
RC23597 (W0504-144) April 29, 2005
Computer Science

IBM Research Report

On-line Resource Matching for Heterogeneous
Grid Environments

Vijay K. Naik
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Chuang Liu, Lingyun Yang
Computer Science Department

University of Chicago
Chicago, IL 60637

Jonathan Wagner
IBM Software Group

Tivoli
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

On-line Resource Matching for Heterogeneous Grid Environments

Vijay K. Naik Chuang Liu Lingyun Yang Jonathan Wagner
IBM T. J. Watson Res Center Computer Science Dept, University of Chicago IBM Software Group, Tivoli
Yorktown Heights, NY 10598 Chicago, IL 60637 Austin, TX 78758

vkn@us.ibm.com {chliu, lyang}@cs.uchicago.edu jonathaw@us.ibm.com

Abstract
In this paper, we first present a linear programming

based approach for modeling and solving the resource
matching problem in grid environments with
heterogeneous resources. The resource matching problem
described here takes into account resource sharing, job
priorities, dependencies on multiple resource types, and
resource specific policies. We then propose a web service
style architecture for on-line matching of independent jobs
with resources in a grid environment and describe a
prototype implementation. Our preliminary performance
results indicate that the linear programming based
approach for resource matching is efficient in speed and
accuracy and can keep up with high job arrival rates – an
important criterion for on-line resource matching systems.
Also, the web service style architecture makes the system
scalable and extendable. It can also be integrated with
other existing grid services in a straightforward manner.

1. Introduction
As grid environments become more popular, the size

and the diversity in terms of resources and jobs are
increasing as well. By their nature, individual resources
are not under central control and they can enter and leave
the grid system at any time. Similarly, job arrivals and job
mix are much less predictable than in a dedicated parallel
or cluster environment. Because of this, dynamically
matching jobs with available resources plays an important
role in the management of a grid environment. The
resource matching mechanism must take into account
dynamically changing conditions – both in terms of
demand on resources and available supply of resource
capacity. It must also accommodate resource specific and
system wide policies.

In this paper, we consider the resource matching
problem arising in grid environments where jobs require
multiple heterogeneous resources and system managers
expect resource sharing, load balancing, high resource
utilization and/or throughput. The problem of matching

independent jobs to heterogeneous resources is known to
be NP-complete, if maximizing throughput is the
optimization criteria [4]. Other optimization criteria such
as load balancing, maximizing utilization, or minimizing
resource cost also give rise to the same level of difficulty.
While the problem is hard, for grid environments, fast
efficient on-line resource matching algorithms that can
quickly adapt to changes in the system are highly desirable.
In this paper, we discuss a class of such algorithms that are
well suited for this type of environment.

The contributions of this paper are as follows. We
describe a novel approach to model the resource matching
problem applicable to a grid environment consisting of
heterogeneous resources. Using our approach, we can
handle a rich class of job resource requirements, resource
preferences or affinities, job priorities, capacity constraints,
resource sharing, and a class of resource specific policies.
Our approach allows resource sharing in the presence of
on-line and asynchronous job arrivals. A second
contribution of this paper is the architecture and a
prototype implementation of a resource matching and
allocation system suitable for large-scale grid
environments.

We model resource matching as an Integer-
Programming (IP) problem and apply integer-
programming techniques to solve the resulting
optimization problem. Previous work [12, 13] illustrates
the benefits of using IP techniques to solve job-scheduling
problems on dedicated resources of a single type (such as
compute resources). However, grid environments present
some unique challenges. These include:

• Resources in a grid environment are often shared
among multiple concurrent jobs. Thus, instead of
matching just one job with multiple resources all
dedicated to run the job as in [8], general grid
resource matching mechanisms must be able to
match multiple jobs to a single resource, provided
the resource has enough capacity to handle the
matched jobs simultaneously. On the other hand,
resource matching must take into account resource
usage by each matched job so the capacity
consumed by the matched jobs does not to exceed

the total resource capacity. We call this the
resource capacity-constraint rule.

• A grid job usually needs multiple types of
resources to run. A match is successful only if all
required resources meeting the minimum capacity
constraints are found. The match is unsuccessful
even if a single resource cannot satisfy one of the
constraints. Thus, a resource matcher should return
either all required resources or none. We define
this requirement as the gang matching constraint.

• Jobs may arrive continuously and compete for
resources. Instead of matching jobs one by one to
resources, we need to consider a batch of jobs,
their requirements and provide a globally optimal
matching scheme. For example, if resources are not
enough to satisfy all jobs, we may want to match as
many jobs as possible and give advantage to high
priority jobs, or if the usage of multiple resources
results in higher cost, it may be more desirable to
match jobs with as few resources as possible. We
call the metric used to measure the quality of a
matching scheme as the business-value objective
function. The matching process needs to
maximize/minimize the objective function to
achieve a globally optimal matching, in an on
going continuous manner.

• In a grid environment jobs arrive and depart
asynchronously. Thus, the degree of capacity
sharing on a given resource varies continuously
and it is not the same across multiple resources.
Modeling the resource capacity constraints is more
difficult because of the asynchronous resource
sharing among multiple jobs.

• Jobs and resources in a grid are heterogeneous.
Grid enables aggregation of different types of
resources; e.g., a grid system may consist of
compute servers, network resources, storage
resources, application servers, etc. Similarly, a grid
job may require more than one type of resource
and these requirements vary from job to job.
Because of this, typical approaches based on
greedy algorithms do not work well. IP techniques
provide means for expressing the global
abstractions succinctly. However, modeling the
resource-matching problem as an IP problem is
much more challenging because of the
heterogeneity across jobs and resources.

In the following sections, we describe how we handle
these challenges. In Section 2, we discuss the scope of
resource matching problem considered in this paper and its
practical significance. In Section 3, we describe our
approach to model the resource matching problem as a
mixed integer linear program (MILP). In Section 4, we
describe an architecture for on-line resource matching for
jobs in a heterogeneous grid environment. We discuss a

proof-of-concept implementation of a prototype and the
preliminary performance results in Section 5. We discuss
the related work in Section 6 and conclude the paper in
Section 7.

2. Problem statement
In this paper, we consider the problem of matching jobs

with available resources taking into account job resource
requirements, job specific resource preferences, job
priorities, resource capacities, resource specific policies,
and system wide global objectives.

 The workload considered here consists of a set of
independent jobs with jobs arriving with some unknown
arrival pattern. A job consists of a request, an executable,
and some input data (or references to these). The request
specifies the requirements and preferences to run the job.
For simplicity, in this paper, a job means both the request
and the actual executable. Priority is assigned to a job,
when it enters the system.

Resource types are defined to classify all the resources
in the system. Some common examples of resources types
are computer system, network subsystem, file system,
application, and database system. Each resource type is
associated with one or more attributes with specific values.
Examples of attributes of a computer system are CPU
architecture, total and available memory, maximum and
current degree of multi-programming, and so on. Thus,
each resource instance in the system has a resource type
and has specific values for the attributes of that resource
type. Some attribute values are invariants while others
change their values as jobs are run using the resource. In
addition to attributes, a resource may also be associated
with policies specifying preferences and usage permissions
by job class. The policies can be dynamic as a function of
time and/or jobs running on that resource. In this paper,
we permit resource sharing by multiple jobs to the extent it
is possible with the existing resource capacity and current
policy associated with the resource.

The job requirements consist of a set of dependencies
and constraints associated with each dependency. Each
requirement is a dependency on a resource instance of a
particular resource type. By associating constraints with
each dependency, a job may specify the minimum criteria
for selecting a resource instance of a particular resource
type. For example, a request with a dependency on a
computer system may specify minimum 400 MB available
memory as a constraint. For the jobs considered in this
paper, we restrict one dependency per resource type, but
we do not have any restrictions on the number of different
resource types a job may depend upon or the number of
constraints a job may specify per resource type, as long as
the constraints are independent.

In addition to the hard constraints for selecting
resources, a job may also specify resource preferences

among the qualifying resource instances. For example, a
job may request a computer system with minimum 400
MB available memory and preference to the one with the
highest CPU speed.

Finally, system administrators may want to enforce
some global objectives to achieve certain business goals.
Some examples of global objectives are maximizing
resource utilization using the smallest number of resources,
maximizing throughput, allocating best resources to high
priority jobs, balancing load among fixed number of
resources, and so on.
In summary, in this paper, we are addressing a general
resource-matching problem, which we define as the
process of systematically selecting resources while
conforming to job and resource specific requirements and
constraints as well as optimizing site-wide objectives.
However, there are some restrictions: (1) the workload
considered here consists of independent jobs. Each job has
at most one dependency per resource type. (2) Jobs are
treated as non-preemptive. (3) Also not considered here is
the issue of fairness. Even if necessary resources are
available, the resource matcher may not match the
resources with a job, but instead it may match the
resources with one or more other jobs. This may repeat
indefinitely depending on the workload and resource
availability. We have extended our work to take into
account jobs requiring multiple instances of a single type
of resource and the problem of avoiding job starvation. We
discuss this work elsewhere.

3. Resource matching as an IP problem
Integer programming is a technique for solving certain

kinds of problems: maximizing the value of an objective
function subject to constraints, where the objective
function and constraints are all linear expressions. In the
following, we describe models based on mixed-integer
programming techniques and discuss how these models
can be used to overcome the grid specific challenges,
discussed in the introductory section, in solving the
resource matching problem.

3.1. Basic model
An IP model includes input parameters, variables, a set

of constraints on the value of variables, and an objective
function. The goal of the model is to find values for every
variable such that all constraints are satisfied and the value
of the objective function is maximized/minimized.

Figure 1 describes our basic model for the resource
matching problem. Given a set of jobs and resources, this
model finds a best feasible match between the given set of
jobs and resource.

Input parameters:
1. J is the set of jobs to be matched.
2. R is the set of resources available.
3. Pj is the priority of job j, for each j ∈ J.
4. N(r, t) is the capacity of type t for resource r, r ∈ R.

A resource may be associated with multiple types
of resource capacities.

5. U(j, t) is the amount of resource capacity of type t
consumed by job j, for each j ∈ J.

Output variables:
6. X(j, r) is 0/1 variable, for each resource r ∈ R and

job j ∈ J. X(j, r) is equal to 1 if job j is matched to
resource r, and is equal to 0 otherwise.

7. Zj is 0/1 variable, for each job j ∈ J. Zj is equal to
1 if job j is matched to its required resources, and
is equal to 0 otherwise.

Maximize/Minimize:
8. An objective function such as the number of

matched jobs.

Subject to:
9. Resource capacity constraints on resource r, for

each r ∈ R
10. Gang matching constraints on job j, for each j ∈ J
11. Jobs’ requirements on satisfying resources.

Figure 1. Basic model for resource matching

More specifically, we describe a job j by its priority
(line 3) and the amount of resource capacity it is going to
consume (line 5). We describe every resource r by its
available capacity (line 4). A resource may have multiple
capacity limitations, for example, a machine may allow at
most 6 jobs to run at the same time and provide at most 1
GBytes memory in total. Thus, we describe resource
capacity of resource r by N(r, t) where t indicates the type of
capacity. In the same way, we describe the resource
consumption of a job j by U(j, t).

We define a set of variables to represent a matching
scheme in lines 6-7. The value of variable X(j, r) indicates if
a job j is matched to a resource r, and the value of Zj
indicates if a job j is matched to required resources. The
search for a matching scheme is converted to the search
for feasible variable values such that the objective function
is maximized or minimized.

Constraints in line 9-11 define a feasible matching
scheme. Because there may exist multiple feasible
matching solutions, we use the objective function in line 8
to measure the quality of a scheme.

The model in Figure 1 can be used to represent a wide
range of grid resource matching problems. If we
instantiate the values of job and resource parameters, this
model becomes a particular resource-matching problem. In
order to solve it using IP techniques, we need to formalize

the basic model in Figure 1 by linear expressions and
constraints.

3.2. Dependency initialization
To run successfully, a job may require multiple

resources each with particular characteristics and capacity.
We refer to the job requirement on a resource type as a
dependency. Thus, a job may have multiple dependencies.

Many resources may satisfy the requirements of a
dependency. We define these resources as equivalence set
for this dependency. For convenience, we represent the
equivalence set for dependency d of job j as E(j, d).
Resources in an equivalence set are feasible resources and
are candidate matches for that resource type.

As the first step of the IP modeling, we classify
available resources into equivalence sets based on job
requirements. However, we cannot pick a random resource
and assign it to this job because we also need to satisfy the
gang match constraints (described in Section 3.3) and
resource capacity constraints (described in Section 3.4) for
a batch of jobs, and find a globally optimal solution
(described in Section 3.5).

3.3. Gang matching constraints
Gang match constraints ensure that, for a job requiring

multiple resources, we match all required resources to this
job, or none. We formalize the gang match constraint for
each job j as a set of linear equations:

j
Er

rj ZX
dj

=∑
∈),(

),(,

for each dependency d of each j ∈ J
Note that Zj, is equal to 1 if job j is matched with all

required resources, and is equal to 0 otherwise. As defined
in Figure 1, X(j, r) is equal to 1 if resource r is matched to
job j, and is equal to 0, otherwise. Thus, the left side of the
equation, the sum of X(j, r) over resources in an equivalence
E(j, d), is the number of resource matched to the
dependency d. Thus, these equations guarantee that for
every dependency of job j, exactly one resource is matched
when this job is matched with all required resources and
none of the dependencies is matched if any one of the
dependencies is unsatisfied.

3.4. Resource capacity constraints
Resource capacity constraints ensure that the sum of the

fraction of the capacity consumed by all supported jobs by
a resource does not exceed the total available capacity.

Given a resource r and a job j, job j will consume U(j, t)
unit of capacity type t of resource r if this job is matched to
this resource; and consume 0 otherwise. Thus, the resource
consumption of a job on a resource can be expressed by a
linear expression U(j, t) * X(j, r). The resource capacity

constraints can be expressed by the following set of
inequalities:

),(),(),(* trrj
Jj

tj NXU ≤∑
∈

,

for each r ∈ R and its capacity t.
This set of inequalities express resource capacity

constraint on all resources.

3.5. Objective functions
The objective function defines the quality of a

matching scheme when multiple feasible solutions exist.
The matching algorithm uses objective function to select
the best matching scheme. We model four types of
objective functions.
Throughput. This objective function is defined as the
number of jobs matched. When maximizing the value of
this objection function, the matching process will find a
matching scheme that matches as many jobs as possible.
We formalize the throughput as a linear expression∑

∈Jj
jZ .

When jobs have different priority, we use a weighted
throughput, defined as j

Jj
jPZ∑

∈

. In this way, we give

more advantage to jobs with higher priority.
Number of resources used. This objective function is
defined as the number of resources used to match jobs. In
some cases, users may want to run a batch of jobs on as
few resources as possible. For example, if resource owners
charge users for the use of resources, the user may want to
limit jobs to a small set of resources to reduce the cost.
Minimizing the value of this objective function, the
matching process will find scheme using as few resources
as possible.

In order to calculate the number of resources used, we
define a new 0/1 variable Sr, which is equal to 0 if
resource r is not matched to any one of jobs, and is equal
to 1 otherwise, for each resource r∈R by the following
two sets of linear inequalities:

r
Jj

rj SX ≥∑
∈

),(

and
),(*),(JCardSX r

Jj
rj ≤∑

∈

for each resource r∈ R, where Card(J) is the number of
jobs considered.

These inequalities ensure that Sr behaves as defined..
For a resource r, the sum of X(j, r) over jobs is equal to the
number of jobs matched to this resource. If no job is
matched with this resource, its value is equal to 0. In this
case, based on the first inequality, Sr is equal to 0 because
Sr must be less than or equal to 0 to make the inequality
stand. On the other hand, if some jobs get matched to this

resource, the sum of X(j, r) over all jobs is greater than or
equal to 1. Based on the second inequality, Sr is equal to 1
because Sr must be greater than 0 to satisfy the inequality.

Then, we can formalize the number of used resource as
a linear expression, ∑

∈Rr
rS .

Load balance. This objective function is defined as the
percentage of unused capacity on the most heavily loaded
resources. Trying to maximize the value of this objective
function, the matching process will move jobs from the
most heavily loaded resources to less loaded resources so
as to achieve a load distribution as even as possible.

We define a new variable G(r, t) for each resource r ∈ R
to represent the percentage of used capacity type t in this
recourse. We modify the linear inequalities for resource
capacity constraint in Section 3.4 to calculate the value of
variable G(r, t).

),(),(),(),(** trtrrj
Jj

tj GNXU =∑
∈

,

0),(≥trG , 1),(≤trG
for each resource r ∈ R and its capacity type t
As described in Section 3.4, the left side of the equation

is the amount of capacity used by all jobs, and N(r, t) is the
total available capacity of the resource. Thus, G(r, t) is the
used percentage.

We then define another new variable F to represent the
percentage of unused capacity on the most heavily loaded
resources by the following set of inequalities:

),(1 trGF −≤
for each resource r ∈ R and its capacity type t.
The right side of the inequality is the percentage of

unused capacity of a resource r and its capacity type t.
Since the most heavily loaded resources have the least
percentage of unused capacity, F is less than or equal to
the right side.
Job preferences on resources. This objective function is
defined as the sum of ranks of all resources matched to
jobs. A job may provide a criterion to rank all satisfying
resources. For example, a job may prefer a machine with
higher CPU speed and use CPU speed as a ranking
criterion. We can formalize this objective function by a
linear expression:

),(
,

),(* rj

Rr
Jj

rj XQ∑
∈
∈

,

where Q(j, r) is the given rank of resource r by job j.
Maximizing this objective function, the matching

process will find a matching scheme containing as many
preferred resources as possible.

By using these four objective functions, users can
configure the matching process to find different optimal
matching scheme. Using MILP techniques, we show that it
is possible to realize different resource matching processes

each configured to optimize a specific business objective.
System administrators can easily modify these objective
functions or create their own objective function to adapt to
their specific needs.

4. Architecture of an on-line resource
matching system

We now describe an on-line resource matching system
that accepts multiple job requests in a batch, models the
matching problem as a MILP problem, and then generates
a matching scheme that is optimal based on a given
objective function. The architecture of the matching
system is shown in Figure 2.

R M w e b se rv ice

R S R w e b se rv ice

G U Ijob s

Figure 2. Architecture of the on-line resource matching
system

The on-line resource matching system consists of three
functional modules, with each implemented as a web
service.

Resource State Repository (RSR). Resource State
Repository stores soft real time status of all resources. Our
current implementation of RSR is shown in Figure 3. It
uses IBM DB2 to store the up-to-date status of resources
and organizes resource data based on resource types. RSR
provides a web service interface to allow resources to
update their status, clients to query resource status, and
administrators to manage the resource data, such as
defining new resource types, adding/deleting resources, etc.

DB2
Resource

Repository
Manager

query

RSRManagement
JDBC

Resource pool
Figure 3. Structure of Resource State Repository

Resource Matcher (RM). Resource Matcher is the
decision making part of the matching system. Its structure
is shown in Figure 4. RM performs following functions:
(1) it accepts job matching requests through it web service
interface, (2) queries the Resource State Repository to
obtain current resource status, (3) instantiates the model
created in Section 3 with the actual job and resource data,
(4) submits the model to a MILP solver to solve for the
variables in the model, (5) maps the variable values to a
matching scheme, and (6) sends the matching results back
to clients.

Model
constructor

LP
solver

Mapper

W eb
service

Interface
Matching

result

Job
queue

RSR

RM

Figure 4. Structure of Resource Matcher

In our implementation, we use a standard modeling
language AMPL [3] to present the model we propose in
Section 3, and use CPLEX solver [1] to solve it. Because
the output of the solver is a set of 0/1 variables, we use a
mapper to translate the variables to more meaningful
values of jobs and resources. For example, if X(j, r) is equal
to 1, we translate it as resource r is matched with job j.

GUI interface. The GUI interface provides a friendly web
interface to help users to submit jobs, configure the
objective function in Resource Matcher, and manage the
Resource State Repository.

Since the three functional modules are implemented as
web services, they can work as standalone services or can
easily be integrated with other services. Also, the
architecture is not limited to the current implementation.
For example, we can replace our RSR by other
information systems such as MDS [10] and Ganglia [11]
etc. by simply wrapping their interface in a web service
defined by Resource State Repository.

5. Performance results and discussion
To validate our architecture and design, we have

implemented a prototype version of the Resource Matcher,
Resource State Repository, and the GUI. In this section,
we describe our prototype implementation and present
some preliminary performance results. The experimental
set up is shown in Figure 5.

Resource Matcher and Resource State Repository are
deployed as web services on an IBM WebSphere
Application Server (Version 5.1) [14]. The application
server itself is installed on a Windows 2000 server. GUI
interfaces for administrative tasks and for job submission
purposes are defined using java server pages (JSPs) and
are deployed on the same application server. Users can
submit job requests using a web browser, or using a
standalone application client that interacts directly with the
Resource Matcher using its web services interface. The
database for the repository is installed on an IBM DB2
Server (DB2 UDB version 8.1.4) running on a separate
Windows 2000 server [15]. The Resource State
Repository web service interacts with the repository on the
DB2 using JDBC protocol.

In our experiments, Resource Matcher is configured to
use throughput as its objective function. The client is a
java program that can run on any system supporting JDK

1.4 and that has network access. In our experiments, we
used an IBM Thinkpad T23 to submit jobs to Resource
Matcher using the RM client.

W e b G u i R M W e b S e rv ic e R S R W e b S e rv ic e

D B 2

IE R M C lie n t

IE o r R M C lie n t

Figure 5. Deployment of the online matching system.

We simulated several resources in the Resource State
Repository. For the experiments reported in the following,
we defined four resource types: (i) compute server
(attributes: network location, OS version, CPU type, CPU
speed, memory, maximum and available application
capacity), (ii) file system (attributes: network location,
type, size, maximum and available capacity), (iii) database
(attributes: network location, type, maximum and available
number of connections), and (iv) network subsystems
(attributes: network domain, type, maximum and available
bandwidth). Further, we defined five instances of compute
servers, five instances of file systems, four database
instances, and five network subsystems. The resource
instances belonging to the same resource type differ in
their total and available capacities that can be consumed
by a user submitted job.

For workload generation and job submissions, we used
a standalone client. This client generates a batch of jobs,
submits these in a batch to Resource Matcher, receives the
matched results, and then repeats this cycle. The workload
generator was configured to generate jobs with random
resource requirements with the following constraints: each
job has a dependency on one computer system and zero or
more dependencies on other types of resources (i.e.,
database, network, or file system). For each dependency,
the capacity requirements were determined randomly
within a specified range.

In the client, we varied the number of jobs submitted at
a time in a batch and measured the time between the
submission of a batch of jobs and the return of matched
results, which we call Resource Matcher response time.
For a given number of jobs N, the experiment was
repeated 20 times (by submitting 20 consecutive batches)
and the Resource Matcher response time was determined
by taking the average over the 20 runs. Figure 6 shows the
average response times for a batch of 10, 20, and 30 jobs,
respectively. The response time shown on the Y-axis is in
milliseconds. In addition to the total response time, we
show the breakdown of the response time into three parts:
(i) time spent in querying the repository for resource
instances meeting the minimum criteria (shown as RSR

query), (ii) time spent in the optimizer that computes the
actual matches, and (iii) the rest of the time which includes
the cost of marshalling the individual components, web
service overhead, and networking delays.

0
500

1000
1500

2000
2500

3000

10 20 30
number of jobs (N)

tim
e

(m
s) Web service

Solve

RSR query

Figure 6. Measurement of time to match N jobs

Note that since the jobs in the workload have random
job requirements, the resulting workload has a mix of jobs
with varying resource requirements and job mix changes
randomly from batch to batch. Because of this, the average
response time for a given batch size should be viewed as
an estimate of the expected performance of the Resource
Matcher in matching N jobs with corresponding resources.
We also note that the performance also depends on the
number of resources in the repository and the number of
resources identified as feasible resources meeting the
minimum criteria for running a job. The number of
resources in the repository affects the query time and
number of feasible resources affects the optimization time.
In our experiments, we had a fixed number of resources in
the repository and therefore, the performance results
shown in Figure 6 are a function of the repository we used.

Our preliminary performance results indicate that
current implementation can handle resource matching for
tens of jobs in several seconds. We break down the
service time into three parts: web service, which is the time
spent on communications among client and Resource
Matcher web service; solve, which is the time used to
solve the MILP problem for the resource matching, and
RSR query, which is the time spent on querying Resource
State Repository to get resource status.

From Figure 6, we can see that most of time is spent on
communications among client and Resource Matcher web
service. It is almost the same for different number of jobs
because all job submissions make the same web service
call with different parameters. The second largest part of
the time is spent on querying Resource State Repository. It
increases linearly with number of jobs. This is because in
current implementation, Resource Matcher makes one
query for each dependency of each job request. Currently,
we are optimizing the query process by caching query
results in Resource Matcher such that Resource Matcher
does not have to query Resource State Repository every

time. The smallest part of time, tens milliseconds, is spent
on finding an optimal matching scheme. This result
indicates that modeling and solving resource matching as a
MILP problem is time efficient.

Our preliminary results shows that, using MILP, we
can model the resource matching problem for a grid
environment in a flexible and general way, and solve the
problem efficiently. In our current implementation, we
have used the trial version of CPLEX [1]. It only supports
solving small size MILP problem (up to 300 constraints).
However, this is not a major limitation even for realistic
grid environments. This is because by grouping jobs into
appropriate size batches, the size of the optimization
problem can be managed. The problem size becomes large
only if a job is associated with a large number of
dependencies and constraints. In the future, we plan to use
the full version of CPLEX to measure the performance of
our system with jobs with complex dependencies.

6. Related work
Parallel job scheduling and resource allocation are well

studied areas of research [2]. However, in most cases the
resources considered are of only of one type -- processors
and these are typically homogeneous. Moreover, on
dedicated high performance systems, resource sharing is
not considered. In our work, we consider jobs requiring
multiple types of resources and we allow resource sharing,
which is more common to grid environments. Maheswaran
et al. [8] have considered the problem of mapping jobs to
heterogeneous computing systems. In their work, they
compare performance of several matching heuristics.
Again they consider only one type of resource and they do
not take into consider simultaneous resource sharing by
multiple jobs.

Raman et al. [9], Cipriano et al.[13] and Liu et al. [6,7]
have proposed modeling methods and algorithms to solve
the resource matching problem. Their work focuses on
finding optimal resources for one job with complex
resource co-selection requirements. Instead of considering
one job at a time, our work considers multiple jobs to
archive global optimal matching scheme. Although not
discussed in this paper, we have extended the models
described in this paper to take into account pair-wise
dependencies among multiple types of resources. This
work will be discussed in a future paper.

In [5], Kumar and Naik have modeled the problem of
resource allocation and matching of highly available
services supported by resources that are subject to random
failures. Similar to the jobs requirements considered in this
paper, the highly available services have dependencies on
multiple types of resources and these need to be satisfied
at all times. The on-line resource matching mechanism
monitors resources and whenever a failure is detected it
computes new matches and allocations using currently

available components. The resulting problem is modeled
as a linear optimization problem using an approach similar
to the one describe in this paper. In this paper, the jobs
arrive dynamically and their requirements change from job
to job. Because of this, the actual models used are different.

7. Conclusions
In this paper, we have described a resource matching

mechanism that is suitable for grid environments where
resources are shared and jobs require multiple types of
resources. The on-line resource matching problem is
modeled and solved as an optimization problem using
mixed integer linear programming methods. We have
described how we can model the resource dependencies,
capacity requirements and constraints, resource
preferences and job priorities. We have also described
modeling of four types global objective functions:
maximizing throughput and priority weighted throughput,
minimizing resource cost, balancing load among a set of
resources, and maximizing job preferences for resources.

We also have described an architecture suitable for on-
line resource matching in grid environments. Based on this
architecture we have designed and implemented a job
scheduling and resource management system using the
resource matching mechanisms described in this paper.
Such a system is suitable for managing datacenter
resources and workloads consisting of independent jobs.
By allowing system administrators to dynamically set
resource usage policies and to change global objectives to
suit business goals, the resource matching system
described here can be adapted to dynamically changing
conditions that are typical of large scale grid environments.

Performance measurements from our prototype
implementation indicate that the core resource matching
algorithms described in this paper are efficient in terms of
speed and accuracy. In our experimental setting, the
matching system is capable handling (without becoming a
bottleneck) a workload consisting of jobs with an arrival
rate of slightly more than 500 jobs per minute, which is a
high arrival rate even for a busy compute/datacenter.

We note here that the prototype discussed in this paper
was developed as a proof of concept and it was not tuned
for performance. We have already extended this work to
include jobs requiring multiple instances of a resource
with the same type and jobs with dependencies across
resource types. We have also extended this work to
incorporate backfilling mechanisms to avoid job
starvations. In the future, we will be studying the
scalability of the system by increasing the number of
resources and requests. We are also planning on
incorporating other types of resource matching
mechanisms in our system and comparing their
performance on similar workloads.

References
1. CPLEX. http://www.ilog.com as of Nov. 30, 2004.
2. D. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel

job scheduling – a status report. Presented at 10th Workshop
on Job Scheduling Strategies for Parallel Processing, NY
2004.

3. R. Fourer, D. Gay, and B. Kernighan. AMPL: A modeling
language for mathematical programming. 2nd Ed., Publisher
Thomson Brooks/Cole, 2003.

4. O. Ibarra and C. Kim. Heuristic algorithm for scheduling
independent tasks on nonidentical processors. J. of the ACM,
vol. 24, pp. 280-289, 1977.

5. V. Kumar and V. Naik. Modeling the global optimization
problem in highly available distributed environments.
Presented at the 4th Applied Mathematical Programming and
Modeling Conference (APMOD) 2000, Brunel University,
London, April 2000.

6. C. Liu, L. Yang, I. Foster, and D. Angulo. Design and
evaluation of a resource selection framework for grid
applications. In Proceedings of HPDC-11, pp. 63-81, 2002.

7. C. Liu and I. Foster. A Constraint Language Approach to
Grid Resource Selection, Technical Report TR-2003-07,
Department of Computer Science, University of Chicago,
March, 2003.

8. M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, and R.
Freund. Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems.
In Proceedings of the 8th Heterogeneous Computing
Workshop, pp. 30-44, 1999.

9. R. Raman, M. Livny, and M. Solomon. Policy-Driven
Heterogeneous Resource Co-allocation with Gangmatching.
In Proceedings of HPDC-12, pp. 80-89, 2003.

10. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
Grid Information Services for Distributed Resource Sharing.
Presented at 10th IEEE International Symposium on High
Performance Distributed Computing, San Francisco, CA,
August 2001.

11. M. L. Massie, B. Chun, and D. Culler. The Ganglia
distributed monitoring system: design, implementation, and
experience. Parallel Computing, vol. 30, 2004.

12. L. A. Wolsey. Integer Programming for Production
Planning and Scheduling. Lecture notes available at
http://www.core.ucl.ac.be/wolsey/chorin.ps

13. C. Santos, X. Zhu, H. Crowder. A mathematical
optimization approach for resource allocation in large scale
data centers. HP Labs Tech Rep 2002-64, 2002.

14. IBM WebSphere.
http://www-306.ibm.com/software/websphere/

15. IBM DB2. http://www-306.ibm.com/software/data

