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A DIOPHANTINE EQUATION - SUMS OF SQUARES

Don Coppersmith
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Abstract

Given positive integers a, b, c, we solve the diophantine equation a(x2
1 + x2

2) + b(x2
3 + x2

4) +
c(x2

5 + x2
6) = abc.

The following Diophantine equation was inspired by a question of Poo-Sung Park [Par].

Theorem 1 Given positive integers a, b, c, there exist integers x1, . . . , x6 satisfying:

a(x2
1 + x2

2) + b(x2
3 + x2

4) + c(x2
5 + x2

6) = abc.

Proof. We can assume that a, b, c are squarefree and pairwise relatively prime, in light of

the following two reductions:

Reduction 1: Suppose a, b, c are not pairwise relatively prime. Say p| gcd(b, c). Set

a′ = ap, b′ = b/p, c′ = c/p. Solve

a′(y2
1 + y2

2) + b′(y2
3 + y2

4) + c′(y2
5 + y2

6) = a′b′c′

Set x1 = py1, x2 = py2, and xi = yi, i = 3, 4, 5, 6, and verify that {xi} solves the original

problem.

Reduction 2: Suppose the coefficients are not squarefree. Suppose p2|c. Set a′ = a,

b′ = b, c′ = c/p2, and solve

a′(y2
1 + y2

2) + b′(y2
3 + y2

4) + c′(y2
5 + y2

6) = a′b′c′

Then set xi = pyi, i = 1, 2, 3, 4, and x5 = y5 and x6 = y6 to solve the original problem.

In each case the reduced problem has smaller product abc, so that after finitely many

steps we reach a point where no further reductions are possible. At this point, each prime p
divides at most one of the coefficients a, b, c.

Suppose p|c. We know that the sums of squares d2 +e2 (where d, e are arbitrary integers)
achieve each nonzero residue modulo p. In particular, since neither a, b is divisible by p,
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there are integers d, e, not both divisible by p, satisfying

d2 + e2 = −b/a mod p.

Calculate that for any {xi} satisfying the following two linear equations:

dx1 + ex2 − (d2 + e2)x3 = 0 mod p

ex1 − dx2 − (d2 + e2)x4 = 0 mod p

we have
p|a(x2

1 + x2
2) + b(x2

3 + x2
4)

and hence (since p|c)
p|a(x2

1 + x2
2) + b(x2

3 + x2
4) + c(x2

5 + x2
6).

The set of integer lattice points (x1, x2, x3, x4, x5, x6) satisfying these two conditions forms a
lattice, which has density 1/p2; that is, one of every p2 integer lattice points satisfies both

equations.

Write the corresponding pair of equations for each p dividing a, b or c. The set of integer

lattice points satisfying all such equations again forms a lattice, with density 1/
∏

p2 =
1/(abc)2. For each such point (x1, . . . , x6), the sum a(x2

1 + x2
2) + b(x2

3 + x2
4) + c(x2

5 + x2
6) is

divisible by each prime p dividing abc, so we get

abc|a(x2
1 + x2

2) + b(x2
3 + x2

4) + c(x2
5 + x2

6).

Dilate the lattice along the six coordinate directions by factors (
√

a,
√

a,
√

b,
√

b,
√

c,
√

c),
respectively. Now we have a lattice L with density 1/(abc)3, that is, one point per (abc)3

six-dimensional volume.

Hermite’s constant γ6 = (64/3)1/6 < 1.67 assures us that there is a nonzero element w of
this lattice L whose squared Euclidean length is at most γ6(det L)2/6 < 1.67abc; see [Wei1].

This element w is of the form w = (x1

√
a, x2

√
a, x3

√
b, x4

√
b, x5

√
c, x6

√
c), with xi integers,

not all zero. The squared Euclidean length of w is

M = a(x2
1 + x2

2) + b(x2
3 + x2

4) + c(x2
5 + x2

6).

By construction M is a multiple of each p dividing abc, so M is a multiple of abc. M is

nonzero because w is nonzero. M < 1.67abc. The only positive multiple of abc smaller than
1.67abc is abc itself. Thus

M = a(x2
1 + x2

2) + b(x2
3 + x2

4) + c(x2
5 + x2

6) = abc.

An alternative approach is more intuitive but the bound is slightly weaker, and in fact fails

to yield the desired result. Construct a six-dimensional ball with radius R =
√

abc/2 around

each point of L. Each ball has six-dimensional volume V6R
6 where V6 = π3/6; see [Wei2]. So
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it has volume (π3/48)(abc)3 > 0.64(abc)3. The centers of these balls occur once per (abc)3

volume. The volume of these balls don’t quite account for the volume of 6-dimensional space;

we cannot conclude that they overlap. If we could, we would then consider the centers of

two overlapping balls. Their distance is strictly less than 2R = 2
√

abc/2, so their squared

distance is smaller than 2abc. The difference of the two centers gives a vector

(w1, w2, w3, w4, w5, w6) = (x1

√
a, x2

√
a, x3

√
b, x4

√
b, x5

√
c, x6

√
c),

with xi integers, not all zero. As before, the squared distance is

M = a(x2
1 + x2

2) + b(x2
3 + x2

4) + c(x2
5 + x2

6),

and again we would conclude M is a positive multiple of abc smaller than 2abc, whence

M = abc.

The numbers given by Hermite’s constant and the lattice basis argument are stronger

than those given by the sphere packing argument, and the difference allows one method to

succeed where the other fails.
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