource sharing by 
multiple jobs.  

Raman et al. [9], Cipriano et al.[13]  and Liu et al. [6,7] 
have proposed modeling methods and algorithms to solve 
the resource matching problem. Their work focuses on 
finding optimal resources for one job with complex 
resource co-selection requirements. Instead of considering 
one job at a time, our work considers multiple jobs to 
archive global optimal matching scheme. Although not 
discussed in this paper, we have extended the models 
described in this paper to take into account pair-wise 
dependencies among multiple types of resources. This 
work will be discussed in a future paper. 

In [5], Kumar and Naik have modeled the problem of 
resource allocation and matching of highly available 
services supported by resources that are subject to random 
failures. Similar to the jobs requirements considered in this 
paper, the highly available services have dependencies on 
multiple types of resources and these need to be satisfied 
at all times. The on-line resource matching mechanism 
monitors resources and whenever a failure is detected it 
computes new matches and allocations using currently 



 

available components. The resulting problem is modeled 
as a linear optimization problem using an approach similar 
to the one describe in this paper. In this paper, the jobs 
arrive dynamically and their requirements change from job 
to job. Because of this, the actual models used are different. 

7. Conclusions 
In this paper, we have described a resource matching 

mechanism that is suitable for grid environments where 
resources are shared and jobs require multiple types of 
resources. The on-line resource matching problem is 
modeled and solved as an optimization problem using 
mixed integer linear programming methods. We have 
described how we can model the resource dependencies, 
capacity requirements and constraints, resource 
preferences and job priorities. We have also described 
modeling of four types global objective functions: 
maximizing throughput and priority weighted throughput, 
minimizing resource cost, balancing load among a set of 
resources, and maximizing job preferences for resources.  

We also have described an architecture suitable for on-
line resource matching in grid environments. Based on this 
architecture we have designed and implemented a job 
scheduling and resource management system using the 
resource matching mechanisms described in this paper. 
Such a system is suitable for managing datacenter 
resources and workloads consisting of independent jobs. 
By allowing system administrators to dynamically set 
resource usage policies and to change global objectives to 
suit business goals, the resource matching system 
described here can be adapted to dynamically changing 
conditions that are typical of large scale grid environments.  

Performance measurements from our prototype 
implementation indicate that the core resource matching 
algorithms described in this paper are efficient in terms of 
speed and accuracy. In our experimental setting, the 
matching system is capable handling (without becoming a 
bottleneck) a workload consisting of jobs with an arrival 
rate of slightly more than 500 jobs per minute, which is a 
high arrival rate even for a busy compute/datacenter. 

We note here that the prototype discussed in this paper 
was developed as a proof of concept and it was not tuned 
for performance.  We have already extended this work to 
include jobs requiring multiple instances of a resource 
with the same type and jobs with dependencies across 
resource types. We have also extended this work to 
incorporate backfilling mechanisms to avoid job 
starvations. In the future, we will be studying the 
scalability of the system by increasing the number of 
resources and requests. We are also planning on 
incorporating other types of resource matching 
mechanisms in our system and comparing their 
performance on similar workloads.   
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