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Abstract

Generally, synchronization in a network of chaotic systems depends on the under-
lying coupling topology. Recently, there have been several studies conducted to
determine what features of this topology contribute to the ability to synchronize.
A short diameter has been proposed by several authors as a means to facilitate
synchronization whereas others point to features such as the homogeneity of the
degree sequence. Recently, it has been shown that the degree sequence by itself is
not sufficient to determine synchronizability. The purpose of this letter is to con-
tinue this study. For a given degree sequence, we construct two connected graphs
with this degree sequence whose synchronizability can be quite different. In particu-
lar, we construct a graph with low synchronizability which improves upon previous
bounds under certain conditions and we construct a graph which has synchroniz-
ability that is asymptotically maximal. On the other hand, we show analytically
that for a random network model, homogeneity of the degree sequence is beneficial
to synchronization.

Key words: Eigenvalue analysis, nonlinear dynamics, random graphs, scale free
networks, synchronization

Email address: chaiwahwu@ieee.org (Chai Wah Wu).

Preprint submitted to Elsevier Science 16 May 2005



1 Introduction

The object of interest in this paper is a coupled network of n identical systems
with linear coupling:

ẋ =




ẋ1

...

ẋn


 =




f(x1, t)
...

f(xn, t)


− (G ⊗ P )x (1)

where xi is the state vector of the i-th system, x = (x1, . . . , xn)T and G ⊗ P
is the Kronecker product of the matrices G and P . The coupling matrix G
describes the coupling topology of the network, i.e. Gij 6= 0 if there is a
coupling from system i to system j. If Gij < 0 or Gij > 0, we call such a
coupling element cooperative or competitive respectively. The network in Eq.
(1) is said to synchronize globally if ‖xi − xj‖ → 0 as t → ∞ for all i, j.
It was shown in [1] that for symmetric matrices G and a suitable matrix P ,
the ability for the network to synchronize depends on the size of the smallest
nonzero eigenvalue of G. We will denote this eigenvalue as λ2(G). An example
of such suitable matrices P include the class of positive definite matrices.
For other classes of matrices P [2] and the discrete time case [3,4], the ratio

r(G) = λ2(G)
λmax(G)

is important in determining synchronizability, where λmax(G)
is the largest eigenvalue of G.

The graph of a matrix G is defined as the weighted graph with an edge of
weight Gij from vertex i to vertex j if and only if Gij 6= 0. We assume that
G is symmetric, so the graph of G is undirected 1 . The Laplacian matrix of a
weighted graph is defined as L = D − A where D is the diagonal matrix of
vertex degrees and A is the adjacency matrix. In this paper we assume that G
is a symmetric zero row sum matrix with nonpositive off-diagonal elements.
In this case, G is equal to the Laplacian matrix of the graph of G and λ2(G)
is the algebraic connectivity of the graph [10]. There are many results relating
various characteristics of the graph of G and the eigenvalues of its Laplacian
matrix [11–13]. In this paper we will assume that the graphs are unweighted,
i.e. the adjacency matrix is a 0-1 matrix.

Recently, various models of random graphs have been proposed that mimic
more closely man-made and natural networks [14]. These random graphs differ
from the classical random graph model in that the degree distribution does
not have to be Poisson or binomial [15], but can have other types of distribu-
tion such as a power law distribution. Several of these random graph models

1 See [5–9] for synchronization results when G is not symmetric and the graph of
G is directed.
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have two important defining characteristics. First, the graph is generated via
a random procedure. Second, the graph has a particular degree distribution.
Focusing on the degree distribution alone, while ignoring the random aspect
or vice versa can lead to incomplete conclusions. In [16] it was shown that
the heterogeneity of the degree distribution can affect λ2 and r and hence the
synchronizability. On the other hand, several papers show that the degree se-
quence by itself is not enough to characterize λ2 and r. In [17–19] it was shown
that randomness makes λ2 and r large whereas local coupling makes λ2 and
r small. In [20] a graph is constructed for a prescribed degree sequence whose
normalized Laplacian matrix has a small nonzero eigenvalue. In this paper we
continue this study by constructing two graphs with the same degree sequence
whose values for λ2 and r differ significantly. In particular, in some cases the
graph with small λ2 improves upon the bound for λ2 in [20] whereas the graph
with large λ2 has a value for λ2 which is in a sense maximal. Furthermore,
we show analytically that for a model of random graphs, homogeneity of the
degree sequence is beneficial for synchronization.

2 Graphs with a prescribed degree sequence

A simple graph is an unweighted graph with no loops nor multiple edges [21].
The degree sequence of a graph is a list of the degrees of the vertices. A list of
natural numbers is called graphical if there is a simple graph with this list as its
degree sequence. Sufficient and necessary conditions for a list to be graphical
are given in [22,23]. The following result gives upper and lower bounds for λ2

and r of the Laplacian matrix of a graph with a given degree sequence.

Lemma 1 For a connected graph with degree sequence d1 ≤ d2 · · · ≤ dn, λ2

and r satisfy:

2
(
1 − cos

(
π

n

))
δ ≤ λ2 ≤ n

n − 1
δ

(
1 − cos

(
π
n

))
δ

∆
≤ r ≤ δ

∆

where δ = d1 is the minimum vertex degree and ∆ = dn is the maximum vertex
degree.

Proof: The first set of inequalities follows from [10]. The second set of inequal-
ities follows from the fact that n

n−1
∆ ≤ λmax ≤ 2∆, also from [10]. 2

In fact, if the graph is not complete, then λ2 ≤ δ [10]. The lower bounds in
Lemma 1 are attained or approached asymptotically as n → ∞ for the nearest
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neighbor path graph with Laplacian matrix

L =




1 −1

−1 2 −1
. . .

. . .
. . .

−1 1




and λ2 = 2
(
1 − cos

(
π
n

))
, r =

1−cos(π
n)

1+cos(π
n)

. The upper bounds are attained for

the complete graph with Laplacian matrix

L =




n − 1 −1 · · · −1

−1 n − 1 −1
. . .

. . .
. . .

−1 · · · −1 n − 1




and λ2 = n, r = 1.

2.1 Regular graphs

A k-regular graph is a graph where every vertex has degree k. In this section,
we consider two types of connected regular graphs whose values of λ2 and r
can be quite different.

2.1.1 Construction 1: graph with low λ2 and r

For a 2k-regular graph, the degree sequence is (2k, 2k, . . . , 2k). We consider

two cases. In the first case, the vertex degree grows as Ω
(
n

1
3
−ε
)

for ε > 0. If
we arrange the vertices in a circle, and connect each vertex to its 2k nearest
neighbors, then the resulting 2k-regular graph is denoted C2k. The Laplacian
matrix L is a circulant matrix:




2k −1 · · · −1 0 · · · 0 −1 · · · −1

−1 2k −1 · · · −1
. . .

. . .
. . .

−1 · · · −1 0 · · · 0 −1 · · · −1 2k



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The eigenvalues of L are given by (µ0, . . . , µn−1) with:

µ0 = 0

µm = 2k−2
k∑

l=1

cos

(
2πml

n

)
= 2k+1− sin

((
k + 1

2

)
2πm

n

)
sin

(
πm
n

) , m = 1, . . . , n−1

A series expansion shows that as n → ∞, λ2 ≤ µ1 ≈ 4π2(k+ 1
2
)3

3n2 . Since λmax ≥
2k n

n−1
by Lemma 1, r ≤ µ1

λmax
≈ 2π2(k+ 1

2
)3

3kn2 . This means the values λ2 and r

decrease as Ω
(

1
n1+3ε

)
and Ω

(
1

n
4
3
+2ε

)
respectively. In particular, if k is bounded,

i.e. ε = 1
3
, then λ2, r decrease as Ω

(
1
n2

)
which is asymptotically the fastest

possible by Lemma 1.

In the second case, we consider graphs for which k < bn
2
c and use the same

approach as in [20]. The main difference is that in [20] the smallest nonzero
eigenvalue of the normalized Laplacian matrix L̃ = I − D−1A is studied 2 .

For a graph with adjacency matrix A, let e(B, C) =
∑

u∈B,v∈C Au,v be the
number of edges between B and C. The following Lemma is shown in [11]:

Lemma 2

λ2(L) ≤ e(S, S)n

|S|(n − |S|) ≤ λmax(L)

As in [20], we create a connected k-regular graph with |S| = bn
2
c and e(S, S) =

2. By Lemma 2 this means that

λ2(L) ≤ 2n

bn
2
cdn

2
e =




8
n

, n even

8
n− 1

n

, n odd
≤ 8

n − 1
n

r(L) ≤



8(n−1)
kn2 , n even

8
k(n+1)

, n odd
≤ 8

k(n + 1)

The reason for studying the two cases is that C2k gives better bounds when k
grows slower than n

1
3 and the construction in [20] gives better bounds when

k grows faster than n
1
3 . In either case, λ2, r → 0 as n → ∞.

2 For k-regular graphs, this difference between L and L̃ is not important since
L = kL̃ and the eigenvalues of L and L̃ differ by a constant factor k. However, for
non-regular graphs, the eigenvalues of L̃ and L will have different properties.

5



2.1.2 Construction 2: graph with high λ2 and r

With high probability, a random 2k-regular graph has eigenvalues λ2 = 2k −
O(

√
k), λmax = 2k + O(

√
k) as n → ∞ [24]. This means that on a relative

scale, λ2 ≈ 2k, and r ≈ 1 as k, n → ∞ which can be considered optimal
according to Lemma 1. In conclusion, whereas λ2 and r → 0 as n → ∞ for
Construction 1, they remain bounded from below for Construction 2.

Lemma 3 If H is a subgraph of G with the same set of vertices 3 , then

(1) λ2(H) + λ2(G\H) ≤ λ2(G),
(2) λmax(H) + λmax(G\H) ≥ λmax(G)

(3) min(r(H), r(G\H)) ≤ λ2(H)+λ2(G\H)
λmax(H)+λmax(G\H)

≤ r(G),

(4) λmax(H) ≤ λmax(G).

Here G\H is a graph with the same set of vertices as G and with edges which
are in G but not in H. By a slight abuse of notation, we use λi(H) to denote
λi of the Laplacian matrix of the graph H.

Proof: Follows from the facts that λ2(L) = min∑
i
xi=0,‖x‖=1 xT Lx, λmax(L) =

max‖x‖=1 xT Lx and L(H) + L(G\H) = L(G). 2

2.2 Graphs with prescribed degree sequence

For each n, consider a graphical list of degrees 0 < d1 ≤ d2 ≤ · · · ≤ dn. The

average vertex degree is defined as k =
∑

i
di

n
. Next we construct two connected

graphs with the same list of degrees but different λ2 and r.

2.2.1 Construction 1: graph with low λ2 and r

As in Section 2.1.1 we consider two cases. In the first case, dn grows as Ω
(
n

1
3
−ε
)

for ε > 0. Given a graphical list of degrees 0 < d1 ≤ d2 ≤ · · · ≤ dn, the
Havel-Hakimi algorithm [25,26] constructs a connected graph with this degree
sequence where the vertices are arranged on a line and each vertex is connected
to its nearest neighbors. Let us denote this graph as Ghh with Laplacian matrix
Lhh. The graph Ghh is a subgraph of the 2dn-regular graph C2dn defined in

Sec. 2.1.1. Therefore, by Lemma 3, λ2(Lhh) ≤ µ1 ≈ 4π2(dn+ 1
2
)3

3n2 = Ω
(

1
n1+3ε

)
as

n → ∞. Since λmax(Lhh) ≥ ndn

n−1
, this means that r(Lhh) ≤ µ1

λmax
≈ 4π2(dn+ 1

2
)3

3dnn2 =

3 By this we mean that Aij ≤ Bij for all i,j, where A and B are the adjacency
matrices of H and G respectively.

6



Ω
(

1

n
4
3
+2ε

)
. As in Section 2.1.1, for bounded dn the values of λ2 and r for this

construction decrease as Ω
(

1
n2

)
when n → ∞. By Lemma 1, this is the lowest

possible rate.

In the second case, assume that the degree sequence is of the form (dmax, . . . , dmax, dmax−
1, . . . , dmax − 1, . . . , 1, . . . , 1) with dmax ≤ n

4
and the average degree satisfies

k = 2 + dmax

n
. We further assume that for each 1 ≤ i ≤ dmax, there are at

least 2 vertices with vertex degree i. As in [20], we construct a graph with this
degree sequence such that |S| ≥ dn

2
e − dmax and E(S, S) = 2. By Lemma 2

this means that

λ2(L) ≤ 2n

(bn
2
c+dmax)(dn

2
e−dmax)

=




8

n− 4d2
max
n

,n even

8

n− 4(dmax− 1
2 )2

n

,n odd

≤ 8

n− 4d2
max
n

≤ 10 2
3

n

r(L) ≤ (n − 1)λ2(L)

dmaxn
≤




8(n−1)
n2dmax−4d3

max
,n even

8(n−1)

ndmax

(
n− 4(dmax− 1

2 )2

n

) ,n odd
≤ 102

3

ndmax

where we have used the fact that dmax ≤ n
4
. Again, in either case r, λ2 → 0 as

n → ∞.

2.2.2 Construction 2: graph with high λ2 and r

For convenience, we allow loops in the graph, i.e. the graphs are not necessarily
simple. Furthermore, rather than constructing graphs with a specific degree
sequence, we consider a random graph model which has a prescribed degree
sequence in expectation. Given a list of degrees d1 ≤ d2 ≤ · · · ≤ dn satisfying
the condition

n(dn − d1)
2 ≤ (n − d1)

∑
k

(dk − d1)

we construct a random graph as in [18] where an edge between vertex i and
vertex j is randomly selected with probability

Pij =
d1

n
+

(di − d1)(dj − d1)∑
k(dk − d1)

Since
∑

i Pij = dj, the graph has the desired degree sequence in expectation.
Let us call this graph model Gpr with Laplacian matrix Lpr. For the special
case d1 = d2 = · · · = dn, we choose Pij = d1

n
and denote this graph model as

Gr(d1).
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Since Pij ≥ d1

n
, this means that Gr(d1) is a “subgraph” of Gpr. What we mean

by this is that the probability space of Gpr can be partitioned such that for
each graph H in Gr(d1) with probability p, there exists exactly one event A in
Gpr with probability p, such that H is a subgraph of all the graphs in event
A. In particular, consider the edges in Gpr to be of two types. An edge (i, j)
of type 1 occurs with probability d1

n
and and edge (i, j) of type 2 occurs with

probability Pij − d1

n
. To each graph H in Gr(d1) corresponds a set of graphs

A(H) constructed as follows. If (i, j) is an edge in H, then (i, j) is an edge of
type 1 in graphs in A(H). If (i, j) is not an edge in H, then either (i, j) is not
an edge or (i, j) is an edge of type 2 in graphs in A(H). It is clear that these
sets A(H) over all graphs H in Gr(d1) exactly partition the probability space
of Gpr. Furthermore, the probability of A(H) in Gpr is equal to the probability
of H in Gr(d1) and H is a subgraph of every graph in A(H).

By the Courant-Fischer minmax theorem, the eigenvalues of the Laplacian
matrix cannot decrease as more edges are added to the graph. This means
that if λ2(Gr(d1)) ≥ ξ with high probability, then λ2(Gpr) ≥ ξ with high
probability.

Let us assume now that d1 = p1n for some 0 < p1 < 1. In [27] it was shown
that for the graph Gr(d1), |λ2 − d1| and |λmax − d1| are both on the order of
o(
√

n) with high probability as n → ∞. This means that λ2(Gpr) ≥ d1−o(
√

n)

with high probability. Since λ2 ≤ n
n−1

d1, this implies that λ2 ≈ d1 and r
>≈ d1

2dn

for Gpr, i.e. λ2 and r are bounded away from 0 as n → ∞.

The conclusion that λ2 ≈ d1 shows that for the random graph model Gpr,
homogeneity of the degree sequence enhances synchronizability in terms of λ2.
In particular, for a given average degree k, the highest λ2 can be as n → ∞
is approximately k since λ2 ≤ n

n−1
d1 ≤ n

n−1
k. This is achieved for the random

graph where d1 = k, i.e. the d1-regular graph which has the most homogeneous
degree sequence. This supports the experimental results in [16].

3 Conclusions

We present graph constructions that for the same degree sequence generate
graphs with low and high synchronizability in networks of coupled systems.
In particular, we construct a graph with low synchronizability whose values of
λ2 and r decreases to 0 and a graph with high snchronizability whose values
of λ2 and r are bounded away from 0 as n → ∞. This further indicates that
the degree sequence alone is not sufficient to determine the synchronizability
of a network of coupled dynamical systems. Furthermore, the constructions
further support the assertion in [18,19] that local coupling tends to have low
synchronizability, whereas random coupling tends to have high synchroniz-
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ability. On the other hand, for the random graph model Gpr in Section 2.2.2,
homogeneity in the vertex degree is beneficial for synchronization.
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