
RC23598 (W0505-017) May 3, 2005
Mathematics

IBM Research Report

Network Design Arc Set with Variable Upper Bounds

Alper Atamtürk
Industrial Engineering and Operations Research

University of California
Berkeley, CA  94720-1777

Oktay Günlük 
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Network design arc set with variable upper bounds

Alper Atamtürk1 and Oktay Günlük2
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Abstract

In this paper we study the network design arc set with variable upper bounds.
This set appears as a common substructure of many network design problems and is
a relaxation of several fundamental mixed-integer sets studied earlier independently.
In particular, the splittable flow arc set, the unsplittable flow arc set, the single node
fixed-charge flow set, and the binary knapsack set are facial restrictions of the network
design arc set with variable upper bounds. Here we describe families of strong valid
inequalities that cut off all fractional extreme points of the continuous relaxation of
the network design arc set with variable upper bounds. Interestingly, some of these
inequalities are also new even for the aforementioned restrictions studied earlier.

1 Introduction

We study the network design arc set with variable upper bounds defined as

P =
{

x ∈ RN
+ , y ∈ Z+, z ∈ {0, 1}N :

∑

i∈N

aixi ≤ a0 + y, x ≤ z
}

,

where ai > 0 for i ∈ N and a0 ≥ 0. The network design arc set with variable upper
bounds This set appears as a common substructure of many network design problems.

For a multicommodity network design problem with either fixed charges or combina-
torial restrictions on the paths, xi denotes the fraction of commodity i with demand ai

flowing along an arc with capacity a0 + y. The binary variables zi’s are used for modeling
combinatorial restrictions on the paths, such as cardinality, disjointness, etc. as well as
fixed charges. Alternatively, this model arises also when a0 + y is used to model a hub
capacity with flow and fixed-charge variables (xi, zi) for each incoming arc i ∈ N into the
hub. We will refer to the following inequality as the capacity constraint :

∑

i∈N

aixi ≤ a0 + y. (1)
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An interesting feature of the set P is that it is a common relaxation of four fundamental
sets that received significant attention in the literature. As such, P links these four sets
that have been studied independently from each other. The first set is the splittable flow
arc set [16]

Q =
{

x ∈ RN
+ , y ∈ Z+ :

∑

i∈N

aixi ≤ a0 + y, x ≤ 1
}

,

which is obtained from P by restricting z = 1. The second relevant set is the unsplittable
flow arc set [9]

R =
{

y ∈ Z+, z ∈ {0, 1}N :
∑

i∈N

aizi ≤ a0 + y
}

,

which is obtained from P by restricting x = z. The third set of interest is the single node
fixed-charge flow set [20]

T =
{

x ∈ RN
+ , z ∈ {0, 1}N :

∑

i∈N

aixi ≤ a0, x ≤ z
}

,

which is obtained from P by restricting y = 0. Finally, the fourth set is the binary knapsack
set [6, 13, 23]

K =
{

z ∈ {0, 1}N :
∑

i∈N

aizi ≤ a0

}
,

which is obtained from P by restricting x = z and y = 0.

The set Q is the simplest one among these four sets and an explicit linear description
of its convex hull description is known. Optimization over the other sets is NP-hard and
only partial descriptions of the corresponding convex hulls are known.

Note that the convex hulls of Q, R, T , K are faces of the convex hull of P. Thus P
has the characteristics of all these four sets and one can obtain strong inequalities for them
from P. We shall observe in the later sections that the seemingly unrelated inequalities
given independently for Q, R, T , and K are just special cases of the valid inequalities for
P when they are restricted to the appropriate faces of the convex hull of P.

In the remainder of this section, we review some of the basic results known for the
related sets Q,R, T , and K so that we can show the connections between the inequalities
for P and those known for the others. We also review the basic mixed-integer rounding
procedure as it is used in the paper. In Section 2, we describe some of the basic polyhedral
properties of P. In Section 3, we give generalizations of the flow cover inequalities for P
and discuss their strength as well as the fractional solutions cut off by them. In Section 4,
we describe strong valid inequalities obtained through two consecutive applications of the
mixed-integer rounding procedure. It turns out that these inequalities are sufficient to cut
off all fractional extreme points of the continuous relaxation of P. Interestingly, some of
the strong inequalities obtained for P are also new even for the aforementioned restrictions
studied earlier.

Throughout, the convex hull and the continuous relaxation of a set are denoted by
conv(·) and relax(·), respectively. For v ∈ RN , we define v(S) =

∑
i∈S vi for S ⊆ N . For

a ∈ R, we use (a)+ to denote max{a, 0}. We let â = (da(N)− a0e)+ and n = |N |. We use
ei to denote the ith unit vector, 0 and 1 to denote a vector of zeros and ones, respectively.
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1.1 Splittable flow arc set

The splittable flow arc set Q, is the relaxation of a multicommodity flow design problem
for a single arc of the network. The residual capacity inequalities [5, 16]

∑

i∈S

ai(1− xi) ≥ ρ(η − y), S ⊆ N, (2)

where η = da(S)− a0e and ρ = a(S)− a0 − ba(S)− a0c, are valid for Q. For the slightly
special case, where a0 = 0, Magnanti et al. [16] show that adding all residual capacity
inequalities to relax(Q) gives a complete description of conv(Q). Atamtürk and Rajan
[5] give a polynomial separation algorithm for (2). In particular, they show that for a
point (x, y) ∈ relax(Q) \ Q, a violated residual capacity inequality (2) is given by letting
S = {i ∈ N : xi > y − byc}. Although stated in [5], a proof for convex hull description
is not given for Q when a0 6= 0. For completeness, we show below that the convex hull
result for Q follows from [16].

Lemma 1 Adding the residual capacity inequalities (2) to relax(Q) gives conv(Q).

Proof Given Q, define the set

Q0 =
{

x ∈ RN
+ , x0 ∈ R+, y0 ∈ Z+ : (da0e − a0)x0 +

∑

i∈N

aixi ≤ y0, x ≤ 1, x0 ≤ 1
}

.

From [16] adding the residual capacity inequalities to relax(Q0) gives conv(Q0). X =
{(x, x0, y0) ∈ conv(Q0) : x0 = 1} is a face of conv(Q0), and therefore it is integral.
This holds true after adding a lower bound y0 ≥ da0e on the only integer variable. Then
projecting out variable x0 and defining y = y0−da0e gives conv(Q). Observe that residual
capacity inequality

∑
i∈S ai(1 − xi) + (daie − a0)(1 − x0) ≥ ρ0(η0 − y0) for Q0 with η0 =

da(S) + da0e − a0e and ρ0 = a(S) + da0e − a0 − ba(S) + da0e − a0c equals (2) for x0 = 1
and y = y0 − da0e since η0 = η + da0e and ρ0 = ρ.

1.2 Single node fixed-charge flow set

The first polyhedral study of the single node fixed-charge flow set T is due to Padberg et
al. [20]. Let S ⊆ N be called a cover if λ = a(S) − a0 > 0. For a cover S, the authors
define the flow cover inequality

∑

i∈S

aixi +
∑

i∈S

(ai − λ)+(1− zi) ≤ a0, (3)

which is facet-defining for conv(T ) if λ < ā = maxi∈S ai. In the same paper they also
show that the augmented flow cover inequalities

∑

i∈S∪T

aixi +
∑

i∈S

(ai − λ)+(1− zi) ≤ a0 +
∑

i∈T

(ā− λ)zi, (4)

where T ⊆ {i ∈ N \S : ai ≤ ā} define facets of conv(T ) under the same condition as well.
Gu et al. [12] obtain generalizations of (4) through sequence independent lifting of (3).
A complementary class of pack inequalities for T and their lifting are studied in [1, 21].
Flow sets with integer variable upper bounds are studied in [2, 8, 14].
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1.3 Unsplittable flow arc set

The unsplittable flow arc set R is studied first by Brockmüller et al. [9]. For S ⊆ N they
define the c-strong inequalities

∑

i∈S

daie zi +
∑

i∈N\S
baic zi ≤ cS + y, (5)

where cS =
∑

i∈S daie−da(S)− a0e. A set S ⊆ N is called maximal c-strong if cS\{i} = cS

for all i ∈ S and cS∪{i} = cS + 1 for all i ∈ N \S. Brockmüller et al. show that a c-strong
inequality (5) is facet-defining for conv(R) if and only if S is maximal c-strong. Atamtürk
and Rajan [5] generalize (5) to k-split c-strong inequalities

∑

i∈S

dkaie zi +
∑

i∈N\S
bkaic zi ≤ ck

S + ky, (6)

where ck
S =

∑
i∈S dkaie− dka(S)− ka0e for a positive integer k. Other strong inequalities

obtained by lifting binary knapsack cover inequalities for R are described in [5, 22].

1.4 Binary knapsack set

The binary knapsack set K is the most studied restriction of P. The basic inequalities for
K are the so-called cover inequalities: A set S ⊆ N is called a cover if λ = a(S)− b > 0.
For a cover S, the cover inequality [6, 13, 23]

∑

i∈S

xi ≤ |S| − 1 (7)

is valid for K. Cover inequalities (7) from minimal covers induce facets of the restriction
conv{x ∈ K : xi = 0, i ∈ N \ S} and they cut off all fractional extreme points of (K).
These inequalities typically need to be lifted in order to obtain facet-defining inequalities
for conv(K) [7, 10, 12, 19, 25, 26].

1.5 MIR inequalities

Mixed-integer rounding (MIR) [18] is a general procedure for deriving valid inequalities
for mixed-integer sets. Typically strong inequalities for mixed-integer sets can be derived
with a single MIR application from an appropriate relaxation [17]. For completeness and
ease of presentation, we next review the basic idea behind these inequalities.

Observation 2 [24] If x+y ≥ b is a valid inequality for a mixed-integer set X ⊆ {(x, y) ∈
R+ × Z}, then the MIR inequality x ≥ r(dbe − y), where r = b− bbc is also valid for X.

Next we give a simple application of the MIR procedure that will be used later in the
paper for obtaining strong inequalities for P.

4



Lemma 3 Consider a mixed-integer set

Y =

{
(x, y) ∈ R+ × ZS∪T

+ : x +
∑

i∈S

aiyi −
∑

i∈T

aiyi ≥ b

}
,

with b ≥ 0 and ai > 0 for all i ∈ S. For α ≥ max{b, ā} and ā = maxi∈S ai, inequality

x +
∑

i∈S

min{ai, b} yi −
∑

i∈T

φα(ai, b)yi ≥ b, (8)

where φα(a, b) = (bba/αc+ (a− αda/αe+ b)+), is valid for Y .

Proof Dividing the inequality defining Y by α, one obtains

x

α
+

∑

i∈S

ai

α
yi −

∑

i∈T

ai

α
yi ≥ b

α
. (9)

Applying MIR to inequality (9) gives inequality (8). To see this, let ρi = αdai/αe − ai.
For i ∈ T , if ρi < b we rewrite the coefficient of yi in inequality (9) as −dai/αe + ρi/α,
otherwise we relax inequality (9) by changing this coefficient to −bai/αc. We then apply
Observation 2 by (i) treating (ai/α)yi, i ∈ S as a continuous variable if ai < b, and (ii)
treating (ρi/α)yi, i ∈ T as a continuous variable if ρi < b.

2 Basic properties of conv(P)

First note that optimizing a linear function over conv(P) is NP-hard since the binary
knapsack polytope conv(K) is a face of it. We next state basic polyhedral properties of
conv(P). Observe that if a(N) ≤ a0, then relax(P) is integral and therefore conv(P) =
relax(P). This is due to the fact that when the capacity constraint in redundant, the
remaining constraints defining P only consist of (variable) bound constraints.

Proposition 4 The polyhedron conv(P) is full-dimensional.

Proof The following 2n + 2 points (y, z, x) of P are affinely independent: (â,0,0), (â +
1,0,0), (â, ei,0) and (â, ei, ei) for i ∈ N .

We next make some observations that help characterize the extreme points of relax(P)
and conv(P).

Proposition 5 Let p = (y, z, x) be an extreme point of relax(P).

1. if y > 0, then
∑

i∈N aixi = a0 + y, and xi, zi ∈ {0, 1} for all i ∈ N ;

2. if 1 > xk > 0 for some k ∈ N , then y = 0, xi, zi ∈ {0, 1} for all i ∈ N \ {k} and
zk ∈ {xk, 1}.

5



Proof First note that if the capacity inequality is not tight, then y = 0 as the non-
negativity constraint is the only other constraint that variable y appears in. Similarly, at
least one of 1 ≥ zi or zi ≥ xi has to hold as equality for all i ∈ N .

Assume that y > 0 and 1 > xi > 0 for some i ∈ N . Let p+ = p + (εai, ε
′ei, εei) and

p− = p − (εai, ε
′ei, εei) where ε′ = ε if zi 6= 1 and ε′ = 0 otherwise. Notice that for some

small ε > 0, we have p+, p− ∈ relax(P) and therefore p can not be an extreme point.

If 1 > xi, xk > 0 for distinct i, k ∈ N , then it is possible to construct two points by
simultaneously perturbing xi and xk that give the point p as a convex combination.

Based on this observation, we have the following characterization of the extreme points
of relax(P).

Corollary 6 The point (y, z, x) is an extreme point of relax(P) if and only if one of the
following two cases holds:

1. There exist S ⊆ T ⊆ N and k ∈ S such that ak ≥ λ = a(S)− a0 > 0 and

xi =
{

1 if i ∈ S \ {k}
0 otherwise , zi =

{
1 if i ∈ T \ {k}
0 otherwise , y = 0, and

either xk = zk = 1− λ/ak, or xk = 1− λ/ak and zk = 1.

2. There exist S ⊆ T ⊆ N such that

xi =
{

1 if i ∈ S
0 otherwise , zi =

{
1 if i ∈ T
0 otherwise , y = max{λ, 0}.

In Sections 3 and 4 we present valid inequalities that cut off fractional extreme points
of relax(P). We next identify basic properties of the extreme points of conv(P).

Proposition 7 Let p = (y, z, x) be an extreme point of conv(P). If 1 > xk > 0 for some
k ∈ N , then

1.
∑

i∈N aixi = a0 + y, and xi ∈ {0, 1} for all i ∈ N \ {k};
2. if y > 0, then either akxk < 1 or akxk > ak − 1.

Proof If 1 > xk > 0 and the capacity inequality is not tight, it is easy to construct two
points in conv(P) by increasing and decreasing xk. Using a similar argument, if 1 > xi > 0
for i 6= k, then point p can not be extreme.

Assume y > 0, akxk ≥ 1 and ak(1 − xk) ≥ 1. Let p+ = p + (1,0, εek) and p− =
p − (1,0, εek) where ε = 1/ak. Clearly p = p+/2 + p−/2 and therefore p cannot be
extreme.

Based on this observation, we have the following characterization of the extreme points
of conv(P).
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Corollary 8 The point (y, z, x) be an extreme point of conv(P) if and only if one of the
following three cases holds:

1. There exist S ⊆ T ⊆ N and k ∈ S such that λ = a(S) − a0 > 0 and ak ≥ ρ, where
ρ = λ− bλc, and

xi =





1 if i ∈ S \ {k}
1− ρ/ak if i = k
0 otherwise

, zi =
{

1 if i ∈ T
0 otherwise , y = bλc .

2. There exist S ⊆ T ⊆ N and k ∈ N \ S such that λ > 0, ak ≥ 1− ρ and

xi =





1 if i ∈ S
(1− ρ)/ak if i = k
0 otherwise

, zi =
{

1 if i ∈ T ∪ {k}
0 otherwise , y = dλe .

3. There exist S ⊆ T ⊆ N such that

xi =
{

1 if i ∈ S
0 otherwise , zi =

{
1 if i ∈ T
0 otherwise , y = max{dλe , 0}.

We next present some basic results on the facets of conv(P).

Proposition 9 Trivial facets of conv(P).

1. Inequalities 0 ≤ xk, xk ≤ zk, zk ≤ 1 for all k ∈ N are facet-defining for conv(P).

2. Inequality 0 ≤ y is facet-defining for conv(P) if and only if a0 > 0.

3. The capacity inequality (1) is facet-defining for conv(P) if and only if

(i) a(N)− a0 ≥ max{1,maxi∈N ai} if a0 > 0,

(ii) a(N) > 1 if a0 = 0.

Proof For each inequality we give 2n + 1 affinely independent points (y, z, x) on the
respective face of conv(P).

1. 0 ≤ xk: (â,0,0); (â + 1,0,0); (â, ei,0) for i ∈ N ; (â, ei, ei) for i ∈ N \ {k}.
xk ≤ zk: (â,0,0); (â + 1,0,0); (â, ek, ek); (â, ei,0), (â, ei, ei) for i ∈ N \ {k}.
zk ≤ 1: (â, ek,0); (â+1, ek,0); (â, ek, ek); (â, ek +ei,0), (â, ek +ei, ei) for i ∈ N \{k}.

2. (0,0,0); (0, ei,0), (0, ei, εei) for i ∈ N , where ε > 0, small.

3. (i) If a(N) ≤ a0, then (1) is implied by the bounds on the variables. If 0 < a(N)−
a0 < max{1, maxi∈N ai}, then inequality (11) with S = N , z ≤ 1 and y ≥ 0 imply
inequality (1). For the other direction, consider following points:

(0,1,
∑

i∈N
a0

a(N)ei); (1,1,
∑

i∈N
a0+1
a(N) ei);
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(0,1,
∑

i∈N\{k}
a0

a(N\{k})ei) and (0,1− ek,
∑

i∈N\{k}
a0

a(N\{k})ei) for k ∈ N .

(ii) If a(N) ≤ 1 and a0 = 0, then inequalities (13) imply (1). For the other direction,
consider following points:

(0,0,0); (0, ek, 0), (1,1,
∑

i∈N\{k}
1−δk
a(N)ei + 1+ε

a(N)ek) for k ∈ N , where δk = εak
a(N\{k}) ,

ε > 0, small if |N | > 1 and δk = ε = 0 if |N | = 1.

Proposition 10 For all non-trivial facet-defining inequalities αx−βz−γy ≤ δ of conv(P)
the following statements are true:

1. δ ≥ 0, β ≥ 0, and γ > 0;

2. βi + daieγ ≥ αi ≥ βi for all i ∈ N ;

3. ∃i ∈ N such that αi > βi;

4. a(T ) > a0 for T = {i ∈ N : αi > 0}.

Proof As (0,0,0) ∈ P, we have δ ≥ 0. Let F be the set of points in P that satisfy the
inequality as equality. As the inequality is assumed to be different from zi ≤ 1, there is a
point p = (y, z, x) ∈ F with zi = 0. Since setting zi = 1 does not violate feasibility, βi ≥ 0
for all i ∈ N . Furthermore, the value of y can be increased without violating feasibility,
and therefore γ ≥ 0. Similarly, increasing zi and xi to one and y by daie gives another
point in P, therefore αi ≤ βi + daieγ for all i ∈ N .

On the other hand, as the inequality is assumed to be different from zi ≥ 0, there is
point p′ = (y, z, x) ∈ F with zi = 1. Decreasing zi and xi to zero gives another feasible
point. Therefore βi ≤ αixi ≤ αi for all i ∈ N . If α = β, then the inequality is implied by
α(x− z ≤ 0) + γ(−y ≤ 0) and 0 ≤ δ; hence α 6= β. But now, if γ = 0, we have α = β by
βi + daieγ ≥ αi ≥ βi.

Finally, suppose a(T ) ≤ a0 for T = {i ∈ N : αi > 0} and consider a tight point
p′′ = (y, z, x) with y > 0. As a(T ) ≤ a0, the point (0, z, x) is also feasible implying γ ≤ 0,
a contradiction.

3 Capacity flow cover inequalities

For S ⊆ N such that λ = a(S)− a0 > 0, let us relax the capacity inequality as

a0 + y ≥
∑

i∈S

aixi =
∑

i∈S

ai[1− (1− zi)− (zi − xi)]

or equivalently

y +
∑

i∈S

ai(1− zi) +
∑

i∈S

ai(zi − xi) ≥ λ. (10)

Then by Lemma 3, the capacity flow cover inequality

min{1, λ}y +
∑

i∈S

min{ai, λ}(1− zi) +
∑

i∈S

ai(zi − xi) ≥ λ (11)
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is valid for P. Note that inequality (11) can also be written as
∑

i∈S

aixi +
∑

i∈S

(ai − λ)+(1− zi) ≤ a0 + min{1, λ}y. (12)

We first note that (12) is a generalization of the well-known flow cover inequality (3).

Remark 11 Observe that for the single node fixed-charge flow set T , the capacity flow
cover inequality (12) reduces to the flow cover inequality (3) by letting y = 0.

We next identify the conditions under which the capacity flow cover inequality (12)
is facet-defining for conv(P). We study the cases when a0 = 0 and a0 > 0 separately as
the polyhedral structure of conv(P) depends on a0.

Proposition 12 Assume a0 > 0. The capacity flow cover inequality (11) is facet-defining
for conv(P) if and only if one of the following three conditions hold: (i) λ < maxi∈S{ai},
or (ii) λ < 1, or (iii) S = N .

Proof Necessity. If λ ≥ maxi∈S{ai}, λ ≥ 1, and S 6= N , then inequality (11) becomes∑
i∈S aixi ≤ a0 + y, which is implied by the capacity inequality (1) and xi ≥ 0, i ∈ N \ S.

Sufficiency. For a given S ⊆ N , we first write inequality (11) in canonical form as
follows:

min{1, λ}y +
∑

i∈S\S′
(ai − λ)zi −

∑

i∈S

aixi ≥
∑

i∈S\S′
ai − a0 − λ|S \ S′|,

where S′ = {i ∈ S : ai ≤ λ}. Let F be the face induced by inequality (11) and let
αy + βz + γx = δ be satisfied by all points in F . We will show that any such equality is a
multiple of the inequality that induces the face by generating pairs of points p′ = (y′, z′, x′),
and p′′ = (y′′, z′′, x′′) and using the fact that α(y′ − y′′) + β(z′ − z′′) + γ(x′ − x′′) = 0 if
both points are in F . We first construct a point p1 = (y1, z1, x1) ∈ F , where

y1 = 0, z1
i =

{
1 if i ∈ S
0 otherwise , x1

i =
{

1− λ
a(S) if i ∈ S

0 otherwise
.

Since a0, λ > 0 by assumption, a(S) > λ > 0, and therefore 1 > x1
k > 0 for all k ∈ S.

Let sk = (0,0, (1/ak)ek). Since 1 > x1
k > 0, there exists a small enough ε > 0, such

that p1 + εsk − εsj ∈ F for all j, k ∈ S. Therefore, γk = −akσ̄ for all k ∈ S for some fixed
constant σ̄ > 0.

Next, for all k ∈ S \ S′, we construct a point qk = (yk, zk, xk), where

yk = 0, zk
i =

{
1 if i ∈ S \ k
0 otherwise , xk

i =
{

1 if i ∈ S \ k
0 otherwise .

Using p1, qk ∈ F , we see that βk +(1−λ/a(S))γk−
∑

i∈S\{k}(λ/a(S))γi = 0. Substituting
γk = −akσ̄ for all k ∈ S and simplifying the equation gives βk = (ak−λ)σ̄ for all k ∈ S \S′

as desired.
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Next, for all k ∈ S′ we construct a point qk = (yk, zk, xk), where

yk = 0, zk
i =

{
1 if i ∈ S \ k
0 otherwise , xk

i =

{
1− λ−ak

a(S)−ak
if i ∈ S \ k

0 otherwise
.

Note that a(S \ {k}) ≥ λ− ak ≥ 0 for k ∈ S′. Since γx = λ for both qk, p1 ∈ F , we have
βk = 0 for all k ∈ S′.

Finally, we construct a point p2 = (y2, z2, x2) ∈ F , where

y2 = 1, z2
i =

{
1 if i ∈ S
0 otherwise , x2

i =

{
1− λ

a(S) + min{1,λ}
a(S) if i ∈ S

0 otherwise
.

Using p1, p2 ∈ F , we conclude that α = min{1, λ}σ̄ as desired.

If S 6= S′, then for all k ∈ S \S′ the slack of the capacity inequality (1) for point qk is
s = ao + y −∑

i∈N aixi = ak − λ > 0. If, on the other hand, S = S′, then by assumption,
we have 1 > λ, and for p2 (1) has a slack of s = 1−λ. In either case, we have a point p ∈ P
with slack and we can perturb it to obtain points p + t1i , p + t2i ∈ F , where t1i = (0, 1, 0)
and t2i = (0, 1, (s/ai)ei), to show βi = γi = 0 for all i 6∈ S.

Using p1, for instance, we also have δ =
∑

i∈S\S′ ai−a0−λ|S \S′|. We have therefore
shown that inequality αy + βz + γx = δ is a multiple of the original inequality and the
points defined above are affinely independent. As (0,1,0) ∈ P \F , F is a maximal proper
face of conv(P).

Therefore, when a0 > 0 the capacity flow cover inequality (11) is facet-defining under
mild conditions. When a0 = 0, however, inequality (11) defines a facet only when it
reduces to the capacity inequality (1), or to the surrogate variable upper bound inequality
(13).

Proposition 13 Assume a0 = 0. The capacity flow cover inequality (11) is facet-defining
for conv(P) if and only if one of the following two conditions hold: (i) |S| = 1 and
a(S) < 1, or (ii) S = N and a(S) > 1.

Proof Necessity. In this case λ = a(S). If a(S) < 1 and |S| > 1, inequality (11) becomes∑
i∈S aixi ≤ a(S)y, which is implied by individual inequalities ai(xi − y) ≤ 0, i ∈ S. If

a(S) > 1 and S 6= N , inequality (11) is implied by the capacity inequality (1) and xi ≥ 0,
i ∈ N \ S.

Sufficiency. In the first case, inequality (11) reduces to xk ≤ y, k ∈ N . The following
affinely independent points are clearly on the face: (0,0,0); (0, ei,0) for i ∈ N ; (1,1, ek);
(1,1, εei + ek) for i ∈ N \ {k}, where 0 < ε ≤ 1 − ak. In the second case, inequality (11)
is the capacity inequality (1) and the result follows from Proposition 9.

Corollary 14 If a0 = 0, then the surrogate variable upper bound inequality

xi ≤ y (13)

is facet-defining for conv(P) if and only if ai < 1.
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We next identify the fractional extreme points of relax(P) that can be cut off using a
capacity flow cover inequality.

Proposition 15 Every fractional extreme point (x, y, z) of relax(P) with y < 1 is cut off
by a capacity flow cover inequality (11).

Proof Let p = (x, y, z) be a fractional extreme point of relax(P). By Corollary 6, if y = 0,
there exist S ⊆ N and k ∈ S such that ak > λ > 0. Then inequality (11) with such S is
violated by p as

∑

i∈S

aixi +
∑

i∈S

(ai − λ)+(1− zi) = a0 + (ak − λ)λ/ak > a0 = a0 + min{1, λ}y.

On the other hand if y > 0, then there exist S ⊆ N such that y = λ 6∈ Z. If λ < 1, then
inequality (11) with such S is violated by p as

∑

i∈S

aixi +
∑

i∈S

(ai − λ)+(1− zi) = a0 + λ > a0 + λ2 = a0 + min{1, λ}y.

3.1 Lifting with integer capacity variable

We next describe valid inequalities obtained by first fixing the value of the y variable, and
then lifting the associated basic flow cover inequality. If the y variable is fixed to v ∈ Z+,
then the resulting lifted inequality has the form

∑

i∈S

aixi +
∑

i∈S

(ai − r)+(1− zi) ≤ a0 + v + α(y − v), (14)

where S ⊆ N and r = a(S)− v − a0 > 0.

Proposition 16 Let S ⊆ N be such that r = a(S) − v − a0 > 0 for v ∈ Z+. Then the
lifted capacity flow cover inequality (14) is valid for P if and only if

1. −Φ(−1) ≤ α if v = 0;

2. −Φ(−1) ≤ α ≤ Φ(1) if v > 0, where Φ is defined as in (15).

Moreover, (14) defines a facet of conv(P) if α equals one of its bounds and r < maxi∈S ai.

Proof Inequality (14) is the flow cover inequality (3) for the restriction P(v) = {(x, y, z) ∈
P : y = v} of P and it is valid for P(v) for any α. Then (14) is valid for P if and only if
α ≤ α ≤ α, where

α = max
{∑

i∈S aixi +
∑

i∈S(ai − r)+(1− zi)− a0 − v

y − v
: (x, y, z) ∈ P, y > v

}

11



and

α = min
{

a0 + v −∑
i∈S aixi −

∑
i∈S(ai − r)+(1− zi)

v − y
: (x, y, z) ∈ P, y < v

}
,

with α = ∞ if v = 0.

Without loss of generality suppose S = {1, 2, . . . , |S|} with a1 ≥ a2 ≥ · · · ≥ a|S|. Let
p = max{i ∈ S : ai > λ}, Ai =

∑i
k=1 ak for i ∈ {1, 2, . . . , p}, and A0 = 0. It is shown in

[12] that the lifting function

Φ(a) = min

{
a0 + v −

∑

i∈S

aixi +
∑

i∈S

(ai − r)+(1− zi) : (x, y, z) ∈ P(v − a)

}

can be stated as

Φ(a) =





max{−r, a} if a ≤ 0,
ir if Ai ≤ a ≤ Ai+1 − r,
ir + (a−Ai) if Ai − r ≤ a ≤ Ai,
pr + (a−Ap) if Ap − r ≤ a0 + v,
+∞ if a > a0 + v,

(15)

where i ∈ {0, 1, . . . , p−1} and that Φ is superadditive on [0, a0+v] and (−∞, 0], separately.

Then for v > 0 we have α = mina∈Z,a>0
Φ(a)

a = Φ(1), where the last equation follows
from superadditivity of Φ over [0, a0 + v]. Similarly, α = −mina∈Z,a<0

Φ(a)
a = −Φ(−1).

Finally, if r < maxi∈S ai, inequality (14) is facet-defining for conv(P(v)) and in addition
if α ∈ {α, α} < ∞, the lifting is exact; hence, (14) defines a facet for conv(P)

Note that −Φ(−1) = min{1, r}. Therefore, if we chose v = 0, then
∑

i∈S

aixi +
∑

i∈S

(ai − r)+(1− zi) ≤ a0 + min{1, r}y (16)

is valid for conv(P). Notice that this inequality is identical to the capacity flow cover
inequality (11). Also notice that the facet sufficient condition of Proposition 16 is more
restrictive than the condition of Proposition 12. Therefore, when v = 0, the lifted inequal-
ities do not lead to new inequalities.

If v > 0, however, the resulting inequalities are new. First observe that min{1, r} ≤
Φ(1) if and only if maxi∈S ai ≤ 1. So if v > 0, then

∑

i∈S

aixi +
∑

i∈S

(ai − r)+(1− zi) ≤ a0 + v + r(y − v) (17)

as well as ∑

i∈S

aixi +
∑

i∈S

(ai − r)+(1− zi) ≤ a0 + v + Φ(1)(y − v) (18)

are valid for conv(P) provided that maxi∈S ai ≤ 1. Inequalities (17) and (18) are facet-
defining provided that r < maxi∈S ai. They are distinct if and only if A2 − r < 1.

Recall that every fractional extreme point (x, y, z) of relax(P) with y < 1 is cut off by
a capacity flow cover inequality (11). We next show that some of the remaining ones are
cut off by the lifted capacity flow cover inequality (17).

12



Proposition 17 Every fractional extreme point (x, y, z) of relax(P) with y ≥ 1 is cut off
by a lifted capacity flow cover inequality (17) with v = byc and S = {i ∈ N : xi > 0}
provided that ai ≤ 1 for all i ∈ S.

Proof By Corollary 6, if y ≥ 1 for a fractional extreme point, then (i) y 6∈ Z+, (ii)∑
i∈N aixi = a0 + y and (iii) xi, zi = 1 ∈ {0, 1} for all i ∈ N . Therefore,

∑

i∈S

aixi +
∑

i∈S

(ai − r)+(1− zi) = a0 + y = a0 + v + r > a0 + v + r2 = a0 + v + r(y − v).

3.2 Augmented capacity flow cover inequalities

We can augment inequality (11) to obtain new valid inequalities that have non-zero coef-
ficient for variables (xi, zi), i ∈ N \ S. Let S ⊆ N be such that λ = a(S) − a0 > 0 and
T ⊆ N \ S. Now let us relax the capacity constraint (1) as

a0 + y ≥
∑

i∈S

ai[1− (1− zi)− (zi − xi)] +
∑

i∈T

ai[zi − (zi − xi)]

or equivalently
[ ∑

i∈S∪T

ai(zi − xi)

]
+

[
y +

∑

i∈S

ai(1− zi)

]
−

[∑

i∈T

aizi

]
≥ λ. (19)

Then by Lemma 3, for α = max{1, ā, λ} and ā = maxi∈S{ai}, the following inequality:

∑

i∈S∪T

ai(zi − xi) + min{1, λ}y +
∑

i∈S

min{ai, λ}(1 − zi) −
∑

i∈T

φα(ai, λ)zi ≥ λ (20)

is valid for P. Inequality (20) can also be written as
∑

i∈S∪T

aixi +
∑

i∈S

(ai − λ)+(1− zi)−
∑

i∈T

(ai − φα(ai, λ))zi ≤ a0 + min{1, λ}y. (21)

The coefficients of zi, i ∈ T approximate the ones obtained through sequence inde-
pendent lifting functions in [11]. Under conditions stated in the Proposition 18 they are
equal.

Proposition 18 Augmented capacity flow cover inequality (21) is facet-defining for conv(P)
provided that (1) a0 > 0, (2) λ < α, and (3) α− λ < ai ≤ α− (λ− a(S̄))+ for all i ∈ T ,
where S̄ = {i ∈ S : ai ≤ λ}.

Proof Inequality (21) with T = ∅ is facet-defining for conv(P) under conditions (1) and
(2) by Proposition 12. The MIR function φα(., λ) is superadditive and equals the lifting
function described Theorem 10 of Gu et al. [11] under condition (3).
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On the other hand, writing inequality (19) as
[ ∑

i∈S∪T

ai(zi − xi)

]
+

[∑

i∈S

ai(1− zi)

]
−

[
−y +

∑

i∈T

aizi

]
≥ λ (22)

and applying Lemma 3 for α = max{ā, λ}, we obtain the following valid inequality:

∑

i∈S∪T

ai(zi − xi) +
∑

i∈S

min{ai, λ}(1 − zi) − φα(−1, λ)y −
∑

i∈T

φα(ai, λ)zi ≥ λ

or equivalently
∑

i∈S∪T

aixi +
∑

i∈S

(ai − λ)+(1− zi)−
∑

i∈T

(ai − φα(ai, λ))zi ≤ a0 − φα(−1, λ)y (23)

for P.

Proposition 19 Augmented capacity flow cover inequality (23) is facet-defining for conv(P)
provided that (1) λ < ā, (2) 1 ≤ ā, and (3) ā− λ < ai ≤ A2 − λ for all i ∈ T .

Proof Inequality (23) with T = ∅ and y = 0 is facet-defining for conv(T ) under conditions
(1) and (2) [20]. The MIR function φā(., λ) is superadditive and equals the lifting function
Φ described in (15) under condition (3).

Observe that inequalities (21) and (23) are equal if λ < ā and 1 ≤ ā; however, facet
condition of Proposition 19 is less restrictive in this case.

4 Mixed integer rounding inequalities

In this section we describe a family of facet-defining inequalities that cut off all fractional
extreme points of relax(P). In addition all extreme points of conv(P) are extreme points
of the polyhedron obtained by adding these inequalities to relax(P).

Let S ⊆ N such that λ = a(S)− a0 > 0. Relaxing the capacity flow cover inequality
(11) by skipping the coefficient reduction step for i ∈ S′ ⊆ S and increasing the coefficients
of the (1− zi) terms for i ∈ S \ S′, we obtain
[
y +

∑

i∈S\S′
min{η, daie}(1− zi) +

∑

i∈S′
baic (1− zi)

]
+

[∑

i∈S

ai(zi − xi) +
∑

i∈S′
ri(1− zi)

]
≥ λ,

where η = dλe and ri = ai − baic. Now applying to this inequality the MIR procedure
gives the following valid inequality:

∑

i∈S

ai(zi − xi) +
∑

i∈S′
ri(1− zi) (24)

≥ ρ

(
η − y −

∑

i∈S\S′
min{η, daie}(1− zi)−

∑

i∈S′
baic (1− zi)

)
,
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where ρ = λ−bλc. Notice that as the capacity flow cover inequality (11) is itself obtained
by the MIR procedure, inequality (24) is the result of two iterative applications of the
MIR procedure.

Remark 20 For the splittable flow arc set Q, inequality (24) reduces to residual capacity
inequality (2) by letting z = 1.

Proposition 21 MIR inequality (24) is facet-defining for conv(P) if and only if

1. η > λ, i.e., λ 6∈ Z,

2. a(S) > ρ, i.e., either a0 > 0 or η > 1,

3. S′ = {i ∈ S : ai < λ and ri < ρ}.

Proof Necessity. 1. If η = λ, then (24) is implied by the capacity inequality (1) and
the bounds. 2. If a0 = 0 and η = 1 ≥ ai, then ai = ri ≤ ρ for all i ∈ S. Thus unless
S′ = S, inequality is weak. For S′ = S, inequality becomes

∑
i∈S ai(1−xi) ≥ a(S)(1− y),

which is implied by individual capacity flow cover inequalities (11) xi ≤ yi, i ∈ S. 3. Let
S∗ = {i ∈ S : ai < λ and ri < ρ}. If S′ 6= S∗, then replacing S′ with S∗ gives a stronger
inequality since ri + ρbaic < ρ min{η, daie} for i ∈ S∗.

Sufficiency. For a given S ⊆ N , we first write inequality (24) in canonical form as
follows:

ρy +
∑

i∈S\S′

(
ai − ρmin{η, daie}

)
zi +

∑

i∈S′

(
ai − ri − ρ baic

)
zi −

∑

i∈S

aixi

≥ ρ

(
η −

∑

i∈S\S′
min{η, daie} −

∑

i∈S′
baic

)
−

∑

i∈S′
ri

Let F be the face induced by inequality (24) and let αy + βz + γx = δ be satisfied by all
points in F . We start with constructing a point p1 = (y1, z1, x1) ∈ F and show that F is
not empty:

y1 = η(S), z1
i = x1

i =
{

1 if i ∈ S
0 otherwise ,

where η(S) = da(S)− a0e. Let tk = (0, ek, 0) and sk = (0, ek, εek), where ε = (1− ρ)/ak.
Since for all k ∈ N \ S, both p1 and p1 + tk ∈ F , we have βk = 0 for all k ∈ N \ S.
Similarly, p1 + tk and p1 + sk ∈ F implies that γk = 0 for all k ∈ N \ S.

Next, we construct p2 = (y2, z2, x2) ∈ F , where

y2 = η(S)− 1, z2
i =

{
1 if i ∈ S
0 otherwise , x2

i =
{

1− ρ
a(S) if i ∈ S

0 otherwise
.

Note that 1 > x2
i > 0 for all i ∈ S. Let tk = (0,0, (1/ak)ek). For each i, j ∈ S and for a

small enough ε > 0, both p2 and p2 + εti − εtj ∈ F , and therefore for some σ̄ ∈ R we have
γk = −akσ̄ for all k ∈ S. Furthermore, p1, p2 ∈ F implies that α = ρσ̄.

We next observe that for any u, v ∈ R, if we let u = due − 1 + ru, v = dve − 1 + rv

and u + v = du + ve − 1 + ruv, with 1 ≥ ru, rv, ruv > 0, we have

15



(i) either ru + rv > 1 ⇔ du + ve = due+ dve ⇔ ruv = ru + rv − 1 ≤ min{ru, rv}, or

(ii) or ru + rv ≤ 1 ⇔ du + ve = due+ dve − 1 ⇔ ruv = ru + rv > max{ru, rv}.

Let lk = (min{η(S), dake}, ek, ek). Since rk ≥ ρ for all k ∈ S \ S′, we have η(S \
k) = η(S) − dake ≤ η(S) − min{η(S), dake} and therefore p1 − lk ∈ P . Using p1, p1 −
lk ∈ F , we obtain the equation min{η(S), dake}α + βk + γk = 0 implying βk =

(
ak −

ρ min{η(S), dake}
)
σ̄ for all k ∈ S \ S′.

Finally, for all k ∈ S′ we construct a point qk = (yk, zk, xk), where

yk = η(S)− bakc − 1, zk
i =

{
1 if i ∈ S \ k
0 otherwise , xk

i =
{

1− ρ−rk
a(S\k) if i ∈ S \ k

0 otherwise
.

Note that rk < ρ for all k ∈ S′ implying η(S \ k) = η(S) − bakc and r(S \ k) = ρ − rk.
Therefore, ∑

i∈S

aix
k
i = a(S \ k)

(
1− ρ− rk

a(S \ k)

)
= a(S \ k)− r(S \ k)

and qk ∈ P . Since both p2, qk ∈ F , we have

0 = bakc ρσ̄ + βk − a(S)σ̄
(
1− ρ

a(S)

)
+ a(S \ k)σ̄

(
1− ρ− rk

a(S \ k)

)

= bakc ρσ̄ + βk − a(S)σ̄ + ρσ̄ + a(S \ k)σ̄ − ρσ̄ + rkσ̄

= bakc ρσ̄ + βk − akσ̄ + rkσ̄

implying βk =
(
ak − rk − ρ bakc

)
σ̄ for all k ∈ S′, as desired.

We have therefore shown that inequality αy +βz +γx = δ is a multiple of the original
inequality, and the points defined above are affinely independent. As (â+1,1,1) ∈ P \F ,
F is a maximal proper face of conv(P).

Observe that if λ ≤ 1, we have η = 1 and ρ = λ. Then by Proposition 21 facet-defining
inequalities (24) satisfy ai < λ < 1 for all i ∈ S′, in which case they are equivalent to
capacity flow cover inequalities (11). Therefore, inequalities (24) are of particular interest
if λ > 1 as they differ from inequalities (11) in that case.

In addition, remember the lifted capacity flow cover inequality (17) with v ∈ Z+ and
r = a(S)− v − a0 > 0

∑

i∈S

aixi +
∑

i∈S

(ai − r)+(1− zi) ≤ a0 + v + r(y − v)

which is valid and facet defining provided that r ≤ ai ≤ 1 for all i ∈ S. Notice that, under
this condition, (i) v = ba(S)− a0c = η − 1, (ii) r = ρ, and (iii) ri = ai for all i ∈ S. In
this case MIR inequality (24) becomes:

∑

i∈S

ai(zi − xi) +
∑

i∈S′
ai(1− zi) ≥ r(v + 1)− ry − r

∑

i∈S\S′
(1− zi)
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or, equivalently,
∑

i∈S

ai +
∑

i∈S

ai(zi − 1)−
∑

i∈S

aixi +
∑

i∈S

min{r, ai}(1− zi) ≥ rv + r − ry

which is identical to inequality (25) as v + a0 = r + a(S). Therefore, facet defining lifted
capacity flow cover inequalities form a subclass of MIR inequalities.

We next show that all fractional extreme points of relax(P) violate an MIR inequality.

Proposition 22 Every fractional extreme point of relax(P) is cut off by an MIR inequal-
ity (24).

Proof Let p = (x, y, z) be a fractional extreme point of relax(P). By Corollary 6, if y = 0,
there exist S ⊆ N and k ∈ S such that ak > λ > 0. Consider the inequality (24) with
such S and k ∈ S \ S′ and let rhs denote its right-hand side value for this point. This
inequality is violated by p as

∑

i∈S

ai(zi − xi) +
∑

i∈S′
ri(1− zi) = 0 < ρη(1− λ/ak) = rhs.

On the other hand, if y > 0, there exist S ⊆ N such that y = λ 6∈ Z. Then inequality (24)
with such S is invalid for (x, y, z) as

∑

i∈S

ai(zi − xi) +
∑

i∈S′
ri(1− zi) = 0 < ρ(η − λ) = rhs.

The following proposition complements Proposition 22.

Proposition 23 If the capacity inequality (1) is facet-defining for conv(P), then all ex-
treme points of conv(P) are extreme points of the polyhedron obtained by adding all MIR
inequalities (24) and surrogate variable upper bound inequalities (13) to relax(P).

Proof Consider the extreme points defined in Corollary 8. Any point in the first case is
the intersection of the following 2n+1 facets: capacity inequality (1), MIR inequality (24)
with S, xi ≥ 0 for i ∈ N \S, xi ≤ zi for i ∈ S \ {k} (xi = zi = 1), zi ≤ 1 for i ∈ T , xi ≤ zi

for i ∈ N \ T (xi = zi = 0). We may assume that ak > ρ, since otherwise case 1 reduces
to case 3. Then MIR inequality (24) is facet-defining because when a0 = 0, the property
ak > ρ implies that a(S) > 1.

Any point in the second case is the intersection of the following 2n+1 facets: capacity
inequality (1), MIR inequality (24) with S, xi ≥ 0 for i ∈ N \ (S ∪ {k}), xi ≤ zi for i ∈ S
(xi = zi = 1), zi ≤ 1 for i ∈ T ∪ {k}, xi ≤ zi for i ∈ N \ (T ∪ {k}) (xi = zi = 0). In
this case, if MIR inequality (24) is not facet-defining (i.e., a0 = 0 and a(S) < 1), it is
replaced with the surrogate variable upper bound inequality (13) for some i ∈ S, which is
facet-defining as ai < 1.
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Finally, any point in the third case is the intersection of the facets defined by either
y ≥ 0 or MIR inequality (24) with S, and xi ≥ 0 for i ∈ N \ S, xi ≤ zi for i ∈ S
(xi = zi = 1), zi ≤ 1 for i ∈ T , xi ≤ zi for i ∈ N \ T (xi = zi = 0).

If the capacity inequality (1) is not facet-defining, then replacing it with the stronger
capacity flow cover inequality (12) with S = N in the first two cases again gives necessary
2n + 1 facets.

4.1 Augmented MIR inequalities

For S ⊆ N such that λ = a(S)−a0 > 0 and T ⊆ N \S, let us relax the capacity constraint
as follows:

a0 + y ≥
∑

i∈S

aixi +
∑

i∈T

aixi (25)

=
∑

i∈S

ai[1− (1− zi)− (zi − xi)]−
∑

i∈T

ai[(zi − xi) + zi]. (26)

Let S′ ⊆ S and T ′ ⊆ T . We next relax inequality (26) as follows: (i) for i ∈ S′, we split
the coefficient of (1− zi) into baic and ri; (ii) for i ∈ S \S′, we round up the coefficient of
(1 − zi); (iii) for i ∈ T ′, we rewrite the coefficient of zi as daie and (ri − 1), and (iv) for
i ∈ T \ T ′, we relax the coefficient of xi to baic and add and subtract (ai − baic)zi to the
inequality. Thus the resulting inequality is

[
y +

∑

i∈S\S′
daie (1− zi) +

∑

i∈S′
baic (1− zi)−

∑

i∈T\T ′
baic zi −

∑

i∈T ′
daie zi

]

+

[ ∑

i∈S∪T ′
ai(zi − xi) +

∑

i∈T\T ′
baic(zi − xi) +

∑

i∈S′
ri(1− zi) +

∑

i∈T ′
(1− ri)zi

]
≥ λ. (27)

Applying the MIR procedure to (27) we obtain the valid inequality

∑

i∈S∪T ′
ai(zi − xi) +

∑

i∈T\T ′
baic(zi − xi) +

∑

i∈S′
ri(1− zi) +

∑

i∈T ′
(1− ri)zi ≥

ρ

(
η − y −

∑

i∈S\S′
daie (1− zi)−

∑

i∈S′
baic (1− zi) +

∑

i∈T ′
daie zi +

∑

i∈T\T ′
baic zi

)
. (28)

Proposition 24 An augmented MIR inequality (28) is facet-defining for conv(P) if

1. η > λ, i.e., λ 6∈ Z,

2. a(S) > ρ, i.e., either a0 > 0 or η > 1,

3. S ⊆ {i ∈ N : ai ≤ η},
4. S′ = {i ∈ S : ri < ρ},
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5. T = T ′ ⊆ {i ∈ T : (1− ri) < ρ}.

Proof We first rewrite inequality (28) as follows:

ρy +
∑

i∈S\S′
(ai − ρdaie)zi +

∑

i∈S′
(ai − ri − ρbaic)zi +

∑

i∈T\T ′
(ai − ρbaic)zi

+
∑

i∈T ′
(ai + 1− ri − ρdaie)zi −

∑

i∈S∪T

aixi ≥ ρ

(
η −

∑

i∈S\S′
daie −

∑

i∈S′
baic

)
−

∑

i∈S′
ri.

For a given S ⊆ N , let F be the face induced by the valid inequality and assume that
all p ∈ F satisfy the equality αy +βz + γx = δ. From the proof of Proposition 21 we have
α, βi, γi for all i ∈ N \ T as desired.

Let k ∈ T ′. Recall that, rk + ρ > 1 and therefore η(S + k) = η(S) + dake. Consider
p̄1 = p1 +

( dake − 1, ek,
dake−1+(1−ρ)

ak
ek), and note that dake − 1 + (1− ρ) < ak. Since

p1, p̄1 ∈ F , we have (dake − 1)ρσ̄ + βk + dake−ρ
ak

γk = 0.

Let tk = (0, 0, (1/ak)ek) and i ∈ S. We have p̄1, p̄1 + εtk − εti ∈ F for a small enough
ε > 0, and therefore γk = −akσ̄. Furthermore, when combined with above, we have
βk = (dake − ρ)σ̄ − (dake − 1)ρσ̄ = (1− ρ) dake σ̄, as desired.

Remark 25 For the unsplittable flow arc set R by letting x = z, the augmented MIR
inequalities (28) with T = N \ S reduce to

∑

i∈S′
ri(1− zi) +

∑

i∈T ′
(1− ri)zi ≥

ρ

(
η − y −

∑

i∈S\S′
daie (1− zi)−

∑

i∈S′
baic (1− zi) +

∑

i∈T ′
daie zi +

∑

i∈N\(S∪T ′)

baic zi

)
. (29)

Observe if x = z, inequalities (28) with T = N \ S dominate all others with T ( N \ S;
hence T = N \ S in inequality (29).

Furthermore, if S′ = T ′ = ∅, inequality (29) reduces to the c-strong inequality (5).
Recall that a c-strong inequality is facet-defining for conv(R) if and only if S is maximal
c-strong if and only if ri ≥ ρ for all i ∈ S and ri ≤ 1−ρ for all i ∈ N \S. Thus if S is not
maximal c-strong, inequality (29) with S′ = {i ∈ S : ri < ρ} and T ′ = {i ∈ T : (1−ri) < ρ}
dominates the corresponding c-strong inequality.

The following example illustrates the strength of (29) for conv(R). Let

R =
{

y ∈ Z+, z ∈ {0, 1}5 : 1x1 + 0.5x2 + 0.75x3 + 0.75x4 + 0.75x5 ≤ y
}

.

For S = {1, 2}, which is not maximal c-strong, the c-strong inequality (5) is

x1 + x2 ≤ y, (30)
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whereas the 2-split c-strong inequality (6) is

2x1 + x2 + x3 + x4 + x5 ≤ 2y. (31)

Inequality (29) with S = {1, 2}, S′ = ∅, and T ′ = {3, 4, 5} (λ = 1.5, η = 2, ρ = 0.5)

0.25x3 + 0.25x4 + 0.25x5 ≥ 0.5(2− y − (1− x1)− (1− x2)), (32)

which can also be stated as

x1 + x2 + 0.5x3 + 0.5x4 + 0.5x5 ≤ y

dominates both (30) and (31). It is easily checked that (32) is facet-defining for conv(R).

4.2 Scaled augmented MIR inequalities

For S ⊆ N such that λ = a(S)−a0 > 0 and T ⊆ N \S, let us relax the capacity constraint
as (26) and multiply the inequality with µ > 0 to obtain

µa0 + µy =
∑

i∈S

µai[1− (1− zi)− (zi − xi)]−
∑

i∈T

µai[(zi − xi) + zi]. (33)

For S′ ⊆ S and T ′ ⊆ T applying the same type of relaxation as in Section 4.1, we
obtain the intermediate valid inequality

[
dµey +

∑

i∈S\S′
dµaie(1− zi) +

∑

i∈S′
bµaic(1− zi)−

∑

i∈T\T ′
bµaiczi −

∑

i∈T ′
dµaiezi

]

+

[ ∑

i∈S∪T

µai(zi − xi) +
∑

i∈S′
r̄i(1− zi) +

∑

i∈T ′
(1− r̄i)zi

]
≥ µλ, (34)

where r̄i = µai−bµaic for i ∈ N . Now applying the MIR procedure to (34) we obtain the
valid inequality

∑

i∈S∪T

µai(zi − xi) +
∑

i∈S′
r̄i(1− zi) +

∑

i∈T ′
(1− r̄i)zi ≥

ρ̄

(
η̄ − dµey −

∑

i∈S\S′
dµaie(1− zi)−

∑

i∈S′
bµaic(1− zi) +

∑

i∈T ′
dµaiezi +

∑

i∈T\T ′
bµaiczi

)
, (35)

where η̄ = dµλe and ρ̄ = µλ− bµλc.
By simple comparison, one sees that choosing S′ = {i ∈ S : r̄i < ρ̄} and T ′ = {i ∈

T : (1 − r̄i) < ρ̄} in (35) leads to the strongest inequalities as inequalities for all other
choices for S′ and T ′ are implied by these and 0 ≤ z ≤ 1.

In addition, if µ − bµc < ρ̄, one can obtain a stronger inequality by not relaxing the
term µy in inequality (33) to dµey, but instead writing it as bµcy + (µ− bµc)y so that in
the mixed-integer rounding procedure, the first part can be treated as an integer variable
and the second part as a continuous variable. We do not write the resulting inequality
explicitly in order to avoid repetition.
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Remark 26 If 1 ≤ λ, the capacity flow cover inequality (11) can be obtained by taking
µ ≥ {1, ā, λ} in inequality (35), where ā = maxi∈S{ai}. If 1 > λ, then the strengthened
version (mentioned in the above paragraph) of inequality (35) gives the capacity flow cover
inequality.

Clearly inequality (35) also subsumes the augmented MIR inequality (28) by taking
µ = 1 and therefore it forms a superclass of all inequalities discussed in this paper except
the MIR inequality (24). When daie > η for some i ∈ S, the resulting MIR inequality is
different from (35).

We next show that (35) reduces to some well-known inequalities for the unsplittable
flow set R and the binary knapsack set K.

Remark 27 For the unsplittable flow set R by letting x = z, µ = k ∈ Z, S′ = T ′ = ∅,
and T = N \ S, inequality (35) reduces to

0 ≥ dkλe − ky −
∑

i∈S

dkaie(1− zi) +
∑

i∈N\S
bkaiczi.

This is the k-split c-strong inequality (6), which is shown to be facet-defining for conv(R)
in [5] under certain conditions. Then from the observation above, if S′ = {i ∈ S : r̄i < ρ̄}
and T ′ = {i ∈ T : (1− r̄i) < ρ̄}, inequality

∑

i∈S′
r̄i(1− zi) +

∑

i∈T ′
(1− r̄i)zi ≥

ρ̄

(
dkλe − ky −

∑

i∈S\S′
dkaie(1− zi)−

∑

i∈S′
bkaic(1− zi) +

∑

i∈T ′
dkaiezi +

∑

i∈N\(S∪T ′)

bkaiczi

)

dominates the k-split c-strong inequality.

Remark 28 For the binary knapsack set K by letting x = z and y = 0, inequality (34)
reduces to

∑

i∈S′
r̄i(1− zi) +

∑

i∈T ′
(1− r̄i)zi ≥

ρ̄

(
η̄ −

∑

i∈S\S′
dµaie(1− zi)−

∑

i∈S′
bµaic(1− zi) +

∑

i∈T ′
dµaiezi +

∑

i∈T\T ′
bµaiczi

)
. (36)

For S ⊆ N such that ā = maxi∈S ai ≥ λ, letting T = ∅ and µ = 1/ā, we obtain η̄ = 1,
ρ̄ = λ/ā, and consequently

∑

i∈S′
ai(1− zi) ≥ λ

(
1−

∑

i∈S\S′
(1− zi)

)
,

where S′ = {i ∈ S : ai < λ}. Therefore, for a minimal cover S, i.e., for S such that ai ≥ λ
for all i ∈ S, this inequality reduces to the the knapsack cover inequality

∑

i∈S

zi ≤ |S| − 1.
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Then for a minimal cover S, inequality (36) gives the lifted knapsack cover inequality

∑

i∈T ′
(ā− ai + bai/ācā)zi ≥ λ

(
1−

∑

i∈S

(1− zi) +
∑

i∈T ′
dai/āezi +

∑

i∈T\T ′
bai/āczi

)
,

or equivalently ∑

i∈S

zi +
∑

i∈T

φā(ai, λ)
λ

zi ≤ |S| − 1.

Since φ(·, λ) ≥ 0, the strongest inequality is obtained by letting T = N \ S. This is the
lifted knapsack cover inequality with MIR lifting function [3, 4, 15].

5 Concluding remarks

We studied the polyhedral structure of the network design arc set with variable upper
bounds. This set is a common substructure of formulations of network design problems
with multicommodity fixed charges and/or combinatorial restrictions.

Several fundamental sets studied independently in the literature are facial restrictions
of its convex hull. Therefore, valid inequalities for the network design arc set with variable
upper bounds generalize the inequalities known for these sets. In this study we have
identified facets that cut off all fractional extreme points of the continuous relaxation of
the network design arc set with variable upper bounds. Interestingly, some of these facets
are new even for the earlier studied restrictions.
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