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Abstract

We propose a simple and efficient approach
to building undirected probabilistic classifi-
cation models (Markov networks) that ex-
tend the näıve Bayes classifiers and outper-
form the existing directed probabilistic clas-
sifiers of similar complexity (e.g. Bayesian
network with same cluster size). The models
are represented as sets of cliques, not neces-
sarily maximal, and the probability density
functions can be estimated in closed form
that mirrors the cluster variation method
(Kikuchi approximation). We employ a
highly efficient Bayesian learning algorithm,
based on integrating along a hill-climb in the
structure space. We present promising em-
pirical results on 46 benchmarks.

1 INTRODUCTION

In this paper, we focus on the problem of build-
ing probabilistic classifiers from data. It is often an
ill-defined problem to learn the ‘true’ global proba-
bilistic model from a limited amount of data, espe-
cially in high-dimensional domains. Even with poten-
tially unlimited data, the model complexity might be
intractable. Therefore, various approximation tech-
niques are used. A common approach is to use ‘lo-
cal’ models which limit the complexity of probabilistic
functions used to describe the model, effectively mak-
ing certain independence assumptions: for example,
näıve Bayes only uses class-conditional distributions
P (Xi|Y ) for each attribute Xi, tree-augmented näıve
Bayes extends it to pairwise class-conditional depen-
dencies such as P (Xi|Xj , Y ), and Bayesian network
classifiers learn a collections of conditional distribu-
tions P (Xi|ΠXi

, Y ) where ΠXi
is some limited-size

subset of attributes.

Another approach is to seek a joint probability mass

function (PMF) consistent with a set of marginal
probability mass functions on subsets of attributes
P (X1, . . . , Xk, Y ) that act as constraints (Ireland &
Kullback, 1968). There are many such joint functions,
and we pick the maximum entropy one, meaning that
no information is assumed by the joint PMF P (X, Y )
beyond what is given by the constraints. Unfortu-
nately, computationally expensive iterative methods
are usually required to identify the global PMF.

Note that the approaches mentioned above aim at
learning a joint probability distribution in an explicit
(normalized) form, which is not really necessary (as we
show later) for estimating the class predictive prob-
ability P (Y |X). Herein, we propose a simple ap-
proach that only learns a collection of marginal dis-
tributions over subsets of variables, which corresponds
to an undirected model – Markov network – and an im-
plicit (non-normalized) representation of a joint distri-
bution. While general inference in Markov networks is
hard, computing predictive class probabilities P (Y |X)
is easy given the observed X = x.

Our approach is based on the cluster variation method
originally proposed as a way of approximating free en-
ergy of a complex system from ‘local’ energies over
subsets of variables (Kikuchi, 1951) (so-called Kikuchi
approximations). There is a close link between ap-
proximating free energy of a system and approximat-
ing the corresponding probability distribution, namely,
minimizing KL-divergence between the true and ap-
proximate distribution is equivalent to minimizing the
corresponding Kikuchi approximation to free energy1.
This link explains recent popularity of Kikuchi approx-
imations within the probabilistic inference community.

In this paper, we will focus on the tasks of predictive
class probability estimation and classification, where
the query attribute is the label, and all the other at-

1It is also shown that the fixed points of (generalized)
belief propagation, a popular approximate inference algo-
rithm, are at the stationary points of the Kikuchi free en-
ergy (Yedidia et al., 2004).



tributes are the evidence. We will not use the clus-
ter variation method to model the free energy, but
instead to model the global PMF directly. We will
employ a parsimonious Bayesian prior to select the set
of regions (subsets of variables) with the maximum
posterior probability, without restricting ourselves to
hierarchical, graphical or decomposable probabilistic
models. However, we will treat structure as a vari-
able, and integrate it out when performing prediction,
using a highly efficient algorithm that combines poste-
rior sampling with lookahead-enabled heuristic search.

2 RELATED WORK

Learning Markov networks from data has a long his-
tory. Typically, it focuses on learning bounded-
treewidth models, since general inference in such mod-
els is exponential in their treewidth. For example,
Chow and Liu (1968) proposed a simple algorithm for
learning optimal tree distributions, and Srebro (2001)
generalized this approach to hypertrees, i.e. Markov
networks of bounded treewidth. Projecting a distribu-
tion on a Markov network of bounded treewidth (i.e.
finding such network that is closest to the true dis-
tribution in terms of KL-divergence) is shown to re-
duce to finding a triangulated graph that maximizes
the total sum of weights over its cliques with respect
to some monotone weight function. Unfortunately,
learning optimal hypertrees is an NP-hard problem,
but there are approximation algorithms with provable
performance guarantees (Srebro, 2001).

Note, however, that in case of classification with a
model M, we are not concerned with bounding the
treewidth of the model as we only use it for com-
puting P (y|x,M), and this can be done using non-
normalized products of potentials that approximate
the true model (as we show below). Thus, we are
only concerned with bounding the clique size in the
original (non-triangulated) network, due to computa-
tional complexity of our structure search being expo-
nential in the maximum clique size. The advantage
of not learning an explicit distribution and settling
for an non-normalized product of potentials enables
us to account for more k-way interactions between the
variables than the corresponding triangulated model
would do, keeping the treewidth fixed.

Another related approach is learning max-margin
Markov networks for classification (Taskar et al.,
2003). However, that work was focused on the in-
teractions among the labels rather than among the
features, e.g. in sequential and spatial data where
there are strong correlations between the labels and
the usual i.i.d. assumption does not capture the prob-
lem’s structure. Our goal is different as we consider

the standard classification task but wish to learn the
structure of the Markov network over the attributes
and the class, i.e. select an appropriate subset of clus-
ters (which also can be viewed as a feature selection
problem in exponential-family models).

3 NOTATION AND DEFINITIONS

Let X = {X1, . . . , Xn} be a set of observed random
variables, called attributes, and let x = (x1, . . . , xn)
be a vector of values assigned to the variables in
X. Herein, we assume discrete-valued attributes, i.e.
x ∈ X = X1 × . . .×Xn where each range Xi is a set of
possible values of Xi. Let Y denote an unobserved ran-
dom variable called the class, where y ∈ Y, |Y| = m.
The set of attributes together with the class (i.e.,
all variables) is denoted V = X ∪ {Y }. An assign-
ment v = (x, y) of values to the attributes and the
class is called an instance, or example. We will use
a short notation P (v) = P (x, y) = P (x1, . . . , xn, y)
to describe the joint probability distribution P (X1 =
x1, . . . , Xn = xn, Y = y). A subset of variables R ∈ V
is called a region (or cluster), and a value assignment
to R is denoted vR.

A classifier is a mapping h : X → Y that assigns a class
value to any given instance. In particular, the Bayes
classifier h∗(x) = arg maxy P (y|x) = arg maxy P (x, y)
selects the most-likely value of class given the observed
attributes, and is provably optimal (i.e. has the lowest
error probability, or lowest risk, among all classifiers).
However, in practice, the true underlying distribution
P (x, y) (or, respectively, P (y|x)) is not available, or is
hard to estimate from limited data.

A common approach to this problem is to assume
a certain simplified family M of joint probability
mass functions P (y,x|M) = P̂ (y,x) that approximate
P (y,x). For example, one of the simplest and per-
haps most popular probabilistic classifiers is the näıve
Bayes that assumes attribute independence given
the class, thus approximating P (x, y) by P̂ (x, y) =∏

i P (xi|y)P (y). Other approaches include less restric-
tive assumptions on the structure of P̂ (V), such as
trees (e.g., Tree-Augmented Näıve Bayes (TAN) or,
more generally, Bayesian networks (Friedman et al.,
1997). We will use undirected graphical models such as
Markov networks. A Markov network, or Markov ran-
dom field on random variables X is defined as 〈G,S〉
where G is an undirected graph and S = (Φ1, . . . ,Φm)
is a set of positive functions, called potentials for each
of the m cliques in G, such that the joint distribution
P (x) factorizes over them: P (x) = (1/Z)

∏
i Φ(xi)

where Z is a normalization constant.2

2Without loss of generality we could restrict the set of
all cliques to the set of all maximal cliques.



4 MAIN IDEA

Our approach is motivated by the following simple ob-
servation:

Lemma 1 Given a set of random variables V =
X ∪ {Y }, a set R = {R|R ⊆ V} of subsets (re-
gions) of V, where Y belongs to at least one region,
and a product Φ(v) = Φ(x, y) =

∏
R∈R ΦR(vR) of

non-negative functions (potentials) defined on these re-
gions, let P̂ (v) = (1/Z)Φ(v) be the corresponding joint
probability distribution over V, where Z is a normal-
ization constant. Then:

1. Computing P̂ (Y |x) does not require global nor-
malization, i.e. P̂ (Y |x) = Φ(x, Y )/

∑
y′ Φ(x, y′);

2. Bayesian classifier can be computed using a prod-
uct of only those potentials that contain Y , i.e.
h∗(x) = arg maxy

∏
{R∈R|Y ∈R} ΦR(vR).

Proof: The first claim follows from P̂ (y|x) =
P̂ (x, y)/P̂ (x) = (1/Z)Φ(x, y)/

∑
y′(1/Z)Φ(x, y′),

since by definition Φ(v) = Φ(x, y). The second claim
is easily obtained from the definition of Bayesian clas-
sifier, h∗(x) = arg maxy P̂ (y|x), and the following ob-
servation:

P̂ (y|x) =
Φ(x, y)∑
y′ Φ(x, y′)

=
∏

{Q∈R|Y /∈Q} Φ(vQ)∑
y′ Φ(x, y)

∏
{R∈R|Y ∈R}

ΦR(vR),

where (
∏

{Q∈R|Y /∈Q} Φ(vQ))/
∑

y′ Φ(x, y) is indepen-
dent of Y .

This observation tells us that a non-normalized repre-
sentation of a joint distribution over a Markov network
can be used for a specific inference problem of comput-
ing the predictive class probability P (y|x).

Note that typical probabilistic classifiers (e.g., näıve
Bayes, TAN, Bayesian networks) build an explicit
probabilistic model P̂ (y,x) by assuming a certain
structure of the probability distribution (e.g., a tree-
structure in TAN, or a particular factorization of
P̂ (y,x) according to the Bayesian network structure).
However, as shown above, learning an explicit (nor-
malized) probabilistic model is not needed if our ob-
jective is only to estimate the predictive class proba-
bility P (y|x), and may potentially introduce unneces-
sary constraints on the set of interactions we wish to
include in the model.

In this paper, we propose an alternative approach
that models P̂ (y,x) implicitly by using a collection
of marginal distributions defined over (potentially all)

subsets, or clusters, of the variables (clearly, the sub-
set size is limited to a reasonable value to make the
approach tractable). The marginal distribution for a
particular subset of variables R is P (vR) that is es-
timated directly from the data, is referred to as the
submodel. The set of such clusters corresponds to an
undirected graphical model, i.e. a Markov network.
The main advantage of our approach is that it allows
to take into account potentially any subset of k-way
interactions instead of limiting ourselves to interac-
tions consistent with the DAG structure in Bayesian
network learning. We are also not restricting the mod-
els to bounded-treewidth Markov networks as done in
(Srebro, 2001). Thus, our approach imposes no a pri-
ori constraints on the structure, other than that the
structure is specified in terms of subsets of variables.

For example, consider an n × n grid Markov network
(e.g., Ising model). It is well-known that its treewidth
equals n, so a bounded-treewidth model with bound
k < n would have to ignore many pairwise interactions,
while an non-normalized model with the bound of 2 on
the (initial) clique size could include all of them. While
none of the approaches is an absolute winner in all
cases, empirical results demonstrate that the ability to
incorporate more interactions while staying tractable
is a clear advantage of our approach.

Given the factorization of variables into the set of
clusters, the question is how to reconstruct the joint
distribution P (v) only knowing the set of submodels.
Our approach to region selection is inspired by the
cluster variation method (CVM) (Yedidia et al.,
2004), also known as Kikuchi approximation of
free energy (Kikuchi, 1951). The cluster variation
technique is used only for representation of the joint
probability distribution, not for performing inference.
The issue of interaction selection is handled later in
the paper. An overview of our approach is given below:

Kikuchi-Bayes classification algorithm:

1. Given Y = X∪{y}, and a bound k on region size,
select the set of interactions M = {M |M ⊆ Y}
using the approach described in Sect. 6.

2. Given M, compute an extended set of regions and
their counting numbers forming a region graph
R using the cluster variation method where each
interaction corresponds to an initial region (see
Sect. 5). For each region R estimate the submodel
P (vR) from data.

3. Approximate P (v) by the (non-normalized) prod-
uct Φ(v) =

∏
〈R,cR〉∈R P (vR)cR where cR is the

counting number for region R.

4. Compute P̂ (y|x) = Φ(x, y)/
∑

y′ Φ(x, y′) and



classify y∗(x) = arg maxy P (y|x).

5 KIKUCHI APPROXIMATION TO
PROBABILITY DISTRIBUTIONS

We will now elaborate on the second step of the
Kikuchi-Bayes algorithm. Let us consider a prob-
lem of approximating a joint PMF P (V) using its
marginals over subsets of n + 1 random variables V =
{X1,X2, . . . , Xn, Y }. Given the set of interactions
M = {R1, R2, . . . , R�} in the set V and the submodel
for each region, PR = P (vR) = P (vR,1, vR,2, . . . , vR,k),
we will find an (non-normalized) approximation
ΦM(v) of the intractable P (y) using the set of
{P (vR);R ∈ M}.
Our approach to the joint PMF approximation is
inspired by the cluster variation method (CVM)
(Yedidia et al., 2004), also known as the Kikuchi ap-
proximation of free energy (Kikuchi, 1951). We apply
the cluster variation method (Yedidia et al., 2004) to
the learned set of interactions M to obtain a region
graph. The region graph includes the interactions as
initial regions, their intersections, intersections of in-
tersections, and so on. For each region R, there is a
corresponding counting number cR, that accounts for
the region overlaps and avoids double-counting when
using the region-based approximation of the free energy
(Yedidia et al., 2004). The details of cluster variation
algorithm are described as Algorithm 1.

The free energy is then defined as FR = UR −
HR, where UR and HR are the region-based ap-
proximations of the average energy and the en-
tropy, respectively, and are given by: UR =∑

R∈R cRUr(bR), and HR =
∑

R∈R cRHR(bR), where
bR is some marginal probability distribution over R,
UR(bR) =

∑
yR

bR(yR)ER(yR) is the average energy,
and HR(bR) =

∑
yR

bR(yR) ln bR(yR) is the entropy of
a region, respectively (Yedidia et al., 2004). Region-
based approximation using CVM is considered a good
approximation to the (intractable) true free energy, be-
cause it accounts for the overlaps between the regions.

Although the region graph is defined as a directed
graph where the nodes are regions, and the links repre-
sent the region inclusion relationships (Yedidia et al.,
2004), we will represent the region graph merely as
a set of pairs R = {〈R, cR〉, R ⊆ V}, keeping the
connectivity structure implicit. Generalizing the Kirk-
wood superposition approximation (Jakulin & Bratko,
2004), the joint Kikuchi approximation is then defined
as:

P (v) � 1
Z

ΦM(v), ΦM(v) �
∏

〈R,cR〉∈R
P (vR)cR (1)

R0 ← {∅} {Redundancy-free set of interactions.}
for all S ∈ M do {for each initial region}

if ∀S ′ ∈ R0 : S � S ′ then
R0 ← R0 ∪ {S} {S is not redundant}

end if
end for
R ← {〈S, 1〉; S ∈ R0}
k ← 1
while |Rk−1| > 2 do {there are feasible subsets}

Rk ← {∅}
for all I = S† ∩ S‡ : S†,S‡ ∈ Rk−1, I /∈ Rk do
{feasible intersections}

c ← 1 {the counting number}
for all 〈S ′, c′〉 ∈ R, I ⊆ S ′ do

c ← c − c′ {consider the counting numbers of all
regions containing the intersection}

end for
R ← R∪ {〈I, c〉}
Rk ← Rk ∪ {I}

end for
end while
return {〈R, c〉 ∈ R; c 
= 0} {Region graph.}

Algorithm 1: Cluster variation method for construct-
ing the region graph given the set of interactions M =
{S1,S2, . . . ,S�}.

The submodel over the attributes VR is P (vR), and
Z is the normalization constant. Each P (vR) can be
computed by marginalization of some P (vS), R ⊆ S.
It is also easy to show that the approximation in (1) is
equivalent to the following definition of the joint PMF
that uses a recursive definition for potentials φR:

P (v) � 1
Z

∏
R∈R

φR(vR)

φR(vR) � P (vR)∏
R′⊂R φR′(vR′)

(2)

The set of regions (clusters) R thus defines a Markov
network. It is well-known (Pearl, 1988) that when
the Markov network is triangulated and thus yields
a clique tree, the distribution can be represented ex-
actly through (1) (i.e., no normalization is needed), as
P (v) =

∏
R∈R φR(vR) , where the potentials φR(vR)

are defined by (2). In general, when the counting num-
bers are greater than zero only for the initial regions,
the Kikuchi approximation is exact (Yedidia et al.,
2001).

When the resulting Markov network is not triangu-
lated, the above set of regions nevertheless defines a
so-called “valid approximation” to the free energy as a
sum of weighted free energies over the regions (Yedidia
et al., 2004); the weights (counting numbers) ensure
that each potential function and each node will be
counted exactly once in the approximation to the free
energy. This motivated us to choose this approach to
model approximation, although we do not always com-
pute a set of regions that yields a triangulated graph.



6 MODEL LEARNING

In the present section we will deal with the choice
of interactions or initial regions. We will adopt the
Bayesian framework, based on an explicit description
of the model in terms of its parameters φ = (M,Θ, ϑ).
It is desirable that the structure M is independent
of the submodel prior ϑ and the submodel parame-
ters Θ. It would be paradoxical that some submodel
P (X1, Y ) changed because some new attribute X2 was
introduced into the model. Submodels and marginals
of the joint should remain invariant given the overall
model structure. Our goal is achieved by the following
factorization of the prior P (φ) = P (M)P (ϑ)P (Θ|ϑ) =
P (M)P (ϑ)

∏
i P (θi|ϑ). We will now address two addi-

tional constraints: first, the submodels must be a pos-
teriori consistent in spite of the conditional indepen-
dence of their parameters; second, the models should
be parsimonious: as simple as possible but not simpler.

The final result of our inference based on data D will
be the following class predictive distribution:

P̂ (y|x) ∝
∫

P (φ|D)P̂ (y|x, φ)dφ (3)

For prediction we thus integrate the model structure
out (Buntine, 1991; Cerquides & López de Màntaras,
2003). In the following sections we will discuss our pri-
ors and our greedy algorithm for efficiently integrating
in the space of φ. Still, the value of φ with the maxi-
mum a posteriori probability is interesting as the best
individual model in the ensemble.

6.1 CONSISTENT SUBMODELS

The submodels have no specific ordering, and should
be estimated independently from data D. After the
estimation, we work with posterior predictive distri-
butions P (vR|D), without referring back to their pa-
rameters. It is important, however, to assure that the
predictive submodels are in fact consistent. Consis-
tency means that there exist some global predictive
distribution P (v|D) so that the submodels could be
obtained from it by marginalization.

While maximum likelihood estimation would result
in consistent submodels, Bayesian modelling requires
some forethought. Namely, each submodel is mod-
elled based on the same prior, but independently of
other submodels, including those that overlap with
it. Some popular choices of parameter priors, such as
the Laplacean prior, would result in inconsistent sub-
model posteriors. Imagine estimating two entangled
coins using the Laplacean prior. If a single coin c1 is
estimated independently, we will obtain the posterior
predictive probability of pH = (1 + #c1=H)/(2 + #).

If we estimate two co-tossed coins simultaneously, and
marginalize c2 out, we obtain a non-matching

pH =
2 + #(c1 = H, c2 = H) + #(c1 = H, c2 = T )

4 + #
.

Let us now consider a submodel on attributes Xs =
{X1,X2, . . . , Xk}. All the attributes are assumed to
be nominal, and the multinomial submodel would be
appropriate. The multinomial submodel is parame-
terized by the vector θs whose dimensionality corre-
sponds to the cardinality of

∏k
i=1 |Xi|. A coordinate

θs:x1,...,xk
can be interpreted as the probability of oc-

currence of (x1, . . . xk). What we need is a prior P (θs)
that assures that the posterior predictive distribution
P (xs|D) =

∫
P (θs|D)P (xs|θs)dθs will be consistent

with all submodels that share attributes with Xs.

It is quite easy to see that the following choice of the
symmetric Dirichlet prior fulfills the demand of pre-
dictive consistency, if the same value of ϑ is used for
all the submodels:

P (θs|ϑ) = Dirichlet(α, . . . , α), α =
ϑ∏k

i=1 |Xi|
(4)

This prior is best understood as the expected number
of outliers: to any data set, we add ϑ uniformly dis-
tributed instances. There is also an implied assump-
tion of no structural zeros: not making such an as-
sumption may result in zero likelihood of the test data.

6.2 PARSIMONIOUS STRUCTURES

The structure in the context of Kikuchi-Bayes is sim-
ply a selection of the submodels. P (M) models our
prior expectations about the structure of the model.
Parsimony means that we should not select all the
submodels, and the motivation for this is not just the
subjective desire for simplicity but also the frequentist
problem of objective identifiability and the decision-
theoretic desire to minimize the expected loss. We will
now provide a parsimonious prior that asserts a higher
prior probability to simpler selections of submodels.

The primary question is how to quantify the complex-
ity of the set of submodels. Neither the number of sub-
models nor the total number of parameters across the
submodels in M would be sensible choices: some sub-
models describe attributes with a greater number of
values, and some submodels may be partly contained
within other submodels. An interesting quantifica-
tion of complexity that solves this dilemma is given by
Krippendorff (1986) in the context of loglinear mod-
els without structural zeros. Let us assume a set of
overlapping submodels of the attribute vector V, and
the resulting region graph R obtained using the CVM.



The number of degrees of freedom of the joint model
M with a corresponding region graph R is:

dfM �
∑

〈S,c〉∈R
c
(
− 1 +

∏
X∈S

|X |
)

(5)

The overlap between submodels is hence handled in
an analogous way both for fusion in (1) and for the
assessment of degrees of freedom.

The following prior corresponds to the assumption of
exponentially decreasing prior probability of a struc-
ture with an increasing number of degrees of freedom
(or effective parameters):

P (M)
�∝ exp

{
− m dfM

m − dfM − 1

}
(6)

We discourage the degrees of freedom from exceed-
ing the number of training instances m. This choice
of the prior has a frequentist justification: it corre-
sponds to the Akaike information criterion (AIC) with
small-sample correction (Burnham & Anderson, 2002).
Performing MAP inference of the structure parameter
M with such a prior would correspond to maximizing
the AIC. Thus, our prior corresponds to the subjective
choice of the frequentist paradigm along with a partic-
ular loss function. A Bayesian will make sure that the
prior is properly normalized, of course.

6.3 THE PRIOR AND THE LIKELIHOOD
FUNCTION FOR CLASSIFICATION

Our objective is predictive class probability estima-
tion with the Kikuchi approximation (1). We need
to define the prior on the structure variable M and
the likelihood of M given the data. If M is going
to be used for prediction, the effective degrees of free-
dom are fewer (“Conditional density estimation is eas-
ier than joint density estimation.”). Assuming a sin-
gle attribute Xi, the degrees of freedom of the con-
ditional model P (Y |Xi) correspond to the difference
between the cardinality of the range of both Y and X1

at once less the cardinality of the range of X1 alone:
dfY |Xi

= |Xi × Y| − |X1|. In general, if we condition
upon a subset of attributes Y ⊆ X , the degrees of free-
dom of the resulting conditional model will be defined
as:

dfMY �
∑

〈S,c〉∈R
c

( ∏
X∈S

|X | −
∏

X∈S
X /∈Y

|X |
)

(7)

The prior P (MY) is obtained by plugging (7) into (6).

The growth of structures should be guided by whether
the addition of a submodel is of benefit in predicting
the label. The following conditional likelihood func-
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Figure 1: The logarithm of the parsimonious prior is well-
aligned with the expected log-loss across bootstrap resam-
ples in conditional density estimation.

tion takes this into account:

P̂ (v(1)...(m)|MY) �
m∏

i=1

P̂ (y(i)|x(i),MY) (8)

Because M was assumed to be independent of ϑ and
Θ, we prepare Θ in advance, before assessing M. The
P̂ (y(i)|x(i),M) is obtained by applying the Bayes rule
on a Kikuchi approximation. A different approach to
submodel fusion is conceivable, e.g., based on replacing
the Kikuchi approximation with a maximum entropy
one.

We can examine the resulting conditional prior em-
pirically on several smaller benchmark domains with
the number of instances in the order of magni-
tude of 100 and discretized attributes: ‘soybean-
small’, ‘lung’, ‘post-op’, ‘lymphography’, ‘german
credit’ and ‘breast-cancer’. We have compared the
posterior log-likelihood of a particular model M,
P (v(1)...(m)|MY , ϑ = 0)P (MY) with the expected to-
tal log-loss of the maximum likelihood estimates on
nonparametric bootstrap resamples D∗, across many
resamples: ED∗{−∑

v(i)∈D∗ log P (y(i)|x(i))}. The
sampling zeros were assumed to be structural zeros,
i.e., if a particular attribute-class combination did not
appear in the training data, it was assumed to be im-
possible and did not count towards the df (Jakulin &
Bratko, 2004). The result is shown in Fig. 1.

7 STRUCTURE SEARCH

Although integrating the structure out using (3) is the-
oretically simple, we need to sample in the space of M.
It is very expensive to exhaustively survey the whole
lattice of possible structures. Even if we did that,
we would not be able to explain what our model is.
We will adopt a simpler approach: hull-climbing. We



will greedily ascend to the local maximum a posteri-
ori structure by including the best individual region at
each step, one that maximizes the posterior structure
probability. Even once we get there, we keep descend-
ing for a while, as long as the structure’s likelihood
keeps increasing. On the termination of ascent, we in-
tegrate out the stage of the path. In other words, we
perform Bayesian model averaging with respect to the
length of the greedy path to the top and beyond.

This way, we obtain a compact depiction of the op-
timal hilltop (maximum a posteriori structure), the
continuing of the path towards the dangerous peak
(maximum likelihood structure). Integrating out the
stage of the path prevents overconfidence in a particu-
lar structure and overfitting on the test data. Further-
more, the model average is essentially transparent and
interpretable, as we can easily present the ordering of
the regions as they were included into the model.

During the climb, we are guided by one-level looka-
head (Buntine, 1991). This can be done efficiently
with Kikuchi-Bayes using the tricks of Caruana et al.
(2004): including a new region corresponds to just
multiplying the approximate joint PMF with another
term and renormalizing for each instance. With the
considerable increase in performance that ensues, we
can afford to find the best region at every step of the
forward selection.

In addition to the look-ahead, we use the step-wise for-
ward selection algorithm designed for loglinear models
(Jobson, 1992). We first ascend by adding regions of
size k attributes, and only when no further ascent is
possible, we continue by ascending through addition
of regions of size k + 1 attributes. The purpose of
this step-wise approach is both to increase the per-
formance by decreasing the fanout in the search tree
and to smooth the path. For example, we prevent im-
mediately adding the interaction ABY if adding AY
and BY is just as good. Still, we grow models faster
than we would by only attempting unitary increases in
their degrees of freedom: we skip forward by adding
whole regions. In all, other search algorithms could
also be used, especially stochastic ones, but we should
be careful as counting the same model structure mul-
tiple times would interfere with the prior. An example
of such a search is shown in Fig. 2.

It must be noted that adding a region in the context
of Kikuchi-Bayes may sometimes reduce the model’s
likelihood, not just its posterior probability. We re-
fer to this as approximation error due to the use of
suboptimal Kikuchi approximation. There would be
no joint approximation error had we used MaxEnt in-
stead or if we only used the maximal cliques of the
Markov network as initial regions.

Figure 2: Interactions of size 4 are not merely a theoreti-
cal curiosity. In this illustration we show the Tic-Tac-Toe
game board, which comprises 9 squares, each correspond-
ing to a 3-valued attribute with the range {×, ◦, }. The
goal is to develop a predictive model that will indicate if a
board position is winning for × or not: this is the 2-valued
class attribute. The illustration shows the interactions in
the MAP model identified by our algorithm: 2-way inter-
action (5 green circles), 3-way interactions (4 blue serif
lines), and 4-way interaction (6 red dashed lines). Each
region includes the class.

8 RESULTS AND CONCLUSIONS

Judging from the rankings in Table 1, Kikuchi-Bayes
with path averaging manages to outperform all of the
today’s most frequently used probabilistic classifiers:
multinomial logistic regression with the baseline, tree-
augmented näıve Bayes and the näıve Bayesian clas-
sifier, in spite of the fact that it is based on only an
approximation to the Boltzmann distribution. At the
same time, Kikuchi-Bayes is highly efficient in spite of
the fact that it follows a fully Bayesian approach by
treating the structure as a nuisance variable and that
it uses exhaustive lookahead in exploring the structure
space: most data sets were processed in a fraction of
a second. The single non-branching greedy path of
ascent in the structure space is highly interpretable.

We have noticed no deterioration by increasing the
maximum interaction size, so the prior effectively pre-
vents overfitting. However, attempting the inclusion
of large regions is sometimes futile: the interactions of
order 3 or even just 2 were perfectly sufficient in many
natural data sets. Although these higher-order inter-
actions are relatively rare in real-life data, we should
have the capacity to handle them.

However, there appears to be an interesting phe-
nomenon: the mismatch between the underlying as-
sumptions of cross-validation and the i.i.d. Specifi-
cally, cross-validation seems not to overly penalize the
classifiers that fit many parameters. The domains with
many attributes and few examples are marked with ‘*’
in Table 1, and we can see that Kikuchi-Bayes is con-



servative with respect to model complexity in those do-
mains. In all, because cross-validation is not enforcing
the i.i.d., methods that assume i.i.d. have suboptimal
performance. We can see that ordinary näıve Bayes
and tree-augmented näıve Bayes would get completely
eliminated from the competition if it was not for such
domains.
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log-loss / instance
domain t(s) n df NB LR TAN kMAP kBMA
horse-colic 1.89 369 228 1.67 1.81 5.97

√
0.83 0.83

hepatitis 0.47 155 48 0.78
√

0.77 1.31
√

0.48 0.43
ionosphere 3.71 351 129

√
0.64 0.69 0.74

√
0.39 0.33

vehicle 0.42 846 205 1.78 0.93 1.14
√

0.69 0.66
voting 0.23 435 48 0.60 0.37 0.53

√
0.21 0.15

monk2 0.01 601 17 0.65 0.65 0.63
√

0.45 0.45
p-tumor* 0.39 339 552

√
3.17

√
2.76 4.76 2.65 2.61

heart 0.15 920 167 1.25 1.24 1.53
√

1.11 1.10
post-op 0.01 88 19

√
0.93

√
0.81

√
1.78

√
0.79 0.67

wdbc 0.57 569 61 0.26 0.42 0.29
√

0.15 0.13
promoters* 37.5 106 227

√
0.60

√
0.70 3.14

√
0.59 0.54

lymph 0.39 148 94
√

1.10
√

0.91
√

1.25
√

0.98 0.86
cmc 0.04 1473 55 1.00 0.97 1.03

√
0.93 0.92

adult 1.11 3.2e4 134 0.42 0.35 0.33 0.30 0.30
crx 0.19 690 58

√
0.49

√
0.39 0.93

√
0.37 0.36

krkp 6.52 3196 69 0.29 0.08 0.19
√

0.06 0.05
glass 0.03 214 90

√
1.25

√
1.07

√
1.76 1.12 1.05

australian 0.16 690 49
√

0.46
√

0.39 0.94
√

0.41 0.38
titanic 0.01 2201 8 0.52 0.50

√
0.48

√
0.48 0.48

segment 0.74 2310 617 0.38 0.45 1.06 0.17 0.17
lenses 0.00 24 14

√
2.44

√
0.89 2.99 0.34 0.39

monk1 0.01 556 16 0.50 0.50 0.09 0.01
√

0.02
soy-small* 5.29 47 115

√
0.00 0.15 0.00 0.00 0.00

mushroom 1.33 8124 72 0.01 0.00 0.00 0.00 0.00
shuttle 0.01 253 15 0.16

√
0.10 0.06

√
0.07

√
0.07

car 0.02 1728 48 0.32 0.33 0.18 0.19 0.19
breast-LJ 0.03 286 24

√
0.62 0.58

√
0.89

√
0.67

√
0.58

monk3 0.01 554 17 0.20 0.10
√

0.11
√

0.11
√

0.11
bupa 0.01 345 12

√
0.62 0.60

√
0.60

√
0.62

√
0.61

tic-tac-toe 0.03 958 27 0.55 0.06 0.49
√

0.08
√

0.07
pima 0.02 768 19

√
0.50 0.46

√
0.49

√
0.51

√
0.48

iris 0.00 150 15
√

0.27 0.21
√

0.32
√

0.27
√

0.23
spam 39.9 4601 156 0.53 0.16 0.32 0.19

√
0.19

breast-wisc 0.03 683 28
√

0.21 0.13 0.23
√

0.21
√

0.18
german 0.64 1000 68

√
0.54 0.52 1.04 0.65

√
0.59

anneal 6.16 898 204
√

0.07 0.02 0.17 0.11 0.11
ecoli 0.01 336 92

√
0.89 0.68

√
0.94

√
0.85

√
0.83

hayes-roth 0.00 160 24 0.46 0.26 1.18 0.45 0.45
balance-scale 0.00 625 40 0.51 0.28 1.13 0.51 0.51
soy-large* 5.95 683 822

√
0.57 0.37

√
0.47 0.68 0.68

o-ring 0.00 23 7
√

0.83 0.66
√

0.76
√

1.41
√

1.00
lung-cancer* 35.0 32 233 5.41 1.24 6.92

√
2.37

√
1.62

audiology* 81.2 226 1783 3.55 1.40 5.56 2.24 2.23
wine 0.10 178 50 0.06

√
0.09

√
0.29

√
0.19

√
0.14

yeast-class* 138 186 376 0.01 0.90
√

0.03 0.25 0.23
zoo* 0.25 101 124 0.32

√
0.37

√
0.42

√
0.72

√
0.70

avg rank (log-loss) 3.68
√

2.54 •3.95 2.88 1.95
avg rank (error rate) 2.98 •3.34 3.20

√
2.87 2.62

Table 1: For each of the 46 UCI data sets, we performed 5
replications of 5-fold cross-validation. The data sets were
discretized with the Fayyad-Irani method and the missing
values were interpreted as special values. The best result
is typeset in bold, and the results of those methods that
outperformed the best method in at least 2 of the 25 exper-
iments are

√
-tagged. df are the degrees of freedom of the

ordinary näıve Bayesian classifier, and n is the number of
instances. The sparse data sets with fewer instances than
degrees of freedom are tagged with ‘*’.
The Kikuchi-Bayes algorithm with model averaging
(kBMA) outperforms all competing approaches (näıve
Bayes (NB), logistic regression (LR), tree-augmented näıve
Bayes (TAN), and the single best structure (kMAP)) both
in terms of the log loss and in terms of the error rate. Lo-
gistic regression had the worst error rate, and TAN the
worst log loss (•).
t(s) marks the time in seconds spent by the Kikuchi-Bayes
algorithm for learning the model structure using k-way
interactions, k ≤ 4, on a notebook computer: although
performance does drop with an increasing number of at-
tributes, most ordinary data sets were processed in under
a second, and it never took more than 2.4 minutes.




