
RC23606 (C0505-003) May 12, 2005
Computer Science

IBM Research Report

Specifying and Verifying Business Process Models with
Labeled Pi Calculus

Ke Xu1, Ying Liu2, Cheng Wu1

1Automation Department
Tsinghua University

Beijing 100084
China

2IBM Research Division
China Research Laboratory

HaoHai Building, No. 7, 5th Street
ShangDi, Beijing 100085

China

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Specifying and Verifying Business Process
Models with Labeled Pi Calculus 1

Ke Xu(1)*, Ying Liu(2)*, Cheng Wu(1)

(1) Automation Department, Tsinghua University, Beijing 100084, China
(2) IBM China Research Lab, Haohai Building, Beijing 100085, China

Abstract. Because of the strong expressive power and analysis capabilities, Pi
calculus has been applied in the business process modeling area by more and
more people. In existing works, Pi calculus is often used to capture the action
execution logic of a business process. But the real situation is that some data
and resource information are also critical for business process models besides
action execution logic. Although it is possible to indirectly specify the behavior
of data and resource with Pi processes, it is not intuitive for understanding and
analyzing the holistic semantics of a business process. An extension for Pi
calculus with state information, called labeled Pi calculus, is proposed in this
paper. The main idea of labeled Pi calculus is to replace the abstract state name
with the detailed state information, so that it can not only specify the semantics
of action execution logic but also describe state transition of a business process.
It can be regarded as an integrated formal method of state-based paradigm and
event-based paradigm. Because state information is integrated to Pi calculus in
a loosely coupled way, the theory and analysis capabilities of Pi calculus can be
well-preserved in labeled Pi calculus. Moreover, new state simulation and
equivalency relations are defined for labeled Pi calculus, which improve the
analysis capability of Pi calculus considerably. A business process example is
used to illustrate how to formalize the semantics of a business process with
labeled Pi calculus and how to analyze the properties of it.

Key Words: Labeled Pi Calculus; State Equivalency; Hybrid Transition System

1. Introduction

Model-driven architecture (MDA)[15] is gaining more and more acceptance from both
field and academic sides because of its value in accelerating and rationalizing
business application development. Business process modeling plays an important role
in MDA. In MDA, process models are used to capture the real business operations as
platform independent models. The fidelity checking of a business process model is
crucial for helping improve the feasibility of MDA in real business cases. Simulation

1 There is a possible confusion about the usage of the term ‘label’ in labeled transition systems

(LTS) and the state labeling function in Kripke Structure. The term ‘label’ used in this paper
rather refers to the latter one. Therefore to avoid this confusion, we will call a transition
‘labeled’ by action a in LTS to be a transition ‘fired’ by action a in this paper.

* Contact Author. Phone Number: 086-13810103537; E-mail: xk02@mails.tsinghua.edu.cn
* Contact Author. Phone Number: ; E-mail: aliceliu@cn.ibm.com

technologies have been widely applied to business process modeling tools to predicate
the behavior and performance of a business process model. However, the reliability of
simulation technologies is always a question due to its random character.

Model checking technologies have been recognized in protocol verification and
hardware design verification. How to apply model checking technology to the area of
process oriented management systems is a hot topic in recent years. In fact, there have
some existing achievements in applying formal methods into complex process
modeling systems, such as grid workflow and various business process modeling
tools. Though there are some arguments about what is the best theoretical foundation
of business process management, petri Net[6] and Pi calculus[1][2] are regarded as two
promising candidates. The benefits of theoretical foundation are obvious, and the
following two points are most important: one is that a solid mathematical method can
help define the unambiguous semantics of a process model, therefore, it can be
translated into an unambiguous implementation; the second point is that the mature
analysis capability of a mathematical model can help analyze its properties.

Pi calculus put forward by Robin Milner[1] has attracted a lot of attentions, and a
variety of research works have been done to apply Pi calculus in the field of process
modeling[3], service composition[4][5], etc. The reason of the wide recognition for Pi
calculus in business process management is because Pi calculus has three native
features: simple syntax and semantics but with high expressive power; the mobility
feature which makes Pi calculus specialized in capturing the dynamic interaction
among system components; strong analysis capability, such as bi-simulation and
model checking supporting. Despite all these merits, applying Pi calculus to business
process management is still a big challenge because of the following problems:
1. Pi calculus is event-based formal method, i.e., transition is the first-class but

without explicit state information. On the contrary, the execution logic of actions
is only one aspect in business process models. Input and output data information
as well as resources and their status are also needed to be explicitly modeled. How
to completely formalize a business process model with Pi calculus is a problem.

2. Similarly to the first problem, properties that can be accepted by model checking
tools of Pi calculus are often action related properties because Pi calculus is event-
based method. However, the reality is that our customers really don’t want to
differentiate event-based properties and state-related properties. An example is
give here, ‘each assemble product activity must be carried out before the factory
directive has approved the activity and the needed machines are free’, which is a
hybrid property including both action execution order and state confirmation.

3. The computation complexity of model checking is always a concern.
4. In order to using analysis capability of Pi calculus, users are demanded to specify

the required properties in formal formulas since almost all currently available
model checking tools accept only logical formulas as input for properties
specification. However, the reality is that business people usually don’t want to
care logical formulas.

In this paper, we will focus on the first two problems and provide some clues for
the third one. For the forth problem, we will propose to design a pattern-based
property specification language for supporting easily writing properties. This work
will be discussed in a separate paper.

The main question is that the specification and analysis power of traditional Pi
calculus is not enough in analyzing a process when it is interpreted in a state-based
view. Although there is a recent trend in the integration of state/event based
formalization and specification language[16-19], there is still much work left to be done
to address the above problems since the most frequently used existing formal
techniques in business process modeling are purely event-based (e.g. process
algebras) or state-based (e.g. finite state machine and Petri nets). Besides, as has been
shown in [14] and [18], the hybridization of actions and states will make both the
property specification and modeling of systems to be more effective. Therefore, in
this paper we propose to extend Pi calculus to support both state and event based
specification and verification of process models. Our idea can be concluded in the
following three points: to extend Pi calculus with state–based feature; to exploit bi-
simulation not only in checking behavioral equivalency but also state equivalency; to
reflect different user concerns in Pi calculus so that effective reduction techniques can
be developed and the size of the state space can be well managed for decreasing
computation complexity.

In this paper, a Pi calculus extension, namely, labeled Pi calculus will be
introduced how to solve the above problems. There are three basic concepts in labeled
Pi calculus, names, processes, and labels. The semantics of two concepts, names and
processes, are inherited from Milner’s Pi calculus. The new concept, label, is
borrowed from traditional Kripke structure. The labeled Pi calculus is built on the Pi
calculus to extend its capability in specifying the state information of a system in an
explicit and simple way. A transition system which is a combination of labeled
transition system (LTS) and traditional kripke structure is used to interpret the
semantics of labeled Pi calculus. As a result, labeled Pi calculus can provide three
different perspectives: the state-based perspective for showing user concerned
business propositions, the event-based perspective for showing behavioral
information of business processes, and the hybrid perspective of the above two.
Consequently, all the existing Pi calculus related logics[7][8], traditional CTL/LTL like
temporal logics and hybrid state/event based logics[14][18] can be used for the
verification of labeled Pi calculus from different perspective. The syntax and
semantics of labeled Pi calculus will be fully introduced in this paper. Besides, the
concepts of hybrid bisimulation and state bisimulation, which are theoretical
generalizations of similar relations in [9] for the purpose of process structural
optimization, are also discussed as basic analysis capability of the labeled Pi calculus.

To our best knowledge, there has been some previous works on incorporating the
dynamic event-based Pi calculus with a structured state-based formalism. Ciobanu
and Rotaru[10] attempted to define a state-based machine-like formalism for the Pi
calculus; Kenji, Jin and Gabriel[11] integrated the state transition semantics of Object-
Z and Pi calculus reduction rules. The result of their work is a new specification
language called PiOZ. Our work differs from the above works at least from the
following three aspects:
1. From theoretical aspect, our work is a direct extension of the theory of Pi calculus,

instead of the semantic encoding of the Pi calculus into other languages;
2. From practical aspect, our work provides a rather simple and pluggable

mechanism for users to specify their concerned system information, such that not
only the core theory and verification techniques of event-based Pi calculus

remains intact, but also new state-based information and verification techniques
can be effectively exploited for system analysis;

3. In PiOZ, only monadic version of Pi calculus[1] is supported while labeled Pi
calculus works well in the polyadic form[12].

This paper is organized as follows. In the next section, the concept and properties
of labels and labelsets are formally introduced for the understanding of the labeled Pi
calculus. In section 3, the theoretical framework of Milner’s Pi calculus is extended to
integrate both action and state information in labeled Pi calculus. The expansion
semantics and extended transition semantics for labeled Pi calculus are also
introduced. A process example is formalized with labeled Pi calculus for helping
understand the semantics and application of labeled Pi calculus in section 4. In section
5, state information is integrated into the open bisimulation in Pi calculus. Besides,
new state simulation relations are also introduced for the analysis of model
equivalencies from a pure state-oriented perspective. State simulation can be viewed
as a complement to the behavioral bisimulation analysis in Pi calculus. The
connections between the newly proposed relations with open bisimulation are also
analyzed. Conclusions and future works of this paper can be found in the last section.

2. Preliminaries

‘Labels’ is an extra basic entity introduced in Labeled Pi calculus aside from ‘names’
and ‘processes’. Before diving into the details of labeled Pi calculus, the concepts and
semantics of labels and labelsets are discussed in this section.

2.1 Syntax of Labels and Labelsets

Definition 2.1 (Label): A label is a triple (lname, Act, cvalue), where
• lname is the name of this label;
• Act is a set of pairs, and each pair is denoted as (act, op), where act is an

action defined in Pi calculus that may change the label’s value and op is the
operation which acts on the value of the label when action act occurs;

• Cvalue is the current value of the label.
The Act in the definition of label can be regarded as a mapping from the actions to

the update of corresponding label values.
Definition 2 gives the definition of a labelset.

Definition 2.2 (Labelset): A labelset is a pair, denoted as (lsname, labels), where
• lsname is the name of this labelset;
• labels is a set of all labels, denoted as . 1{ ; ...; }nlabels label label=

The detailed syntax is given as below.

{ } { }

:: | ;
:: : () | : ()

:: | ,
:: | ,

cvalue cvalue

labelset label labelset label
label lname pola PolarityExpr lname var VariableExpr
PolarityExpr a PolarityOp PolarityExpr PolarityExpr
VariableExpr a VariableOp VariableExpr Varia

=

=
=
=

:: | | /
::

bleExpr
PolarityOp
VariableOp value

= + −
= − >

In the above syntax, lname denotes the name of a label and a denotes an action
which has the same semantics as that of action in Pi calculus. Label has two types,
polarity label and variable label, which are differentiated with different keywords,
pola and var. Different types of labels have different kinds of available operations
‘op’. Informally, polarity labels are labels with integer values which are increased,
decreased and reset to zero by operation ‘+’, ‘-’ and ‘/’ respectively. variable labels
are labels with string values which are assigned by operation ‘->value’. Cvalue
denotes the current value of the label. In default, it is zero for polarity labels and
‘Null’ for variable labels if it is not explicitly specified in label definition. Cvalue will
be updated through system transitions fired by corresponding action a.

The semantics of op is defined as below with a function, Compute().
:
(,) 1 (,) 1
(/,) 0 (,)

C om pu te op cva lue cva lue
C om pu te cva lu e cva lue C om p u te cva lu e cva lue
C om pu te cva lu e C o m p u te v cva lue v

× →
+ = + − =

= →
−

=

As an example, labelset ‘my1’ composing of two labels, ‘DSCapacity’ and
‘ConnTrans’, is defined as following. Label ‘DSCapacity’ is a polarity label which
indicates that there is a concerned property of ‘DataStore Capacity’ whose value will
be increased by an input action ‘put’ and decreased by an input action ‘get’. On the
other hand, label ‘ConnTrans’ is a ‘variable’ label which may indicate that the
currently connected transmitter is from ‘DeutscheTelekom’ (abbreviated to ‘DTele’) if
a transition is made by output prefix ‘talkDT’ in Pi calculus.

{0} { }1 : (,); : (Bell

defLabelSet my Capacity pola put get ConnTrans var talkDT DTeleDS= + −

1(,), 0DSCapacity DSCapacity Act= 1 {(,), (,)}Act put get

)− >

Therefore, where = + −

2(,),ConnTrans ConnTrans Act Bell=

 and

, where 2 {(,)}Act talkDT DTele= .

2.2 The update of labels

As mentioned in 2.1, the value of a label will be updated by the actions of its
definition. Ch(a) is a function defined to get the prefix of an action a:

()

()

x if a x y

C h a x if a x y
if aτ τ

=

= = < >

=

%
%

Definition 2.3: Two actions, a1 and a2, are matched, denoted as a , IFF the
following two conditions are satisfied:

1 a; 2

 (1) a1 τ≠ ∧ 2a τ≠ ; (2) Ch(1) (2)a Ch a= .

Given an action a and a label l=(lname, Act, cvalue), where
{ | (,)a }Act act act op Act act a= ∈ ∧ ; and { | (,)aOp op act op Act act a= ∈ }∧ ; , the

definition of well-formedness of label is given as follows.
Definition 2.4: A label l=(lname, Act, cvalue) is said to be well-formed IFF for each

, | | . a Act∈ 1

1

aAct =
Definition 2.4 implies that each action prefix contained in Act of a well-formed

label should be unique. Therefore we have | |aOp = and (, if)act op Act∈ aact Act∈

and for well-formed labels. aop Op∈
For example, the label DSCapacity and ConnectedTrans in the previous section are

well formed. The followings are two label examples which are not well formed.
label {0} : (, ,'DSCapacity pola put get put)+ − −

label { } : (,' &BJTeleConnTrans var talkDT DTele talkDT)AT T− > − >
In the rest of the paper, the term ‘label’ will all refer to ‘well formed label’.
For label l=(lname, Act, cvalue), its current value will be updated after a transition

is fired by action a. The update of the current value for a label caused by action a is
explained with a update() function as follows:

:
| 0

1 |
(,) 1 | {

0 |
| {

|
|
|

|
|

a

a

a

a

a

a

a

a

a

update cvalue action cvalue
cvalue Act
cvalue a Act Op

update cvalue a cvalue a Act Op
a Act Op

v a Act Op

× →

{ }
}

{/}
}v

=
+ ∈ =

= − ∈ =
∈ =

∈ = −

 ∧
 ∧
 ∧
 ∧

+
−

>

') ,)

Consequently, after a transition is fired by action a, the label l is updated to
 where cval() (, ,update al lname Act cvalue= ' (ue update cvalue a= . If the value of label

l is updated by a sequence of action , it is denoted as upd : 1, ... na a 1(, , ... nate cvalue a a)

1 1 2
(, , ...) (... ((,),)...,)

n n
update cvalue a a update update update cvalue a a a= .

Furthermore, and can also be used to

denoted the updated label and labelset caused by a sequence of actions a a

respectively where l

1(,...,)nupdate a al

update

11 2 (,...,){ , ,}
nupdate a al l

) (, ,
na lname Act update

1, ... n

))11(,..., (, , ... na cvalue a a= and

.
1 1(nate a 1,...,) 2 (,...,), ,...}

n na update a al1 2{ , ,}updatel l (,...,) 1{a a updl=

2.3 Label Composition and Reduction

Since a labelset essentially is the composition of a set of labels,

, it is necessary to define its behavior for a new label

 being inserted into the labelset. In this section, different relations
1;...;

def

nLabelset lsname label label=

(1, ...,)ilabel i n≠

between two labels are firstly defined, and then the reduction rules of labelset based
on its well-formed definition will be introduced.
Definition 2.5: For two labels: l and

,
1 1 1(, ,lname Act cvalue= 1)

2)

2l
2 2 2(, ,l lname Act cvalue=

 is said to be irrelevant, denoted as l (l1l 2 1
′_), if lname ;

1 2lname≠

 is said to be overlapping, denoted as (l1l 2l 1 2l′′_

1)

), if l , and
for a new label , l is well formed;

1 2name lname=

1 1 2(, ,l lname Act Act cva= ∪ lue
 is said to be conflicting, denoted as l (l1l 2 1 2l′′′_

1)

), if lname , and for a
new label , l is not well formed

1 lname= 2

1 1 2(, ,l lname Act Act cval= ∪ ue
Similar to the definition of well-formed label, definition 2.6 defines the well-

formed labelset.
Definition 2.6: For a labelset ls=(lsname, labels), where l 1{ ;...; }nabels label label= , is
said to be well-formed if for any labe and la (il jbel i j≠) contained in labels, labe
and l are irrelevant.

il

jabel
For any non-well-formed labelset, reduction should be carried out to make it a

well-formed labelset. Given a well-formed labelset ls=(lsname, labels) where
 and a label l=(lname, Act, cvalue), their composition forms a new

labelset where
1{ ;...; }nlabels l l=

ls ls= (,c cname labels) 1{ ;...; ; }nlabels l l l= . Here are three reduction

rules for labelset which will make it to be well-formed: cls

1

1

1

1

1

1

{ ; ...; ; } 1, ..., (1)
{ ;...; ; }

{ ; ...; ; } (2)
{ ; ...; ; ...; } (, ,)

{ ; ...; ; } (3)
{ ;...; }

n i

n

n i

i n i i i i

n i

n

l l l l lHold i n
l l l

l l l l lSupplement
l l l l lname Act Act cvalue

l l l l lIgnore
l l

′
=

′′
= ∪

′′′

_

_

_

Hold rule indicates an irrelevant label can be directly inserted into the labelset,
Supplement rule indicates an overlapping label in the labelset needs to be updated by
a unite of the Act sets, and Ignore rule indicates a label will be discarded if it conflicts
with a label in the labelset.

Consequently, if we write ls1,…,lsn in short for labelset1,…,labelsetn, a reduction
function LRed(ls1, ls2) can be implemented based on Rule (1)-(3) for the composition
of different labelsets. Moreover, the reduction function LRed(ls1,…,lsn) is formally
defined as:

LRed(ls1,…,lsn)=LRed(…LRed(LRed(ls1,ls2),ls3),…, lsn) (2.3-1)
Using the above (2) and (3), two labelset my1 and my2 are composed to a new

labelset in the following example.
{0} { }

{99} { }

{0}

1 : (,); : (

2 : (/); : (&)

: (, , /(1, 2)

BJTele

def

BJTele

def

LabelSet my DSCapacity pola put get ConnTrans var talk DTele

LabelSet my DSCapacity pola reset ConnTrans var talk AT T

DSCapacity pola put get rLRed my my

= + − − >

− >

+ −

=

=

)

{ }); : ()Belleset ConnTrans var talk DTele− >

The reduction function LRed can be proved to satisfy the following property.
Lemma 2.1: 1 2 3 1 2 3 1 2 3(, ,) ((,),) (, (,))LRed ls ls ls LRed LRed ls ls ls LRed ls LRed ls ls= =

Proof: The equation LR can be directly
conducted from the definition (2.3-1). To prove that

1 2 3 1 2 3(, ,) ((,),)ed ls ls ls LRed LRed ls ls ls=

1 2 3 1 2 3(, ,) (, (,))LRed ls ls ls LRed ls LRed ls ls= (2.3-2)

Suppose , and to be an arbitrary label contained in ls , and
respectively,

1il 2il 3il 1 2ls 3ls

if
il , equation (2.3-2) obviously holds;

3i
′_ 2l

2l

2l 1l

2l 1l

1 i

2l 1il

2

2 2 1

'

if
il , equation (2.3-2) holds because the effect of is simply ignored;

3i
′′′_ 3il

if
il and

il , equation (2.3-2) obviously holds;
3i

′′_ 2i
′_

if
il and

il , equation (2.3-2) holds because:
3i

′′_ 2i
′′_

1 1 2 3(, () ,)i i i il Act Act Act cvalue∪ ∪ i 1 1 2 3 1(, (,))i i i il Act Act Act cvalue∪∪= ;

if
il and l , equation (2.3-2) holds because the effect of both l and

is simply ignored. □
3i

′′_ 2i
′′′_ 2i 3il

Corollary 1: A more general property holds for LRed based on Lemma 1:
LRed(ls1,…,lsn)= LRed(ls1,…, LRed(lsi,lsi+1),…,lsn) where i=1,…,n-1 (2.3-3)

Corollary 2: . 1 2 2 1(,) (,)LRed ls ls LRed ls ls≠

The following two items define the preorder relation between two labelsets, ls

and :
1

2ls
 , if for each label l1ls lsp 1=(lname1, Act1, cvalue1) in ls1, there is a label

l2=(lname2, Act2, cvalue2) in ls2 such that lname1=lname2 and cvalue1=cvalue2
are hold.

 , if both and ls are hold. 1ls ls= 1ls lsp 2 lsp
Lemma 2.2: ∀ . ', (, ')ls ls LRed ls lsp
Proof: From reduction rules (1)-(3), we have (1) (,)ls LRed ls ls= if for each label l
in ls’, rule ‘Supplement’ or ‘Ignore’ is applied during the composition;
(2) ls if there exists a label l in ls’, such that rule ‘Hold’ is applied
during the composition. □

(,)LRed ls lsp '

Lemma 2 illustrates an important conclusion that label composition and reduction
forms a preorder between labelsets.

2.4 Label substitution

Just like the substitution of names in Pi calculus, we denote lσ to be a label
substitution, where l is a label and %{ / }x yσ = % .

For label l=(lname, Act, cvalue) and l where (, ,lname Act cvalueσ σ=) Actσ is
defined as follows:

for each (, , is substituted to a new name denoted by)act op Act∈ ()Ch a
()Ch a σ if ()Ch a cod()σ∈ where %{ /xσ = % }y and %cod . () { }yσ =

σSimilarly, denote { 1 1, ,...l l to be a labelset substitution where %{ / }x y= %σ ,
. 1 21 1{ } { ,, ,...l l l lσ σ= , ...}σ

}

3. Labeled Pi Calculus

As the concept and properties of labels and labelsets have been introduced in the
previous section, the syntax and semantics of labled Pi calculus will be discussed in
this section.

3.1 Extended Syntax of Labeled Pi Calculus

The labeled Pi calculus is built on the polyadic version of Pi calculus[12]. Its syntax is
given as below.

11
:: . | () | ! | | | | (, ...,){ } | 0

:: | () |
:: [] | |

n

i

n

i ii
P a P new x P P P Q P A y y labelset

a x y x y
x y

φ

τ
φ φ φ φ

=
=

= < >
= = ∧ ¬

∑
% %

Any process P that is defined by process identifier 1(, ...,){ }nA y y labelset in the
above syntax is called a labeled process. The only extension to Pi calculus is the
introduction of a new operator ‘{}’. With this operator, a labelset can be explicitly
associated with a process identifier which essentially differs a labeled Pi process with
a regular process in Pi calculus.

In a labeled Pi process, it is possible that such an association is redundant because
some actions contained in a label can never be used. Before defining the redundancy
of an association in a label, we first introduce the notion of Observable.
Definition 3.1 2: A name x and its co-name x are observable to process P, denoted
by xP ↓ and

x
P ↓ respectively, if x is a free name of P (()x fn P∈).

Definition 3.2: A labeled Pi process, defined by 1(,...,){ }nA y y labelset
)i

(,)

 where
 with l , is called to be minimal IFF

for each (, . Otherwise A is Redundant because of
the invalid association of , which is denoted as

1(,{ ;...; })nlabelset lsname l l=

,) (ia op Act i∈ =

(,

(, ,i i ilname Act cvalue=

)n ()Ch aA ↓1, ...,
)a op A a op/€ .

2 The definition is modified from ‘Observability predicates’ in [12]. Such a modification is

necessary since free names as name parameters are also potential for changing the value of a
label.

Each labeled Pi process should be minimal such that the value change of its
associated labels can be only caused by actions that are ‘observable’ from the outside
of the process. Based on definition 3.2 we can now provide the fourth reduction rule
to make a labeled process to be minimal. It implies that all invalid associations of
actions to labels will simply be removed.

1

1

(, ..., } (,) , (, ,)

(, ..., '} ', (, \ {(,)},)

){

){ ' '
n i i i

n i i i

i

i

i

i

A y y ls A a op l ls l lname Act cvalue
Abandon

A y y ls l ls l lname Act a op cvalue

∀ ∈ =/

∀ ∈ =

€
 (4)

Definition 6 together with Rule (4) suggests that restricted names in a process
cannot be explicitly used to change the label value associated with the process, and
such a label change is deemed as invisible for the process. In the real applications, it
means that some states in the sub-component are hidden from the super-component of
a system, such that the super-component need not care and will never change these
hidden states.

Supposing to be the labelset associated with process P, is
empty if P is not explicitly associated with any labelset in its definition. The
following propositions can be used to determine the labelset associated with each
labeled Pi process.

1 2() { , ,}P l l∂ = ()P∂

(1) ,,where ,

 where { is reduced from { by rule (4);

1(,...,){ } 2n defA y y ls P= 1(,{ ;...; })nls lsname l l= 1((,...,){ })nA y y ls∂

1{ ';; '} (2)nl l P= ∪ ∂ 1 ';......; '}nl l 1; ...; }nl l

1(,...,) 2n defA y y P= 1((,...,)) (2)nA y y P∂ =∂ (0) {}∂ =

(.) {}a P = () ()P Pφ = ∂ () () ()P Q P Q+ = ∂ ∪ ∂

(|) () ()P Q P Q∂ ∪ ∂ (()) ()new x P P= ∂ () ()P P σ
σ ∂

(2) , (3)
(4) ∂ ; (5) ∂ ; (6) ∂ ;

(7) ∂ = ; (8) ∂ ; (9) ∂ = ;

Table 1. Propositions for Labelset Association

In table 1, proposition 1-2 indicate that only a process directly defined by a process
identifier can possibly be associated with labelsets. Otherwise the labelset will be
empty. Proposition 3-9 are used to determine the associated labelsets when different
operators in Pi calculus are met.

For example, consider (, 1){ 1} ! (). 1 .0){ 1(defstP put talk my put x talk x my< >= }Te
where the labelset my1 is defined in the previous section.

{0} { }: (); : ()}BellDSCapacity pola put ConnTrans var talk DTele+ −((, 1){ 1}) {TestP put talk my∂ = >

,where the association of action get to DSCapacity is removed since it is redundant.

3.2 Hybrid Transition System

The traditional labeled transition system is the basis for interpreting the behavior of Pi
calculus.In this paper, we use hybrid transition system to interpret the semantics of
labeled Pi calculus. The hybrid transition system is firstly introduced here.

Definition 3.33

')

: A hybrid transition system consists of a set S

of states, a set M of transition labels, a set of transitions for each
 and a state labeling function that associates each state with

a set of labels.

(, ,{ | },)aS M a M L→ ∈
a→

Labelset→
S S⊆ ×

a M∈ :L S

In fact, the hybrid transition system can be regarded as an integration of the
features between the labeled transition system and the Kripke Structure, such that a
set of transitions is considered instead of a set of relations between states. A
transition in the hybrid transition system is denoted as which
has the following semantics:

() (aP Ls Q Ls→

An old state P which is associated with a set of labels Ls, denoted as ,
transits through an action a to a new state Q and meanwhile the set of labels is
updated to Ls’ for the new state, denoted as Q L .

P Ls

's
The difference between the labelset Ls in (P, Ls) and ()P∂ is that Ls represents the

labelset associated with a specified state of the system, but ()P∂ represents the
labelset associated with a specified Pi process. Therefore, the labels in Ls can be
viewed as all global propositions which are asserted to be true in a state of the system
and the labels in can be viewed as new possible labels which may contribute to
the expansion of current labels in Ls. It will be more clearly defined in section 3.3 and
3.4. To avoid their confusion, we will call Ls to be state labelset and ∂ to be
process labelset.

()P∂

()P

3.3 Transition semantics for labels

Labeled Pi calculus is an extension of Pi calculus with label and labelset. How to
understand the semantics of label and labelset will be critical. Labeled transition
system is often used to interpret the semantics of Pi calculus. In fact, the intuitive
understand for labeled Pi calculus is that the name of each state in Pi calculus is
replaced with some propositions. If users don’t want to care the detailed state
information, it is can be easily abstracted with a state name. Just because of the
flexible mechanism, the expressive power and analysis capabilities of Pi calculus,
such as bisimulation theory and model checking method, are well preserved in labeled
Pi calculus. In order to make full use of this advantage, the principle of integrating the
semantics between Pi calculus and label should be in a loosely coupled way.

Therefore, the reduction rules and the structural congruence of labeled Pi calculus
will remain the same as that of Pi calculus. But, transition rules need some
modifications in order to define the semantics about label updating due to process
transition.

()
(.) (

update x

x y
OUT

x y P Ls P Ls< >< > →)
 ()

()(().) ()x z
update x

INP
x z P Ls P Ls→

3 A similar concept has also been proposed in [14], which is called ‘Labeled Kripke Structure’

instead in their work.

(.) ()
TAU

P Ls P Lsττ →
 ()

()

() (')

([] ') (' ')

a
update a

a
update a

P Ls P Ls
T

x x P Ls P Ls=

→
→

MA

()

()

() (')

(') (' '

a
update a

a
update a

P Ls P Ls
SUM L

P Q Ls P Ls
−

+

→
→)

()

()

() (')
() ()

(| ') (' | ')

a
update a

a
update a

P Ls P Ls
PAR L bn a fn Q

P Q Ls P Q Ls
− ∩

→
→

= ∅

()()

(,)

()() (') (') (' '

(| '') (' | { / } ' '')

update xupdate x

update x x

x y x zP Ls P Ls Q Ls Q Ls
COMM L

P Q Ls P y z Q Lsτ

→ →
< >

−
→

)

()()

(,)

()() (') (') (' '

(| '') ()(' | ' '')

update xupdate x

update x x

x z x zP Ls P Ls Q Ls Q Ls
CLOSE L

P Q Ls new z P Q Lsτ

→ →

→

< >

−
)

()

()

() (')
()

(() ') (() ' ')

a
update a

a
update a

P Ls P Ls
RES z n a

new z P Ls new z P Ls
∉

→
→

()

()

() (')

(() ') (' ')

x z

update x

x z

update x

P Ls P Ls
OPEN z x

new z P Ls P Ls

< >

< >
≠

→

→

()

()

() (')

(! ') (' | ! ')

a
update a

a
update a

P Ls P Ls
REP ACT

P Ls P P Ls
−

→
→

()()

(,)

()() (') (') ('' ')

(! '') ((' | { / } '') | ! '')

update xupdate x

update x x

x y x zP Ls P Ls P Ls P Ls
REP COMM

P Ls P y z P P Lsτ

→ →

→

< >

−

()()

(,)

()() (') () (''

(! ') ((()(' | '') | !) ')

update xupdate x

update x x

x z x zP Ls P Ls P Ls P Ls
REP CLOSE

P Ls new z P P P Lsτ

→ →

→

< >

−
)

Table 2. Extended Transition Rules in Labeled Pi Calculus

In table 2, the semantics of the notion for labelset update can be referred in section
2.2. Besides, except for rule MAT, SUM-L, PAR-L and RES, in the above rules only
the action prefixes x and x (which are also actions themselves with y%to be empty)
are considered in the update of labels. This is because only action prefixes are needed
to match different actions as defined in Definition 2.3.

The above transition rules are based on the late transition semantics of Pi
calculus[12]. As can be seen in table 2, these rules essentially preserve all the transition
semantics of Pi calculus and meanwhile define how the values of the labels in state
are updated.

3.4 Expansion semantics for labels

The previously defined transition semantics show how the value of state labelset is
updated by different types of transition rules. However, as stated in section 3.1 and
3.2, process evolves during system transitions such that new process labelset may
emerge. This is actually one of the advantages of labeled Pi calculus that hidden
labels can be unveiled when different processes are entered and they will be merged
to become part of the state labelset. Look at the following example:

{ }{0}1 1 : () 2 2 : (
(,){ 1} ((). (, ,){ 2})){ 1}(

null

def new

Labelset ls l pola a Labelset ls l var t ok
P a b ls t a x Q b t x ls ls

= + = −
=

)>

To understand the transition of process P, first the labelset ls1 is recognized by
propositions in table 1. A transition a(x) is then fired and ls1 is updated according to
the transition semantics. At this point, a new labelset ls2 emerges which contains a
new label l2. In fact, l2 is a redundant for process P according to Abandon rule in
section 3.1. This label, while is hidden from P, is visible for process Q. Therefore, it
is necessary to define the semantics of the state labelset is expanded to accept these
new labels.

To determine how new labels are identified and inserted into state labelset, the
following expansion rules for state labelset are defined.

Suppose the process representing the current state is P, the labelset of the current
state before and after expansion are Ls and Ls’ respectively, the expansion rules are of
the following form: . 'P Ls Ls× →

(, ())LE DEF P Ls LRed Ls P− × ∂→ 1 2 (, (1), (2))LE SUM P P Ls LRed Ls P P− + × ∂ ∂→

(, ())LE SUB P Ls LRed Ls Pσ
σ− × ∂→ 1| 2 (, (1), (2))LE COMM P P Ls LRed Ls P P− × ∂→ ∂

))∂

, ())

')

() (, (LE RES new x P Ls LRed Ls P− × → (, ())LE MAT P Ls LRed Ls Pφ− × ∂→
.LE PREFIX a P Ls Ls− × → ! (LE REP P Ls LRed Ls P− × ∂→

Table 3. Expansion Rules in Labeled Pi Calculus

There is only one rule in tabl 3 (LE-PREFIX) by which the state labelset will
remain unchanged. The connections between the rules in table 3 and the propositions
in table 1 is that in table 3, it states the rules by which new labels are identified and
inserted into the existing labelset associated with a state. On the other hand, in table 1
it defines how to exactly determine these new labels identified by rules in table 3.

However, a question left unanswered is that how the expansion semantics and
transition semantics of labels are combined so that the comprehensive behavior of
labels can be determined when a transition in labeled Pi calculus is committed.
Definition 3.4 (Normalized Commitment): Suppose the labelset for the initial state
is got directly by function ∂ . A normalized commitment of a single transition

 is of the following three steps: () (aP Ls Q Ls→
A. The transition rules in table 2 are applied to update the values of the labels

according to the action that occurred, and meanwhile the current state is transited
to a new one.

B. One of the expansion rules in table 3 is applied once to identify new labels and
determine the set of labels for the new state;

C. Propositions in table 1 and the reduction function LRed are used to help the
identification and insertion of expanded labels during procedure B.

Using the above normalized commitment, the behavior of labels is fully
determined by each transition steps in labeled Pi calculus. Later in the next section,
this concept will be further explained in detail with concrete examples.

4. A Process Example

In this section, a concrete example, ‘Product Order Handling’ process, is formalized
with labeled Pi calculus. The process example is shown in figure 1.

Fig. 1. A Process for Product Order Handling

This simple business process describes that a PO (Product Order) is first received
and its validity is checked. If the received PO is valid, corresponding products are
made by workers and afterwards the PO is archived in the PO Folder. Otherwise the
PO will simply be sent back. The dotted line in figure 1 is used to indicate the used
resources (workers and folders) by each activity.

Aside from the mobility feature and other advantages of Pi calculus, the event-
based flow driven modeling paradigm exploited in the above process makes Pi
calculus to be natural and convenient for capturing its formal behavior. There has
already been some works dealing with the formalization of similar processes with Pi
calculus[9][13]. On the other hand, there is also some generally useful state information
which is frequently recognized in the business process modeling domain contained in
the above process. The information may include: ‘whether an activity is in
execution?’, ‘Is the worker currently occupied?’, ‘Which role is responsible for
carrying out a specified activity?’, ‘Is the received PO valid?’, and etc. They are of
great importance for helping the business analyzers to clearly understand and specify
the process. Unfortunately, Pi calculus doesn’t explicitly support the above state
information modeling. As a matter of fact, it is also difficult for most of other existing
formal methods to capture the semantics of a business process both from a behavioral
perspective and state perspective.

Using the proposed labeled Pi calculus, such a process can be formalized as below.
Because of the limitation of paper size, only the ‘Receive PO’ activity is fully
formalized here as a demonstration.

{0}

{ }

4 : (, ,

4 : (,Unknown

Labelset ls RecPO RecPOInExe pola in make sendback

Labelset ls Internal POStatus var t valid f invalid

= + −

= − > −

)

)

−

>

(, , ,){ 4 } . (

(, , , ,){ 4 }| (. .0 . .0))){ 4 }

(, , , ,){ 4 }

(def

d

ReceivePO rec make sendback check ls RecPO in new endt endf t f

InternalAct endt endf t f check ls Internal endt make endf sendback ls RecPO

InternalAct endt endf t f check ls Internal

=

+

= , .(. .0 . .0)){ 4 }(ef check t f t endt f endf ls Internal< > +
The semantics of the above labeled Pi process can be understood based on the hybrid
transition system in figure 2.

Fig. 2. Hybrid Transition System of the ’Receive PO” Activity

In figure 2, states are represented by rounded rectangles and transitions are
represented by arrows. Label ‘RecPOInExe’ indicates whether the activity of
‘ReceivePO’ in figure 1 has started its execution; Label ‘POStatus’ indicates whether
the status of the received PO is unknown, valid or invalid.

To illustrate in detail the procedure of a normalized commitment as proposed in
section 3.4, the state after the transition fired by action ‘in’ are decomposed into three
sub-states (as circled by a dotted rounded rectangle). These sub-states reveal the
construction of hybrid transition system by the semantics of labeled Pi calculus
proposed in section 3.3 and 3.4. In fact, each state represented by rounded rectangle in
figure 2 can be further decomposed into three sub-states. However, to understand the
hybrid transition system of a model more clearly, this information can usually be
hidden, just as has been done for the rest of the states in figure 2.

This example reveals two important points of labeled Pi calculus:
 (1) Incremental Labels: The label OPStatus is unobservable initially for labeled

process ReceivePO. It is observed and updated only when InternalAct is entered
where the corresponding actions that can change the label CurStatus become ‘free’ in
the process.

(2) Normalized Commitment: The construction of the labels in hybrid transition
system is based on the normalized commitment defined in the previous section and
can be outlined in the following steps (as is shown in the rectangles with dotted lines
in figure 2):
1. Transition ‘in’ is fired and a new state is entered. The value of the labelset in the

old state is thus updated according to the transition rules;

2. One of the expansion rules (LE-RES) is applied once and the labelset associated
with a process composition ‘|’ is identified as the necessary expansion;

3. Rules in table 1 are applied recursively to compute the labels contained in this
expansion and the result is one new single label ‘OPStatus’;

4. The new label ‘OPStatus’ is then inserted into the existing labelset of the current
state by the reduction function LRed. It is after this step that the whole labelset is
completely determined associated with the new state.

5. Steps 1-4 are repeated such that the whole hybrid transition system is built.
We must stress here that not only existing Pi calculus related modal logics and

verification algorithms can be used to check the process from a behavioral aspect in
labeled Pi calculus, but also traditional temporal logic including CTL and LTL and
other model checking methods can be exploited for the process verification from a
state-oriented perspective which simply ignores the explicitly modeled actions. When
both the action information and state information are needed in specification, there are
also logics like Pi-logic[8], state/event derivative of LTL[14], etc that are ideal
candidates for satisfying this purpose.

5. Hybrid Bisimulation and State Equivalency

Bisimulation analysis is an important tool for analyzing behavior equivalency
between different processes in Pi calculus. Labeled Pi calculus inherits the core
semantics of Pi calculus. For example, the reduction rules and structure congruence of
Pi calculus remain unchanged. Besides, the extended transition rules are non-
pervasive extension of the original transition rules. Therefore, existing bisimulation
relations in Pi calculus still works for labeled Pi calculus. Their definitions are not
explored in detailed again here. A comprehensive reference can be found in [2][12].

Considering the concept of labels and labelsets are newly introduced and the
hybrid transition system does capture more information than labeled transition system
does, this section is focus on how to integrate extra state information into existing
bisimulation relations. Strong / weak open bisimulation [2] are used as a basis for the
integration. Furthermore, the state simulation and equivalency relations are proposed
to analyze system equivalency from pure state perspective as contrary to pure
behavior equivalence defined in existing bisimulations.

Let τ⇒ denote some number of continuous transitions (possibly zero) fired by

invisible action τ ; denote ; denote (or a⇒ a
→⇒ ⇒ â⇒ a⇒ τ⇒) when

a τ≠ (or a τ=), and ⇒ denote some number of continuous transitions (possibly
zero) fired by any action, the bisimulations are defined as follows.
Definition 5.1 (Strong hybrid bisimulation): A symmetric binary relation R is a
strong hybrid bisimulation if (, implies for any) (,)PP Ls R Q LsQ σ :

If where bn'(,) (, 'P PaP Ls P Lsσ →) () (,)a fn P Qσ σ∉

) (',)' 'P Qs R Q Ls
, then there exists Q’ such that

, and '(,) (, ')Q QaQ Ls Q Lsσ → (',P L 'PLs = . 'QLs
Definition 5.2 (Weak hybrid bisimulation): A symmetric binary relation R is a
weak hybrid bisimulation if (, implies for any) (,)PP Ls R Q LsQ σ :

If where bn'(,) (, 'P PaP Ls P Lsσ →) () (,)a fn P Qσ σ∉

) (',)' 'P Qs R Q Ls
, then there exists Q’ such that

, and 'ˆ(,) (, 'Q QaQ Ls Q Lsσ ⇒) (',P L 'PLs = . 'QLs
Hybrid bisimulations are extensions of open bisimualtion, but the former is a more

demanding relation since it also put state information into consideration. Equivalency
relations which are defined from pure state perspective are discussed as below, which
will be very useful for analyzing the relations between different process models.
Definition 5.3 (Strong State Simulation): A binary relation R is a strong state
simulation if (, implies:) (,)PP Ls R Q LsQ

P

Q

P

If , then there exists Q’ and any action b, such that
 , (' and .

'(,) (, ')P aP Ls P Ls→

'(,) (, ')Q QbQ Ls Q Ls→ ,) (',)' 'P QP Ls R Q Ls ' 'P QLs Lsp
Definition 5.4 (Strong State Equivalence): A binary relation R is a strong state
equivalency relation if both R and R− are strong state simulations, where R− denotes
the reverse relation of R.
Definition 5.5 (Weak State simulation): A binary relation R is a weak state
simulation if (, implies:) (,)PP Ls R Q Ls

If , then there exists Q’ such that (, ,
 and .

'(,) (, ')P aP Ls P Ls→

(',) (',)' 'P QP Ls R Q Ls

') (, ')Q QQ Ls Q Ls⇒
' 'P QLs Lsp

Definition 5.6 (Weak State Equivalence): A binary relation R is a weak state
equivalency relation if both R and R− are weak state simulations.

A similar state equivalency relation is also proposed in [9] which was regarded as a
basis for optimizing business processes in their work. It defines a relatively relax
relation in that only the initial and final states of processes are compared for
qualifying two processes as state equivalent. However, the state simulations and
equivalencies defined above can be viewed as a generalization for them. For example,
by definition 5.6, the following conclusion can be got as similar in [9].
Lemma 5.1: Two labeled processes are independent if there is no shared transitions
in their composition such that they can interact with each other by an internal action
τ . Furthermore, denote P{ls} to represent a process P if P is explicitly associated
with labelset ls in its process identifier. Then we have:

If P{ls} and Q are independent, then P{ls}|Q weakly simulates P{ls};Q,
where ‘;’ is a sequential operator defined in [1].
Proof: To prove the weak state simulation, notice that in Pi calculus the composition
of two processes can be interpreted as an interleaving transition of each process.
Therefore, there must be a transition sequence TS in P{ls}|Q that is identical with the
one of P{ls};Q. Since the initial labelsets of two processes are all ls, it ensures that the
labelsets of each state along TS are equivalent for both processes. Consequently a
binary relation can be derived from TS such that it is a weak state simulation. □
Corollary 1: If P{ls1} and Q{ls2} are independent, then P{ls1}|Q{ls2} weakly
simulates P{ls1};Q{ls2} if and only if ls1=ls2.
Proof: If ls1=ls2 doest not hold, the initial labelsets of two processes are not the same
although a similar transition sequence TS can still be found, i.e. (LRed({}, ls1, ls2) for
P{ls1}|Q{ls2} and LRed({}, ls1) for P{ls1};Q{ls2}, where {} denotes an empty
labelset. According to the expansion rules in table 2, this leaves the possibility that an

action associated in ls1 can also change the labels in ls2 before the labelset ls2 is
expanded for P{ls1};Q{ls2}, which makes the states along TS to be nonequivalent. □

The reverse of Lemma 5.1 is obviously not hold, that is, P{ls};Q can not state
simulate P{ls}|Q even if P{ls} and Q are independent.

The following lemmas are related to the interrelationships among state
equivalency, hybrid bimimulation and open bisimulation.
Lemma 5.2: If P and Q are strong /weak hybrid bisimilar, it means that P and Q are
both strong /weak open bisimilar and strong /weak label equivalent.
Proof: It directly follows from the definition of strong /weak hybrid bisimilation. □

It should be mentioned that the reverse of lemma 5.2 is not hold. That is, the fact
that P and Q are both strong /weak open bisimilar and strong /weak label equivalent
does not imply that P and Q are strong /weak hybrid bisimilar.

Taking the following processes as an example. P and Q are obviously strong open
bisimilar and strong label equivalent, but they are not strong hybrid bisimilar.

{0} {0}: (,), : (,def defLabelset lp prop pola a b Labelset lq prop pola a b= + − =)− +
(, ,){ } (.(.0 .0)){ }defP x a b lp x a b lp= + (, ,){ } (.(.0 .0)){ }defQ x a b lq x b a lq= +

Fig. 3. A Non Strong Hybrid Bisimilar Example

Lemma 5.3: If P and Q are strong open bisimilar, it means that P{ls} and Q{ls} are
strong label equivalent if reduction rule ‘Hold’ and ‘Supplement’ are never applied in
reduction function LRed when new labeled are expaned during the transition of P, Q.
Proof: No application of rule ‘Hold’ implies that no new labeled are inserted during
the transition of P, Q while no application of rule ‘Supplement’ implies that no
association of new actions to existing labels are made during the transition of P, Q.
Therefore, a similar proof can be made as in Lemma 5.1. First an identical action
sequence TS can be found because of the strong open bisimulation, second the initial
labelsets of P and Q and the label expansion on each state along TS are the same
because rule ‘Hold’ and ‘Supplement’ are never applied. Thus a binary relation can be
derived from TS such that it is a strong label equivalency. □

The above lemma obviously does not hold in the case of weak open bisimilar.
The benefits of label simulation and equivalency have three aspects:

 To compare two processes from a state perspective is a complement to the
original behavioral observation of Pi calculus.

 Label simulation / equivalency and open bisimulation in Pi calculus are loosely
coupled, label simulation / equivalency does not require new modal logics and
algorithms for the analysis..

 The labels defined in each state reflect particular concerns about the process for
different users. It is valuable for developing various reduction techniques for
applying model checking to business process verification.

In fact, the third aspect is crucial for relieving state explosion problem in model
checking. We will give some clues about several techniques that will be very useful

for maintaining the state space of labeled Pi calculus as below. Their implementation
details are out the scope of this paper and will be discussed separately.

Label Reduction: Because there is a direct connection between actions and
possible change of label values in hybrid transition system, only the changed labels
are recorded instead of representing all the labels in a state. This can greatly decrease
the state space.

Path Reduction: Because of the incremental nature of the labelsets illustrated in
section 4, it is possible to find some transition paths where some labels never appear
in them. This kind of paths can be regarded as redundant paths for those non-appeared
labels. Some algorithms can be developed to eliminate these paths when checking a
property that relates to the labels.

State Reduction: It is possible that some actions will never change the values of
nay labels, i.e, some continuous states may be the same. Therefore, theses states can
thus be abstracted into one state so as to reduce the size of the state space.

6. Conclusion

While applying Pi calculus to business process area, it is found that the Milner’s l Pi
calculus is not enough to capture the holistic semantics of business process model. An
extension for Pi calculus, labeled Pi calculus, is proposed in this paper. The main idea
of labeled Pi calculus is to integrate state information into the traditional Pi calculus.
In labeled Pi calculus, a simple state name is replaced with the detailed state
information. Two important concepts, label and labelset, are introduced in detail. As a
result of this introduction, the labeled Pi calculus can also be viewed as a
generalization of the fluent propositions in [18] where only polarity labels with ‘0-1’
value are considered. In order to formally define the semantics of labeled Pi calculus,
the extension of traditional labeled transition system, namely hybrid transition system,
is discussed. Some properties of the extended semantics are also analyzed. From the
semantics definition of labeled Pi calculus, it is clear that the extended Pi calculus is a
simple process algebra which is able to integrate the concerned state information into
the event-based process expressions. Just because of the loosely coupled mechanism,
the semantics and theory of Pi calculus are well preserved in labeled Pi calculus.
Some new state simulation and equivalency relations which can be regarded as the
generalization of similar ideas in previous work [9] are introduced for the labeled Pi
calculus. The relations between state equivalency, open bisimulation and hybrid
bisimulation are also studied.

As one of its applications, labeled Pi calculus can be applied to formalize and
analyze business process models. The models in labeled Pi calculus can capture both
event-based information and state-based information, which is quite important and
useful for understanding and analyzing business process models. On the other hand,
such an extension also enables more choices of different process verification methods
to be applied and new reduction techniques to be carried out in model checking.

Our future works include the application of the generalized state simulation and
equivalency relations into the structural optimization purpose of processes as already
been addressed in section 5. In addition, since this work mainly provides a modeling

framework from a theoretical perspective, tooling support is also one of the most
important future works.

Reference

[1] Milner, R., Communicating and Mobile Systems: the Pi-Calculus. 1999, Cambridge:
Cambridge University Press.

[2] Parrow, J., An introduction to the Pi calculus, in Handbook of Process Algebra. 2001,
Elsevier Science.

[3] BPMI., Business Process Modeling Language Specification (Version 1.0), 2002, 11,
http://www.bpmi.org

[4] Lumpe, M., A Pi-Calculus Based Approach for Software Composition[PhD Thesis], in
Institut fur Informatik und angewandte Mathematik. 1999, der Universit at Bern.

[5] Pahl C., A Pi-Calculus based Framework for the Composition and Replacement of
Components. in Proceeding of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications OOPSLA. 2001. p 97-107.

[6] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 1998. 8(1): p.21–66.

[7] Dam, M., Model Checking Mobile Processes. Information and Computation, 1996. 129(1):
p. 35-51.

[8] Ferrari, G.-L., et al., A Model-Checking Verification Environment for Mobile Processes.
ACM Transactions on Engineering and Methodology, 2003. 12(4): p. 440-473.

[9] Ying L., Ke X., et al., BPEL4WS Semantics Formalization and Process Optimization with
π-Calculus. Submitted to the Fifth International Conference on Business Process
Management.

[10] Ciobanu, G. and M. Rotaru, A Pi-calculus Machine. Journal of Universal Computer
Science, 2000. 6(1): p. 39-59.

[11] Taguchi K., Dong JS., et al., Relating Pi-calculus to Object-Z. in IEEE International
Conference on Engineering of Complex Computer Systems. 2004. p 97-106.

[12] Sangiorgi, D. and D. Walker, The Pi-Calculus: a Theory of Mobile Processes. 2001,
Cambridge: Cambridge University Press.

[13] Lam, V. and J. Padget. Formalization of UML statechart diagrams in the pi-calculus. in
Proceedings of the 13th Australian Software Engineering Conference. 2001. p 213-223.

[14] Chaki, S., et al. State/Event-Based Software Model Checking. in Proceeding of the 4th
International Conference on Integrated Formal Methods. 2004. p 128-147.

[15] Object Management Group. Model Driven Architecture, http://www.omg.org/mda/, 2004
[16] Grieskamp W., Santen T., Stoddart B. editors. IFM’ 00: Integrated Formal Methods.

Lecture Notes in Computer Science volume 1945. 2000.
[17] Butler M., Petre L., K. Sere. editors. IFM’ 02: Integrated Formal Methods. Lecture

Notes in Computer Science volume 2335. 2002.
[18] Giannakopoulou D., Magee J. Fluent model checking for event-based systems. In

Proceedings of FSE. 2003. p. 257-266
[19] Kindler E., Vesper T. ESTL: A temporal logic for events and states. In Proceedings of

ATPN 98. 1998. p. 365–383

http://www.bpmi.org/
http://www.omg.org/mda/

