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                           Abstract 

 
Cost-efficient problem detection and localization is one of the key requirements to a self-

managing system. In this paper, we consider detection and diagnosis (localization) of faults in 

large-scale computer networks and distributed systems. Particularly, we investigate the effects of 

network topology (e.g., scale-free versus random graphs) on the cost-efficiency of detection and 

diagnosis in terms of the number of tests required and the resulting accuracy of diagnosis. Recent 

studies suggest that the topology of the Internet, world wide web, peer-to-peer (e.g., Gnutella) 

and many other real-life networks is quite far from being a random graph (i.e., classical Erdos-

Renyi model). Instead, such networks exhibit scale-free properties, following power-low degree 

distributions (e.g., a small subset of nodes - hubs - are connected to a very large number of nodes 

while the majority of nodes have quite small degree). Our studies show that the network topology 

dramatically influences the cost-efficiency of diagnosis, such as the number of tests necessary for 

problem detection and diagnosis. In our studies, we use as tests end-to-end measurements, or  

probes (e.g., ping or  traceroute command). Scale-free networks appear to be much harder to 

diagnose than random networks of the same size, as they require significantly larger number of 

probe stations and end-to-end probes. We   investigate the effect of the probe stations’ location on the 

necessary number of probes. We also estimate the computational complexity of multi-fault diagnosis in 

scale-free and random networks by Bayesian inference. Our studies provide an important information 
for planning and deployment of probing-based diagnosis  in extremely large-scale practical 

networks (e.g., large corporate intranets, Internet, and GRID-computing systems). 

 

1. Introduction 
 

One of the key features of autonomic systems is the ability to analyze data in real-time 

and predict potential problems to avoid disastrous scenarios through prompt execution of 

remedial actions. For example, in IP network management, we would like to quickly 

identify which router or link has a problem when a failure or performance degradation 

occurs in the network. In the e-Commerce context, our objective could be to trace the 

root-cause of unsuccessful or slow user transactions (e.g. purchase requests sent through 

a web server) in order to identify whether it is a network problem, a web or back-end 

database server problem, etc. Another example is real-time monitoring, diagnosis and 

prediction of the health of a large cluster system containing hundreds or thousands of 

workstations performing distributed computations (e.g., Linux clusters or GRID-

computing systems). 

 

A commonly used approach to problem diagnosis in distributed systems management is   

event correlation [7,8,9], in which every managed device is instrumented to emit an 

alarm when its status changes. By correlating the received alarms a centralized manager 



is able to identify the problem. However, this approach usually requires heavy 

instrumentation, since each device needs to have the ability to send out the appropriate 

alarms. Also, it may be difficult to ensure that alarms are sent out, e.g. by a device that is 

down. Finally, it might be impossible to obtain the event data from all parts of the 

network, especially if it contains ``black boxes'' such as proprietary components. 

 

To avoid these problems, an alternative diagnostic approach has been developed that is 

based on end-to-end probing technology [6,1,2,3,4 ]. A probe is a test 

 transaction whose outcome depends on some of the system's components; diagnosis is 

performed by appropriately selecting the probes and analyzing the results. In the context 

of distributed systems, a probe is a program that executes on a particular machine (called 

a probe station) by sending a command or transaction to a server or network element and 

measuring the response. The  ping and traceroute commands are probably the most 

popular probing tools that can be used to detect network availability. Other probing tools, 

such as IBM's EPP technology [6],  provide more sophisticated, application-level probes. 

For example, probes can be sent in the form of test e-mail messages, web-access requests, 

a database query, and so on.  

 

In practice, probe planning (i.e., choice of probe stations, targets and particular 

transactions) is often done in an ad-hoc manner, largely based on previous experience and 

rules-of-thumb. Thus, it is not necessarily optimized with respect to probing costs (related 

to the number of probes and probe stations) and diagnostic capability of a probe set. More 

recent work [1,2,3,4] on probing-based diagnosis focused on optimizing the probe set 

selection and provided simple heuristic search techniques that yield close-to-optimal 

solutions. However, these approaches assume that an initial probe set is always provided, 

and do not address the problem of constructing a probe set from a given network 

topology. This problem includes optimal selection of both probe stations and  probes, and 

becomes particularly complicated in large-scale networks (e.g., networks containing at 

least several hundreds or thousands of nodes, not even talking about practical networks 

that contain tens of thousands nodes, such as, for example, Internet at AS level). 

 

In this paper, we consider detection and diagnosis (localization) of faults in large-scale 

computer networks and distributed system. Particularly, we investigate the effects of 

network topology (e.g., scale-free versus random graphs) on the number of tests 

necessary for detection and diagnosis. Recent studies suggest that the topology of the 

Internet, world wide web, peer-to-peer (e.g., Gnutella) and many other real-life networks 

is quite far from being a random graph (i.e., classical Erdos-Renyi model). Instead, such 

networks exhibit scale-free properties, following power-law degree distributions (e.g., a 

small subset of nodes - hubs - are connected to a very large number of nodes while the 

majority of nodes have quite small degree). Our studies show that the network topology 

dramatically influences the cost-efficiency of diagnosis, such as the number of tests 

necessary for problem detection and diagnosis. In our studies, we use as tests end-to-end 

measurements, or  probes. Scale-free networks appear to be much harder to diagnose than 

random networks of the same size, as they require significantly larger number of probe 

stations and end-to-end probes. We provide some estimates of the number of probe 

stations and probes required to diagnose a given network, and investigate the effect of the 



probe stations’ location on the necessary number of probes. We also estimate the 

computational complexity of multi-fault diagnosis in scale-free and random networks by 

Bayesian inference. Our studies provide an important information for planning and 

deployment of probing-based diagnosis  in extremely large-scale practical networks (e.g., 

large corporate intranets, Internet, and GRID-computing systems). 

 

 

 

2.  Experimental Setup 
 

The experiments were conducted using networks built by INET generator [13], a 

generator  which simulates  scale-free properties of Internet topology at Autonomous 

System (AS) level. The original Internet topologies (BGP tables) were obtained from the 

National Laboratory for Applied Network Research (NLANR) and The University of 

Oregon Route Views project (BGP table information was transformed into adjacency lists 

describing 51 Internet topologies collected between Nov. 1997 and Feb. 2002). 

 We experimented with networks of size from 500 to 1500, and compared them to 

random graphs of same size, obtained from  corresponding scale-free graphs by a random 

edge rewiring process. Probe stations (or sources) were selected randomly (10 trials per 

each network, from 1 to 100 sources per trial). The probe set for detection was selected 

using a greedy algorithm that chooses next a probe covering the largest number of 

previously uncovered nodes. 

 

For simulating the probes’ paths, we used two methods – random walks and shortest 

paths. We present results for both cases, however, since the shortest-path algorithm is 

more realistic as the one that is close to the network routing algorithm, we made 

emphasis on the shortest-path probes.  However,  even though random-walk probes are 

not supported in typical TCP/IP networks, it becomes possible in different types of 

distributed systems, such as peer-to-peer networks and also in application level probes 

where nodes denote software components rather than physical nodes and/or links, and a 

probe is a complicated transaction constructed out of software components in variety of 

ways. 

 

2.1. Random-walk Probes 
 

For random walks, each trial involved choosing randomly 20 targets among all the nodes 

of the network, and then choosing sources randomly among the rest of the nodes. The 

number of sources varied from 1 to 20. The resulting probe set was optimized to find the 

near-minimal probe set that allows to detect if there is any fault in the system (that is, the 

minimal number of probes necessary to cover all the nodes), and to find the minimal 

probe set that provides unique diagnosis of every single fault. For each network size and 

the number of sources the results were averaged over 10 trials. 

 

The probe set needed to cover the whole network in the case of random walks consists of 

just several probes (as could be expected given the property of random walks), and varies 

but slightly with network size, and with topology type. Choosing randomly as little as 4 



sources and 20 targets yields the probe set that can be optimized to get the probe set for 

detection (that is, full network coverage) consisting of just 2-3 probes for networks as 

large as1500 nodes (Fig.1a,b). More importantly, such relatively small initial probe set 

(80 probes) is enough for unique diagnosis of a single fault in the system, which can be 

seen by analyzing conditional entropy of fault distribution given the probe outcomes 

incurred by the corresponding probe set. Entropy drops abruptly with the increase in 

number of sources (Fig. 2a), and becomes 0 for as little as 4 sources for network sizes of 

1500 nodes. The initial probe set can be optimized (retaining its diagnostic power) to get 

near-optimal probe set for unique diagnosis of a single fault consisting of 20-30 probes, 

depending on network topology type. Fig.2b shows the size of (near) optimal probe set 

for diagnosis as a function of network size for scale-free and random graphs, for a fixed 

number of sources (4). Unlike probe set size for detection, which doesn’t particularly 

depend on the topology type, probe set size for diagnosis is larger for scale-free graphs 

than for random – 32 versus 23 probes for the network of 1500 nodes, and the difference 

grows with the network size. That suggests that randomization of scale-free graphs will 

yield the network that is more tractable for diagnosis by random-walk probes.  

 

 
(a) (b) 

Figure 1. Random-walk probes: the number of probes needed to cover all nodes (i.e., detect a 

fault) versus the number of randomly selected probe sources (a) in scale-free networks of 

different sizes; (b) in random networks of different sizes. 

 

 

 



 
                                    (a)                                                                    (b) 
Figure 2. Random-walk probes: (a) conditional entropy of fault distribution given the probe 

outcomes in scale-free versus random networks of size 1500 nodes; (b) near-optimal probe set 

size for diagnosis of different network sizes and fixed number of probe sources (6). 

 

2.2. Shortest-path Probes 
 

For shortest paths, at each trial the probe set was constructed as follows. From each of the 

sources, chosen at random, their number being varied from 1 to 100, shortest paths were 

built to every node of the network. The resulting probe set was optimized to find minimal 

number of probes necessary for problem detection. The probe set for diagnosis of a single 

fault in the system was constructed by extending the probe set for detection: first, the 

conditional entropy of fault distribution incurred by the probe set for detection was 

calculated, and then additional probes were chosen greedily among the remaining probes, 

at each step selecting the probe that yields the maximum reduction in entropy, till the 

entropy was reduced to 0. For each network size and the number of sources the results 

were averaged over 10 trials. 

 

It appeared that in case of shortest path probes, network topology drastically influences 

the number of probes necessary for detection and diagnosis, as well as affects how these 

numbers change with the change in the number of sources. Scale-free networks require 

significantly more probes than random ones of the same size (Fig.3.a) The behavior of 

probe set size for problem detection as a function of number of sources doesn’t depend 

on the network size (the whole curve just shifts along y-axes), but depends on the type of 

the network topology. In scale-free graphs, the number of probes for detection decreases 

slowly with the increase in number of sources (Fig. 3.b); in random graphs, the probe set 

size drops abruptly, reaching saturation point, after which further increase in the number 

of sources doesn’t yield essential reduction in the number of probes (Fig. 3.c). This 

provides for the good trade-off between the number of sources and the number of probes 

necessary to cover the whole network.  

 



 
                                       (a)                                                                  (b)                                           

 
                                (c) 
Figure 3. Shortest-path probes: the number of probes needed to cover the whole network (i.e., to 

detect a fault) versus the number of randomly selected probe sources: (a) in scale-free versus 

random networks of size 1000 nodes; (b) in scale-free network of different sizes; (c) in random 

networks of different sizes. 

  

Although (and largely due to the fact that) the probe set size for problem detection is 

smaller for random graphs, the conditional entropy of fault distribution provided the 

probes outcomes is higher for such graphs as compared to scale-free graphs (Fig. 4a), 

which means that more additional probes are needed to provide for unique diagnosis of 

every single fault in the system.  

Fig.4b shows the number of probes for detection versus the network size for the fixed 

number of sources (20) for scale-free and random graphs, and Fig. 4c – conditional 

entropy of fault distribution incurred by corresponding probe sets. The difference 

between scale-free and random graphs in the number of probes necessary to cover the 

network can be explained by the fact that the average length of the shortest path is 

smaller for scale-free graphs (Fig.5.a), and so more probes are needed to cover the 

network of the same size. 

 



 
                                         (a)                                                  (b) 

 
                              (c) 
Figure 4. (a) Conditional entropy of fault distribution given the probe outcomes in scale-free 

versus random networks of size 1000 nodes; (b) Conditional entropy of fault distribution given 

the probe outcomes for different network sizes and fixed number (20) of probe sources; (c) The 

number of probes needed to cover all nodes (i.e., detect a fault) for different network sizes and 

fixed number (20) of probe sources. 

                  
                                  (a)                                                                         (b) 



 
                                   (c) 
Figure 5. Shortest-path probes: (a) average probe length versus network size;  probe lengths 

distribution (recall that a probe follows the shortest path between the source and the destination) 

for (b) random and (c) scale-free networks of 1000 nodes. 

 

The number of probes needed to extend probe set for detection to provide for unique 

diagnosis of any single fault practically doesn’t change with the number of probe sources, 

for both scale-free (Fig. 6a) and random (Fig. 6b) networks – the probe set size for 

diagnosis curve is just shifted along y-axes. 

 

As with probe set for detection, probe set for diagnosis for random graphs first decreases 

rapidly with the number of sources, until it reaches some saturation point, after which no 

significant reduction in the probe set size can be achieved. For both, random and scale-

free graphs, probe set size for diagnosis increases linearly with the network size (Fig.6c) 

for a fixed number of sources. 

 

The trade-off between number of sources and number of probes for detection and 

diagnosis that is observed in random graphs, allows to estimate the optimal number of 

sources for networks of random topology – 10-20 sources, independent of the network 

size.  

 



 
                                   (a)                                                                   (b) 

 

 
                                   (c) 

 
Figure 6. Probe set for diagnosis, obtained by greedily extending probe set for detection for (a) 

scale-free and (b) random networks of 500 nodes.  (c) linear growth of the probe set size for 

diagnosis with increasing network size and  a fixed number (10) of probe stations.    

 

3. Computational Complexity Issues 
 

We now estimate complexity of multi-fault diagnosis by Bayesian inference when no 

restriction on the number of faults in the system is imposed. As a method of inference, 

variable elimination method is considered. Complexity of variable elimination method is 

known to be exponential in the induced width of the probabilistic network’s moral graph 

along the given variable ordering. The algorithm uses min-degree heuristic to find 

suboptimal node ordering (the induced width of suboptimal ordering is an upper bound 

on the induced width of the graph). Since probes are observed, we can effectively remove 

them from the moral graph, and consider the induced width of the remaining graph. The 

quality of diagnosis depends on the quality of the probe set. The full probe set, consisting 

of all available shortest-part probes (recall that we construct this set by sending shortest-

path probes from randomly selected sources to every node of the network) has large 



induced width even for a small number of probe sources (Fig. 7a), which makes variable 

elimination algorithm intractable. Since reducing the probe set may result in reduction in 

accuracy of the diagnosis algorithm, we’re looking for complexity vs. accuracy trade-off. 

We investigate complexity and accuracy of diagnosis of probe sets for problem detection, 

and probe sets that provide unique diagnosis of any single fault. Although the sizes of 

both probe sets decrease with the number of probe sources, the induced width for these 

sets increases with the number of sources because the probes have more intersections. In 

case of scale-free networks, induced width grows slowly (almost logarithmically) with 

the number of sources. For random networks, we observe the abrupt growth, until it 

reaches a saturation point (Fig. 7b, c). Induced width in scale-free networks practically 

doesn’t depend on network size; in random graphs, it grows linearly with the network 

size (Fig.8 a, b). For scale-free networks, the induced width of probe set for problem 

detection (that is, the probe set that covers every node) is relatively low (5-12) for all 

network sizes, which makes multi-fault diagnosis by such set of probes tractable, 

although the accuracy of this diagnosis need to be determined.   

  

 
(a) (b)  

 

 
           (c) 

 
Figure 7. Induced width of the graph underlying the probe set as a function of number of probe 

sources for scale-free versus random graphs: (a) for the full probe set; (b) for the probe set for 

problem detection; (c) for the probe set for unique diagnosis of any single fault. 



 

 

 
                                    (a)                                                                     (b) 

 
Figure 8. Induced width of the graph underlying the probe set as a function of the network size 

for the fixed number (10) of probe sources for the scale-free and random graphs: 

(a) for probe set for problem detection; (b) for probe set for unique diagnosis of any single fault. 

 

5. Probe Station Selection 
 

The choice of probe stations (sources) influences the size of the resulting probe set. 

We constructed probe sets for problem detection for various methods of the stations 

choice – totally random, random among top-degree nodes, and random among low-

degree nodes. The difference between these methods is noticeable only for sufficiently 

large number of sources, in which cases locating probe stations at the leaves rather than 

hubs seems to be a better choice for both scale-free (Fig. 9 a, b) and random (Fig. 9 c, d) 

networks. 

 

 
                                    (a)                                                                        (b) 



 
                                  (c)                                                                   (d) 

 
Figure 9. Probe set size for problem detection for various methods of choosing probe stations 

(totally randomly, randomly among top-degree nodes, randomly among low-degree nodes) for 

scale-free (a, b) and random (c, d) graphs of different sizes. 

 

 

5.1 Heuristic for Choosing Probe Stations 
 

For the case when all possible probes can be enumerated, we offer a heuristic for 

choosing probe stations that helps (on average) reduce the probe set size for detection for 

a given topology and a given maximum allowed number of sources. The method works 

as follows: from the given probe set, we greedily choose most informative probes, 

increasing the source count every time the chosen probe goes from the new source. When 

the source count reaches the maximum allowed number of sources, we remove from the 

probe set all probes that don’t start in the sources that are already chosen. We then 

proceed choosing most informative probes from the remaining set. The process ends 

when the resulting probe set is complete, that is, provide for unique diagnosis, if we are 

constructing probe set for diagnosis, or covers all nodes, if we are constructing probe set 

for problem detection. The set of sources is determined by this probe set. 

 

Fig. 10 compares the cost-efficiency of problem detection (in terms of probe set size) for 

the cases when the sources were chosen using the heuristic and when the sources were 

chosen randomly for random (a, b) and scale-free (c, d) graphs. The heuristic yields 

smaller probe sets than the random choice of sources on average. However, for the small 

number of sources there is practically no difference between random and heuristic source 

selection. This can be explained by the fact that as the number of sources grows, so does 

the probability to choose a redundant probe station when choosing the sources randomly. 

By redundant probe station we mean a station whose probes don’t provide additional 

information about the state of the system, once the probes from other stations in the set 

are chosen. Such redundant stations will be idle. Unlike that, heuristic choice will include 

in the source set only such probe stations that are actually needed for suboptimal probe 

set construction. More efficient use of probe stations results in the decrease of the probe 

set size.  Note also, that since the probability of choosing redundant stations drops with 

the increase in network size for the fixed number of sources, the difference between 



heuristic and random choices becomes less essential, as can be seen by comparison 

between Fig. 10 (a) and (b), or (c) and (d) .  

 

When no boundary on the number of sources is imposed, the resulting probe set equals to 

the suboptimal set obtained by the greedy algorithm for probe selection (for the given 

probe ordering). The number of sources resulting from this probe set is the maximum 

number of sources needed to optimize the initial probe set by the greedy algorithm. 

Increase in the number of sources beyond this point does not produce reduction in the 

probe set size (see the point corresponding to 35 sources on the “heuristic” curve of Fig. 

10 a). However, such number of sources can be quite large (35 sources for 200 nodes, as 

in Fig. 10 a). The trade-off between the number of sources and the number of probes can 

be determined by constructing suboptimal probe sets for gradually increasing number of 

sources and then choosing the probe set corresponding to a saturation point. Random 

graphs provide for a distinct trade-off point (fig. 10 a, b), but scale-free graphs don’t (fig. 

10 c, d).   

 

 
                                  (a)                                                                       (b) 

  
                                 (c)                                                                      (d) 
Figure 11. Comparison of the cost-efficiency of the problem detection for the cases when the 

sources were chosen using heuristic and when the sources were chosen randomly for random (a, b) 

and scale-free (c, d) graphs of various sizes. 

 



Conclusions 
 

Our experiments show that random graphs require much less probes for problem 

detection and diagnosis than scale-free graphs do, if the probes follow the shortest-path 

algorithm. Furthermore, random graphs offer a distinct trade-off point between the 

number of probe stations and the necessary amount of probes; we estimated that 10-20 

sources is the optimal number of sources, independent of the network size. As for scale-

free graphs, increase in the number of sources almost does not affect the resulting amount 

of necessary probes.  In addition, we show that constructing probes as random walks 

instead of shortest-paths, results in significantly smaller (order of magnitude) number of 

probes necessary for detection and diagnosis, as compared to the shortest-path probes.  

 

We studied the effect of the network topology on the complexity of multi-fault diagnosis 

by Bayesian inference. Although scale-free graphs require much larger amount of probes 

for detection and diagnosis, the computational complexity of diagnosis (measured by 

induced width of the corresponding Bayesian network) is significantly smaller in case of 

scale-free topology. As our experiments show, this complexity is relatively low and does 

not depend on the size of the network, if the topology is scale-free. The low complexity 

makes multi-fault diagnosis in scale-free graphs tractable by Bayesian inference, 

although the accuracy of such diagnosis depends on the prior probability of fault in each 

node. 

 

We investigated the effect of probe stations’ location on the amount of necessary probes, 

and showed that the degree of nodes designated as probe stations doesn’t really affect the 

resulting probe set size, especially when the number of sources is small. However, 

locating probe stations at leaves rather than hubs, yields reduction in the necessary probe 

set size. For the case when all possible probes can be enumerated, we offer a heuristic for 

choosing the probe stations that helps reduce the number of necessary probes. 
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