
RC23613 (W0505-109) May 19, 2005
Other

IBM Research Report

System Data Management: An Inter-Disciplinary
Collaboration Architecture for Systems Engineering

José Gomes, Man-Mohan Singh1, Mila Keren2, Sai Zeng, Julia Rubin2,
Laurent Balmelli, Ioana Boier-Martin

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

1IBM Software Group

2IBM Haifa Research Laboratory

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1 Copyright © #### by ASME

SYSTEM DATA MANAGEMENT: AN INTER-DISCIPLINARY COLLABORATION ARCHITECTURE
FOR SYSTEMS ENGINEERING1

José Gomes
josegome@us.ibm.com

Man-Mohan Singh
mmsingh@us.ibm.com

Mila Keren
keren@il.ibm.com

Sai Zeng
saizeng@us.ibm.com

Julia Rubin
mjulia@il.ibm.com

Laurent Balmelli
balmelli@us.ibm.com

Ioana Boier-Martin
ioana@us.ibm.com

IBM Research

1
 To appear in the Proceedings of ASME IDETC/CIE 2005.

ABSTRACT
This paper presents a novel approach to integrating

systems engineering (SE) artifacts and methods with discipline-
specific detailed design artifacts and processes, for the purpose
of facilitating inter-disciplinary collaboration. In particular, it
addresses the lifecycle management of complex products
involving mechanical, electrical, electronics and software
aspects, and being designed following a formal product
development methodology. The primary motivation of the
approach is to capture and maintain the traceability between the
concrete artifacts stored in discipline-specific “repositories”
and the abstract artifacts used to support system-level decisions
as well as system integration. The proposed approach
acknowledges the fundamental differences that exist between
the various engineering disciplines and therefore favors a loose
coupling based on a process-centric management of the
artifacts traceability links. These considerations lead to an inter-
disciplinary collaboration and infrastructure pattern called
“system data management” (SDM), with the role of enforcing
the integrity of the inter-disciplinary traceability between
artifacts. As a byproduct, this approach suggests a novel
perspective on product data management (PDM) and software
configuration management (SCM) integration that sharply
contrasts with point-to-point integration solutions. The authors
have implemented a prototype based on a service-oriented
architecture (SOA) and existing PDM and SCM technologies.

Keywords: Inter-disciplinary collaboration; integration of
product data management and software configuration
management systems, support of systems engineering practices,
systems modeling language, conceptual design and detailed

design artifacts.

1 Introduction

This paper is concerned with the methods used in the
Manufacturing Industry to develop complex products such as
passenger vehicles, aircrafts, ships or satellites. Historically, for
the sake of economic rationalization, the industry has evolved
into complex intertwined networks of original equipment
manufacturers, specialized suppliers, and even more specialized
suppliers of suppliers. The product development methods
themselves have evolved to adjust to this organizational model
and rely heavily on component integrations.

Today, the industry continues to evolve in response to
changing market conditions. One of the most important
changes, currently taking place, is the increasing reliance on
embedded software content in new products. Embedded
software is increasingly being used to manage complex
mechanical and electronic components and to implement
unique new product functions and features. This trend is
evident from the need of manufacturers to differentiate their
products from their competitors and the increase in customer
demand for new electronic features. This new trend implies
that there is an increased focus on new integrated product
development paradigms. In the absence of such paradigms, the
manufactures are subject to tremendous risks in costs
associated with delays in new product introduction, warranty
and liability.

The increased focus on integrated product development is
of special interest because, in the recent past, development
organizations across various design disciplines have worked in
silos and differ in terms of culture, practices, processes, tools,
representations, and concrete artifacts. Basic paradigms of
software engineering are quite different from those of the
traditionally dominant mechanical and electrical engineering
disciplines.

 2 Copyright © #### by ASME

A noticeable trend in the industry, moving in the direction
of integrated product development, is to consider the promises
of Requirements Engineering, Systems Engineering or Model-
Driven Development disciplines as applied to the development
of a “whole” product. Various systems engineering approaches
to product development put emphasis on requirements
engineering and inter-disciplinary collaboration throughout the
product lifecycle while model-driven development emphasizes
creation of product models as seen from the perspective of its
stakeholders. The product is seen as system delivering
measurable value as a whole, rather than as the sum of its
constituents.

The proponents of such holistic methods claim that raising
the level of abstraction above traditional engineering disciplines
has the potential to connect the manufacturer’s business drivers
to detailed development processes. An additional conclusion
that can be asserted is that these new product models, or
abstract artifacts, can themselves become valuable reusable
assets for the manufacturers.

Objectively, one could also argue that it is not clear why
the claimed benefits would counter-balance the cost of
managing an even higher number of disciplines, associated
artifacts, and processes. A second equally valid concern is that
abstract models "on the paper" may not reflect the day to day
reality of engineering processes and therefore may not be
relevant to effective decision-making processes.

While multiple studies confirm the business benefits of
holistic methods [11,21,22], relatively little attention has been
paid to the second concern, and this is the focus of this paper. It
is clear that abstract models, such as Systems Modeling
Language (SysML) models of requirements, products and
processes [23, 1], or any other abstract representation of
systems, can only be useful if they faithfully reflect the realities
of the day. For instance, design tradeoff analysis or impact
analysis of design changes are key systems engineering
processes for effective decision-making. However, the results
of such analysis are only as accurate as the connection between
the system model and the associated concrete artifacts
representing processes and domain specific knowledge.

In this paper, we call “traceability” the associations
between artifacts needed to support specific systems
engineering processes through multi-disciplinary collaboration
and leading to decisions. We characterize this notion of
traceability in detail and describe a conceptual framework for
implementing it.

2 State of the art

A central aspect of the holistic approaches to product
development involves maintaining the integrity and evolution
of inter-relationships of various discipline- or stakeholder-
specific abstractions, or artifacts, during the product lifecycle.
This is a necessity if one has to effectively apply the systems
engineering methods for product development. Maintenance of
this traceability of artifacts is achieved through inter-
disciplinary collaborations.

In the traditional product lifecycle management (PLM)
approach to product development, product data management
(PDM) or engineering data management (EDM) is the
discipline of designing and controlling the evolution of a

product from its mechanical, electrical, and electronics
engineering aspects, whereas, software configuration
management (SCM) is the discipline of controlling the
evolution of software engineering aspects of the product. The
artifacts of requirements engineering are either managed in
PDM or SCM systems, or more often, are not afforded formal
treatment. At a conceptual level, there are many similarities
between PDM and SCM; however, there are also major
differences [10, 26, 6, 7] because of the different nature of the
supported artifacts and processes.

When applying a systems engineering approach to product
development, there have been attempts to manage software
engineering artifacts within PDM systems and, similarly, to
manage mechanical and electrical engineering artifacts in SCM
systems but these solutions have not been very satisfactory or
successful. PDM tools have been on the market for decades
with a long tradition and standardized product evolution control
know-how. They are strong in product modeling, data
representation (metadata and data are separated), data modeling
(object-oriented data models), and workflow, process and
document management. However, they have weak support for
concurrent engineering and workspace, build and configuration
management [10]. SCM tools are more recent than PDM tools.
They are good at managing files and directories and supporting
concurrent engineering. They are good at version, build,
configuration, and workspace management. However, they are
weak in product modeling and release and document
management [10].

An alternate approach that has been tried is the point-to-
point integration between specific PDM and SCM products by
invoking import/export functionality of the underlying
databases to maintain integrity of the two different product data
representations [7]. However, such integration efforts have
turned out to be very complex in nature and there is a high risk
that the data integrity across the two systems cannot be
guaranteed.

Looking at the problem from a model-driven development
standpoint, yet another approach seems natural. For example,
assume that artifacts are kept within their native development
environments, for instance, hardware in PDM and software in
SCM. Further, assume that the overall product is described in a
system model; it is tempting to implement inter-disciplinary
traceability by directly associating each system model element
with the relevant concrete artifacts in other disciplines. One
limitation of this solution, though, is that it is difficult a priori,
to decide which concrete artifacts are associated with a given
system element. In reality, the associations mainly derive from
the specific product development practices in use. There are
potentially as many different associations of very different
nature as there are different processes involving the same
system model element. Additionally, using the system model of
the product as the root of all traceability links prohibits re-use
of the model. For instance, part of a system model could be
reused in different parts of a product, or even in different
products. This situation makes it clear that the system model
itself cannot be the root of the traceability to the concrete
artifacts.

Even though inter-disciplinary collaboration is the central
tenet of systems engineering, the state of the art to achieve such
collaboration is too weak to be effective. We therefore propose

 3 Copyright © #### by ASME

an alternative approach to supporting inter-disciplinary
collaboration.

3 System Data Management Concept

System data management (SDM), as defined in this paper,
is a collaboration and infrastructure pattern. Its role is to
support inter-disciplinary collaboration processes so as to
maintain the integrity of a system that is specified by a set of
product development artifacts concurrently authored by
multiple teams. This concept and its hypotheses are described
in this section.

3.1 Intra and inter-disciplinary collaboration

The authors assume that product development processes
may be classified as intra-disciplinary or inter-disciplinary. An
intra-disciplinary process is executed by a development team
within a single discipline and involves authoring artifacts of
this discipline only. Figures 1 and 2 represent a typical intra-
disciplinary product development infrastructure and
collaboration pattern at a level of detail sufficient to introduce
the SDM concept. Development artifacts are under the revision
control of one or more discipline-specific repositories. This is,
for instance, the basic pattern implemented by both PDM and
SCM systems. The development environment of a team
includes a workflow client used to involve the team in a
prescribed product development process, a repository client
used to reserve and commit artifacts to the common repository,
and authoring tools used to create or modify artifacts in the
workspaces of team members.

In contrast, an inter-disciplinary process is executed by a
multi-disciplinary team and involves the coordinated
concurrent authoring of artifacts belonging to different
disciplines so as to guaranty the integrity of the system being
developed. Examples of inter-disciplinary processes are those
prescribed by systems engineering best practices. Specific
examples are requirements coverage analysis (“Is this
requirement being taken into account in the design?”),
requirements conformance analysis (“Is this requirement
actually satisfied by the design?”), impact or tradeoff analysis
(“What if?”), and system-level requirements verification.
Unlike intra-disciplinary collaboration, there exists no de facto
inter-disciplinary collaboration and infrastructure pattern.

The relevance of this classification of development
processes (i.e. intra and inter-disciplinary) arises in particular
from growing evidence in the industry that most quality
concerns of modern products primarily result from poor inter-
disciplinary collaboration [3].

3.2 Process-centric support of inter-disciplinary
collaboration

SDM therefore exclusively aims at supporting inter-
disciplinary collaboration and is a collaboration and
infrastructure pattern. The authors assume that the pattern
depicted in Figures 1 and 2 adequately supports intra-
disciplinary collaboration within any individual discipline. To
understand the concept of SDM, it is necessary to know the
reasons that this pattern is not appropriate for inter-disciplinary
processes in practice. There are at least two reasons.

A careful examination of existing PDM and SCM systems
[10, 26, 6, 7] shows how qualitatively different discipline-
specific implementations of this pattern are in practice. The
detailed data models, evolutionary models and interfaces of
each repository arise from specific needs and development
paradigms of its discipline. These are often not known by
developers of other disciplines, neither should they need to be
known in general. In these circumstances, it might be
unrealistic to reconcile several data models and associated
practices into a universal kind of repository and practice, as
required by this pattern. This motivates the need to investigate
inter-disciplinary collaboration and infrastructure patterns that
will respect these multiple de facto discipline-specific
infrastructures and leverage them “as is”, if possible.

Another argument is the existence of strategic investments
in PDM and SCM implementations in organizations
traditionally dominated by a specific engineering discipline.
The investment in skills and processes which use these
infrastructures provides additional reasons to consider an
integration approach that does not violate, but instead
leverages, the discipline-specific infrastructures in place.

To understand the concept of SDM, it is also necessary to
know its positioning with respect to systems engineering
artifacts and practices. The discipline of systems engineering,
in many regards, does support inter-disciplinary collaboration.
In effect, its artifacts, such as models of systems, allow the joint
expression of mechanical, electrical, electronics, software and
requirements aspects in a common language such as, for
instance, SysML. This offers a basis for reasoning, and
therefore making decisions, on the systems structures and
behaviors which will best satisfy all the product and product
development requirements. However, from the artifacts
lifecycle management perspective, systems engineering is
merely another discipline. Let us illustrate this point. The set of
all development artifacts associated with a given product
typically contains artifacts representing its individual
components, and artifacts representing the integrated system.
The first subset might contain for instance Computer Aided
Design (CAD) or Computer Aided Engineering (CAE)
documents, specifications, software code, or test cases. The
second subset might contain SysML system models or any
other description of how all these components should fit
together to form the whole.

However, an important piece of information still missing is
the set of concrete links existing between all these artifacts, if
they are seen as different resources kept under revision control
in specific repositories. The SysML model does not contain this
information and, from this perspective, is merely such as
resource itself. This missing traceability information is
necessary so that the abstract systems model can accurately
reflect all the aspects of the product and lead to correct product
development decisions.

3.3 SDM conceptual model

This section introduces the SDM conceptual model of
collaboration, beginning with a formal description and
supporting it with an example.

Under the SDM data model, discipline-specific artifacts
remain under the management of their respective teams and
repositories. The inter-disciplinary traceability information is
explicitly captured and managed in an additional discipline-

 4 Copyright © #### by ASME

agnostic repository called the SDM Repository. Within this
repository, the traceability information is organized and
managed according to prescribed inter-disciplinary processes
associated with the system being developed. For each such
process, the SDM repository maintains references to the set of
multi-disciplinary artifacts (seen as concrete resources) needed
to execute it. The integrity of the traceability information is
guarantied through the enforcement of a collaboration protocol
between discipline-specific repositories and the SDM
repository.

For illustration, assume that a given testing process P
consists of “loading” a specific version of a software
component S on a specific revision of a hardware component H,
executing the software program in the context of a specific
version of a use case UC and verifying that some specific
versions of associated performance requirements PR are
satisfied. This process is assumed to be prescribed by the
methodology of the development organization and needs to be
executed multiple times during the development phase. Each
specific version of P, S, H, UC and PR takes the form of a file
document, database records, or any other digital form. These
artifacts are possibly stored in different repositories and
managed by different organizations. Since each of these
constituents participate to the specification of a system, the
logical relationships between S, H, UC and PR, as intended by
a systems engineering team, are specified in a SysML model
Sys, or any other systems modeling language. Seen from the
perspective of the SDM data model, Sys is yet another artifact,
stored in yet another repository and managed by the systems
engineering team. Next, taking the perspective of an inter-
disciplinary team in charge of executing the testing process P, it
is necessary to know how to access and reserve each of these
artifacts in their individual repositories. Therefore, for the sake
of both efficiency and correctness, there is a need to record the
association between the process to be executed and the artifacts
required to execute it, so as to enable the team to involve the
“right” artifacts at the “right” time. This is illustrated in Figure
5, in which each lower circle represents all the information
needed to access an artifact in its own repository, e.g., PDM or
SCM.

The set of references to the artifacts in their respective
repositories (or artifact proxies) that are needed to execute any
inter-disciplinary process is called the artifact tuple associated
with the process, in our example the testing process. This
artifact tuple is stored in the SDM repository, along with other
tuples associated with other processes. From a lifecycle
management perspective, the artifacts referenced from the
artifact tuple pursue their individual lifecycle, e.g., go through
their next revisions. Therefore, the references stored in the tuple
need to be updated accordingly. The artifact tuple itself is
updated whenever any of its referenced artifacts is changed.
Therefore, the artifact tuple needs to be kept under revision
control in the SDM repository. In other words, the artifact tuple
is an artifact itself. This new artifact, now part of the set of
artifact describing the system, captures process knowledge
regarding the development of the system. Indeed, the artifact
tuple will facilitate the re-execution of this process in the
future. Furthermore, since the artifact tuple is an artifact, it
might be referenced from a parent artifact tuple as well. For
instance, in a different scenario, a “large” testing process may
involve not just direct concrete artifacts of the system, as in our

prior example, but may also need as input the outcome of a
number of smaller tests. In this case, a parent tuple associated
with the parent test process may reference child artifact tuples
associated with child testing processes. Therefore, hierarchies
of artifact tuples, or more general graphs of them, capture
arbitrarily complex process knowledge of development
processes associated with a system. This process knowledge is
now part of the set of development artifacts that describe the
system.

In particular, this can be particularly useful to raise the
level of granularity at which reuse is performed from the level
of individual components to that of entire subsystems. Indeed,
if care is taken in packaging the set of artifacts associated with
a subsystem so that this process knowledge always remains
attached with it, then artifact tuples may facilitate the re-
execution of customization and integration processes associated
with that particular sub-system and therefore effectively
support its reuse in different contexts and products. In some
sense, SDM defines system reuse as a process.

Note that, a priori, organizing the artifacts traceability in
such a process-centric manner is not the only possibility. For
instance, one could “directly” capture the information that
component H and component S are associated by creating and
managing a link from H to S. However, the role of this
relationship is not clear as one considers practical use cases. In
effect, the same hardware component H could, in principle, be
as well associated with another software component S2 in other
products of the portfolio. Then, by induction, any component
artifact could be “directly” linked to an arbitrary number of
other components artifacts. It is not clear then how these links
may be distinguished from one another by a team in charge of
executing a process involving these artifacts. The same
argument would apply if one would attempt to “directly”
capture the traceability between Sys and the discipline-specific
artifacts. In practice, traceability links always depend upon a
specific process context, and their only reason to exist is to
support this process. This motivates the process-centric
approach taken by the authors. Let’s now turn to the challenges
of this approach.

Supposing that artifact tuples are stored in the SDM
repository and their referenced resources are each managed in
their own repositories, an obvious challenge is to keep the links
up to date as each referenced artifact goes through its next steps
in its evolutionary model (cf. Figure 5). “How does the SDM
repository know that component H has now a new version?”
This problem can be solved if communication takes place
between the SDM repository and the discipline-specific
repository owning component H. Without this transfer of
information, P might be performed using outdated artifacts. In
SDM, the integrity of artifact tuples is guarantied by a simple,
but strictly enforced request/update collaboration pattern
between the SDM repository and the various discipline-specific
repositories. This requires a minimal but necessary alteration to
each of the discipline-specific development environments: the
addition of a light infrastructure component providing “SDM
Client Services” that enforce the communication protocol each
time “Check In” or “Check Out” requests are made by a
development team. Each instance of this component handles the
negotiation with the SDM repository that exposes its “SDM
Core Services”. This alteration can be made transparent to the
team members by programmatically routing requests to reserve

 5 Copyright © #### by ASME

or commit artifacts to the SDM Service, instead of to the
repository client. In the case of a non-integrated development
environment (IDE), the SDM Client Services may as well be
exposed to end-user using an additional trivial graphical user
interface (GUI).

In more detail, and referring to the sequence diagram of
Figure 4, the request/update collaboration pattern functions as
follows. Whenever a team member requests to reserve an
artifact, its “local” instance of the SDM Client Services needs
to request authoring permission to the SDM Core Services,
before it may actually access the artifact within its own “local”
repository. As a result of this request, the SDM Core Services
return detailed access information that is used by the SDM
Client Services to reserve the artifact in its own “local”
repository. Similarly, when the same team member requests to
commit the artifact after having updated it, the same instance of
the SDM Client Services first commits the artifact to its own
“local” repository and then needs to notify the SDM Core
Services of the new access information to be used for the next
access of this artifact. The SDM Core Services update the
traceability data kept under revision control in the SDM
Repository. This alteration of the infrastructure and
collaboration pattern is depicted in Figures 3 and 4.

A second challenge is that artifacts in different disciplines
might a priori follow different evolutionary models. This could
be a problem since the details of the negotiations between the
SDM Client Services and the SDM Core Services that track
these evolutions would in this case differ, depending on the
discipline. For this reason, SDM assumes the most general
evolutionary model. One observes indeed that there are two
basic evolutionary models: linear models (mostly adopted by
PDM) and tree models (mostly adopted by SCM). The
motivation for tree models is to have multiple lifecycle
branches running simultaneously and allowing, for instance,
multiple teams to concurrently update the same artifact.
Historically, this evolutionary model became plausible in
software engineering thanks to the possibility of analyzing
incremental differences between two text files, or for that
matter software source code, and merge them into a third file
containing all the differences. The difference and merge
capabilities have been extended to many other formats,
including that of visual models but is not a standard operation
for most artifacts of other disciplines. However, since the tree
evolutionary model is a generalization of the linear one, in
SDM, it may be assumed, without loss of generality, that all the
artifacts follow a tree evolutionary model. Possible applications
of such a general lifecycle model at the system-level include
the simultaneous investigation of design alternatives or the
simultaneous resolution of independent design issues across
multiple disciplines. For instance, two pairs of software and
hardware teams could, in principle, simultaneously investigate
two different ways to solve a system design issue involving
changes in both software and hardware. It must be noted that
although branching models are not supported by traditional
PDM practices, the actual underlying technologies of PDM
support may support arbitrarily general evolutionary models
thanks in particular to the notion of “objects primary
identifiers”, which may be used to give multiple identities to
the “same” object.

4 System Data Management Proof Of Concept

The authors have developed a prototype SDM infrastructure

based on a service-oriented architecture (SOA) and existing

PDM and SCM technologies. The purpose of this prototype is

to provide an early validation of the concept of SDM in the

context of hypothetical use-cases, prescribed system-

engineering methodology and discipline-specific product

development environments. This prototype is not intended as a

reference solution but merely as an example. In effect, each

development organization has its own prescribed product

development methodology and environments. Therefore, SDM

must be customized accordingly. SDM being technology-

agnostic and methodology-agnostic, its hypotheses of

applicability are largely met by modern development

organizations.

4.1 Use-cases

The authors have defined a set of automotive use-cases

focused on the reconciliation of system-level requirements

through inter-disciplinary collaboration. The sub-systems of

interest are the brake system and the adaptive cruise control,

with a focus on mechanical analysis and embedded systems.

The addressed requirements include hypothetical cost

requirements and the publicly available regulatory requirements

of the National Highway Traffic Safety Administration

(NHTSA) of the United States for passenger vehicle brake

systems [13]. According to one use-case, for instance, a team of

systems engineers evaluates possible design changes targeting a

brake system cost reduction. This use-case involves the work of

mechanical engineers in charge of verifying brake system

thermal-stress requirements, of software engineers in charge of

adapting existing embedded software of various functions

(Anti-lock brake system (ABS), electronic stability program

(ESP), traction control system (TCS) and adaptive cruise

control (ACC), [7]), and of requirements engineers in charge of

managing the corresponding cost and safety requirements.

4.2 Prescribed methodology

The assumed prescribed methodology is the Rational Unified

Process for Systems Engineering [17]. Note that any

methodology explicitly prescribing inter-disciplinary

collaboration processes is an equally good candidate to apply

SDM and since artifact tuples may be created on-demand,

detailed processes need not be defined in advance.

4.3 Discipline-specific environments

Each engineering discipline has it own specific

development environment, in agreement with Figures 1 and 2.

The environments used in the prototype are summarized in

Table 1. The authors have installed, configured and populated

these environments in their laboratory so as to approximate a

representative production environment as closely as possible.

 6 Copyright © #### by ASME

4.4 System data management deployment

The authors have implemented the data model of Figure 6 using

PDM technology, used as a basic combination of object-

oriented and database technologies. This data model is logically

independent from that of usual PDM data models such as those

used for the Bill of Material (BOM). Indeed, from a logical

perspective, PDM systems are the intra-disciplinary repositories

of choice for mechanical and electrical engineering, while the

SDM repository is inter-disciplinary. From a physical

deployment perspective, though, SDM can be implemented

using existing technologies, and even use the same PDM

engine as for the BOM. Other candidate technologies for

implementing the SDM data model are object-oriented SCM,

stellation technology or object-oriented stores persisting data in

relational databases, such as in the Enterprise Java Beans

technologies [18, 4].

Figure 4 defines functional interfaces between the various

environments. It is therefore natural to select the SOA

integration paradigm [19], which focuses on the definition and

deployment of such interfaces and not in the specifics of their

implementations. Each discipline-specific environment and

PDM repository exposes “web services”, or possibly

“enterprise services” that invoke one another.

4.5 Comment

Based on the experience gained with this prototype, the authors

conjecture that the services (or network interfaces) needed in

deployments of the SDM architecture in actual production

environments may be classified as in Table 2. This

classification provides additional guidance for future SDM

deployments.

Table 1 Disciplines considered in SDM prototype.

Discipline Role

Discipline-

specific

authoring tool

Discipline-

specific

repository

Systems

engineering

Conceptual design of

brake system and

adaptive cruise control

using SysML

Rational

Software

Architect [15]

Rational

ClearCase

[14]

Requirements

engineering

Management of brake

system and adaptive

cruise control

requirements

Rational

RequisitePro [16]

Rational

RequisitePro

database

Mechanical

engineering

CAD/CAE design and

mechanical analysis of

disk brake system

Dassault

Systèmes CATIA

[5]

SmarTeam as

PDM

with DB2

[20]

Software

engineering

Design of embedded

software for brake

system and adaptive

cruise control

Websphere

Studio

Application

Developer [25]

Rational

ClearCase

[14] as SCM

Table 2 Conjectured classification of SDM Interfaces.

Class Members Role

Session

Control and

Credentials

Services

Handles context of negotiation session between

discipline-specific environments and SDM

repository

Systems

Engineering

Artifacts

Authoring

Services

Handles authoring of information residing in the

SDM repository (e.g. artifact tuples)

SDM

Core

Services

Systems

Engineering

Traceability

Services

Handles algorithmic traversals of inter-

disciplinary traceability links for purpose of

system analysis

Inter-

disciplinary

Services

Handles negotiations between discipline-

specific repository client and SDM Core

Services SDM

Client

Services

Discipline-

Specific

Introspection

Services

Handles algorithmic traversal of intra-discipline

traceability links for purpose of finer system

analysis

5 Conclusion

In this paper, the authors have presented an approach
which supports inter-disciplinary collaboration, called “system
data management” (SDM) and have contrasted it with the prior
art. The principle underlying the SDM is to keep discipline-
specific development artifacts where they naturally belong and
manage the inter-disciplinary traceability links separately. Such
links support associated prescribed inter-disciplinary
collaboration processes. The integrity of the traceability is
guarantied by a simple, but strictly enforced, request/update
protocol collaboration pattern between the individual
disciplines and the SDM repository.

From a deployment perspective, this process-centric
approach is less invasive than those of prior art and is lighter,
therefore more scalable. In particular, it respects existing
infrastructures and may also be implemented using their
underlying technologies. Moreover, the SDM architecture
captures development process knowledge in a reusable way
since artifacts are linked only from the perspective of
(repeatable) processes. The applicability of the SDM
architecture relies on the existence of prescribed inter-
disciplinary collaboration processes. However, the wider
adoption of such systems engineering practices is an industry
trend.

The authors have implemented a prototype in their
laboratory that provides an early validation of the feasibility
and value of the SDM concept, and they are currently involved
in an industrial validation study.

 7 Copyright © #### by ASME

REFERENCES
1. Balmelli, L. and Moore, A. (2004), ‘Requirement Modeling for

System Engineering using SysML, The Systems Modeling
Language’, In Proceedings of DETC, Computers & Information
in Engineering Conference, Salt Lake City.

2. Bosh, R. (1996), ‘Automotive Handbook’, Fourth Edition,
BOSH, Horst Bauer (Editor).

3. Burkett, M., Mixer, K., Carrillo, L. and Asgekar, V. (2004),
‘Don’t Let Increased Software Features Derail Your New Product
Development and Launch Goals’, AMR Research Report.

4. Chu-Carroll, M.C., Wright, J. and Shields, D. (2002), ‘Supporting
aggregation in fine grained software configuration management’,
ACM SIGSOFT Software Engineering Notes, Volume 27, Issue 6.

5. CATIA, http://www.catia.com, Dassault Systemes.

6. Dahlqvist, A.P., Crnkovic, and Larsson, M. (2001), ‘Managing
Complex Systems - Challenges for PDM and SCM’, Software
Configuration Management, SCM 10, 23rd ICSE, Toronto,
Canada.

7. Crnkovic, I., Asklund, U., and Dahlqvist, A.P. (2003),
‘Implementing and Integrating Product Data Management and
Software Configuration Management’, Artech House Publishers.

8. Dahlqvist, A.P., Crnkovic, I., Hedin, A. and Larsson, M., Ranby,
J., and Svensson, D. (2001), ‘Product Data Management and
Software Configuration Management – Similarities and
Differences’, The Association of Swedish Engineering Industries.

9. Dahlqvist, A.P., Asklund, U., Crnkovic, I., Hedin, A., Larsson,
M., Ranby, J., and Svensson, D. (2001), ‘Product Data
Management and Software Configuration Management –
Similarities and Differences’, The Association of Swedish
Engineering Industries.

10. Estublier, J., Favre, J.M., and Morat P. (1998), `Toward PDM /
SCM: integration ?', In Proceedings of the 8th International
Workshop on Software Configuration Management, Lecture
Notes in Computer Science 1439, pp. 75--95, Bruxelles, Belgium,
Springer Verlag.

11. Gruhl, W. (1992), “Lessons Learned, Cost/Schedule Assessment
Guide”, NASA Comptroller’s Office.

12. International Council on Systems Engineering (INCOSE),
http://www.incose.org.

13. National Highway Traffic Safety Administration, (NHTSA),
http://www.nhtsa.dot.gov.

14. Rational ClearCase, 1990-2005, http://www-
306.ibm.com/software/awdtools/clearcase, International Business
Machines Corporation.

15. Rational Software Architect (RSA), 2005, http://www-
306.ibm.com/software/awdtools/architect/swarchitect,
International Business Machines Corporation.

16. Rational RequisitePro, 2000-2005, http://www-

306.ibm.com/software/awdtools/reqpro, International Business
Machines Corporation.

17. Rational Unified Process for Systems Engineering, http://www-

128.ibm.com/developerworks/rational/library/2766.html,
International Business Machines Corporation.

18. Render, H. and Campbell, R. (1991) `An object-oriented model of
software configuration management', Proceedings of the 3rd

international workshop on Software configuration management,
pp.127—139, ACM Press, New York.

19. Service-oriented architecture (SOA), http://www.service-
architecture.com.

20. SmarTeam, 2000-2005, http://www.smarteam.com, SmarTeam
Corporation.

21. Systems Engineering Center Of Excellence (SECOE) (2002),
“Impact of SE at NASA”, International Council on Systems
Engineering (INCOSE).

22. Systems Engineering Center of Excellence (SECOE) (2003),
“Value of SE”, International Council on Systems Engineering
(INCOSE).

23. Systems Modeling Language (SysML) Partners,
http://www.sysml.org.

24. The Unified Modeling Language, http://www.uml.org, the Object
Modeling Group (OMG).

25. WebSphere Studio Application Developer (WSAD), http://www-
306.ibm.com/software/awdtools/studioappdev/support, 2004,
International Business Machines Corporation.

26. Westfechtel, B. and Conradi, R., “Software Configuration
Management and Engineering Data Management”, In
Proceedings of the 8th International Workshop on Software
Configuration Management, Lecture Notes in Computer Science
1439, pp. 96--106, Bruxelles, Belgium, Springer Verlag.

 8 Copyright © #### by ASME

Figure 1 Intra-disciplinary infrastructure pattern represented according to the
Unified Modeling Language (UML) convention [24] (cf. Section 3.1).

Figure 2 Intra-disciplinary collaboration pattern (cf. Section 3.1).

 9 Copyright © #### by ASME

Figure 3 Inter-disciplinary infrastructure pattern (cf. Section 3.3).

Figure 4 Inter-disciplinary collaboration pattern (cf. Section 3.3).

 10 Copyright © #### by ASME

n
e
e
d
sn

e
e
d
s

Figure 5 Set of multi-disciplinary resources needed to
execute a given process (cf. Section 3.3).

Figure 6 SDM data model (cf. Section 3.3).

