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ABSTRACT 
This paper presents a novel approach to integrating 

systems engineering (SE) artifacts and methods with discipline-
specific detailed design artifacts and processes, for the purpose 
of facilitating inter-disciplinary collaboration. In particular, it 
addresses the lifecycle management of complex products 
involving mechanical, electrical, electronics and software 
aspects, and being designed following a formal product 
development methodology. The primary motivation of the 
approach is to capture and maintain the traceability between the 
concrete artifacts stored in discipline-specific “repositories” 
and the abstract artifacts used to support system-level decisions 
as well as system integration. The proposed approach 
acknowledges the fundamental differences that exist between 
the various engineering disciplines and therefore favors a loose 
coupling based on a process-centric management of the 
artifacts traceability links. These considerations lead to an inter-
disciplinary collaboration and infrastructure pattern called 
“system data management” (SDM), with the role of enforcing 
the integrity of the inter-disciplinary traceability between 
artifacts. As a byproduct, this approach suggests a novel 
perspective on product data management (PDM) and software 
configuration management (SCM) integration that sharply 
contrasts with point-to-point integration solutions. The authors 
have implemented a prototype based on a service-oriented 
architecture (SOA) and existing PDM and SCM technologies. 

 
Keywords: Inter-disciplinary collaboration; integration of 
product data management and software configuration 
management systems, support of systems engineering practices, 
systems modeling language, conceptual design and detailed 

design artifacts. 

1 Introduction 

This paper is concerned with the methods used in the 
Manufacturing Industry to develop complex products such as 
passenger vehicles, aircrafts, ships or satellites. Historically, for 
the sake of economic rationalization, the industry has evolved 
into complex intertwined networks of original equipment 
manufacturers, specialized suppliers, and even more specialized 
suppliers of suppliers. The product development methods 
themselves have evolved to adjust to this organizational model 
and rely heavily on component integrations. 

Today, the industry continues to evolve in response to 
changing market conditions. One of the most important 
changes, currently taking place, is the increasing reliance on 
embedded software content in new products. Embedded 
software is increasingly being used to manage complex 
mechanical and electronic components and to implement 
unique new product functions and features. This trend is 
evident from the need of manufacturers to differentiate their 
products from their competitors and the increase in customer 
demand for new electronic features.  This new trend implies 
that there is an increased focus on new integrated product 
development paradigms.  In the absence of such paradigms, the 
manufactures are subject to tremendous risks in costs 
associated with delays in new product introduction, warranty 
and liability. 

The increased focus on integrated product development is 
of special interest because, in the recent past, development 
organizations across various design disciplines have worked in 
silos and differ in terms of culture, practices, processes, tools, 
representations, and concrete artifacts. Basic paradigms of 
software engineering are quite different from those of the 
traditionally dominant mechanical and electrical engineering 
disciplines. 
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A noticeable trend in the industry, moving in the direction 
of integrated product development, is to consider the promises 
of Requirements Engineering, Systems Engineering or Model-
Driven Development disciplines as applied to the development 
of a “whole” product.  Various systems engineering approaches 
to product development put emphasis on requirements 
engineering and inter-disciplinary collaboration throughout the 
product lifecycle while model-driven development emphasizes 
creation of product models as seen from the perspective of its 
stakeholders. The product is seen as system delivering 
measurable value as a whole, rather than as the sum of its 
constituents. 

The proponents of such holistic methods claim that raising 
the level of abstraction above traditional engineering disciplines 
has the potential to connect the manufacturer’s business drivers 
to detailed development processes. An additional conclusion 
that can be asserted is that these new product models, or 
abstract artifacts, can themselves become valuable reusable 
assets for the manufacturers. 

Objectively, one could also argue that it is not clear why 
the claimed benefits would counter-balance the cost of 
managing an even higher number of disciplines, associated 
artifacts, and processes. A second equally valid concern is that 
abstract models "on the paper" may not reflect the day to day 
reality of engineering processes and therefore may not be 
relevant to effective decision-making processes. 

While multiple studies confirm the business benefits of 
holistic methods [11,21,22], relatively little attention has been 
paid to the second concern, and this is the focus of this paper. It 
is clear that abstract models, such as Systems Modeling 
Language (SysML) models of requirements, products and 
processes [23, 1], or any other abstract representation of 
systems, can only be useful if they faithfully reflect the realities 
of the day. For instance, design tradeoff analysis or impact 
analysis of design changes are key systems engineering 
processes for effective decision-making. However, the results 
of such analysis are only as accurate as the connection between 
the system model and the associated concrete artifacts 
representing processes and domain specific knowledge. 

In this paper, we call “traceability” the associations 
between artifacts needed to support specific systems 
engineering processes through multi-disciplinary collaboration 
and leading to decisions. We characterize this notion of 
traceability in detail and describe a conceptual framework for 
implementing it. 

2 State of the art 

A central aspect of the holistic approaches to product 
development involves maintaining the integrity and evolution 
of inter-relationships of various discipline- or stakeholder-
specific abstractions, or artifacts, during the product lifecycle.  
This is a necessity if one has to effectively apply the systems 
engineering methods for product development.  Maintenance of 
this traceability of artifacts is achieved through inter-
disciplinary collaborations. 

In the traditional product lifecycle management (PLM) 
approach to product development, product data management 
(PDM) or engineering data management (EDM) is the 
discipline of designing and controlling the evolution of a 

product from its mechanical, electrical, and electronics 
engineering aspects, whereas, software configuration 
management (SCM) is the discipline of controlling the 
evolution of software engineering aspects of the product. The 
artifacts of requirements engineering are either managed in 
PDM or SCM systems, or more often, are not afforded formal 
treatment. At a conceptual level, there are many similarities 
between PDM and SCM; however, there are also major 
differences [10, 26, 6, 7] because of the different nature of the 
supported artifacts and processes. 

When applying a systems engineering approach to product 
development, there have been attempts to manage software 
engineering artifacts within PDM systems and, similarly, to 
manage mechanical and electrical engineering artifacts in SCM 
systems but these solutions have not been very satisfactory or 
successful. PDM tools have been on the market for decades 
with a long tradition and standardized product evolution control 
know-how. They are strong in product modeling, data 
representation (metadata and data are separated), data modeling 
(object-oriented data models), and workflow, process and 
document management.  However, they have weak support for 
concurrent engineering and workspace, build and configuration 
management [10]. SCM tools are more recent than PDM tools. 
They are good at managing files and directories and supporting 
concurrent engineering. They are good at version, build, 
configuration, and workspace management.  However, they are 
weak in product modeling and release and document 
management [10]. 

An alternate approach that has been tried is the point-to-
point integration between specific PDM and SCM products by 
invoking import/export functionality of the underlying 
databases to maintain integrity of the two different product data 
representations [7]. However, such integration efforts have 
turned out to be very complex in nature and there is a high risk 
that the data integrity across the two systems cannot be 
guaranteed. 

Looking at the problem from a model-driven development 
standpoint, yet another approach seems natural. For example, 
assume that artifacts are kept within their native development 
environments, for instance, hardware in PDM and software in 
SCM. Further, assume that the overall product is described in a 
system model; it is tempting to implement inter-disciplinary 
traceability by directly associating each system model element 
with the relevant concrete artifacts in other disciplines. One 
limitation of this solution, though, is that it is difficult a priori, 
to decide which concrete artifacts are associated with a given 
system element. In reality, the associations mainly derive from 
the specific product development practices in use. There are 
potentially as many different associations of very different 
nature as there are different processes involving the same 
system model element. Additionally, using the system model of 
the product as the root of all traceability links prohibits re-use 
of the model.  For instance, part of a system model could be 
reused in different parts of a product, or even in different 
products. This situation makes it clear that the system model 
itself cannot be the root of the traceability to the concrete 
artifacts. 

Even though inter-disciplinary collaboration is the central 
tenet of systems engineering, the state of the art to achieve such 
collaboration is too weak to be effective. We therefore propose 



 3 Copyright © #### by ASME 

an alternative approach to supporting inter-disciplinary 
collaboration. 

3 System Data Management Concept 

System data management (SDM), as defined in this paper, 
is a collaboration and infrastructure pattern. Its role is to 
support inter-disciplinary collaboration processes so as to 
maintain the integrity of a system that is specified by a set of 
product development artifacts concurrently authored by 
multiple teams. This concept and its hypotheses are described 
in this section. 

3.1 Intra and inter-disciplinary collaboration 

The authors assume that product development processes 
may be classified as intra-disciplinary or inter-disciplinary. An 
intra-disciplinary process is executed by a development team 
within a single discipline and involves authoring artifacts of 
this discipline only. Figures 1 and 2 represent a typical intra-
disciplinary product development infrastructure and 
collaboration pattern at a level of detail sufficient to introduce 
the SDM concept. Development artifacts are under the revision 
control of one or more discipline-specific repositories. This is, 
for instance, the basic pattern implemented by both PDM and 
SCM systems. The development environment of a team 
includes a workflow client used to involve the team in a 
prescribed product development process, a repository client 
used to reserve and commit artifacts to the common repository, 
and authoring tools used to create or modify artifacts in the 
workspaces of team members. 

In contrast, an inter-disciplinary process is executed by a 
multi-disciplinary team and involves the coordinated 
concurrent authoring of artifacts belonging to different 
disciplines so as to guaranty the integrity of the system being 
developed. Examples of inter-disciplinary processes are those 
prescribed by systems engineering best practices. Specific 
examples are requirements coverage analysis (“Is this 
requirement being taken into account in the design?”), 
requirements conformance analysis (“Is this requirement 
actually satisfied by the design?”), impact or tradeoff analysis 
(“What if?”), and system-level requirements verification. 
Unlike intra-disciplinary collaboration, there exists no de facto 
inter-disciplinary collaboration and infrastructure pattern. 

The relevance of this classification of development 
processes (i.e. intra and inter-disciplinary) arises in particular 
from growing evidence in the industry that most quality 
concerns of modern products primarily result from poor inter-
disciplinary collaboration [3]. 

3.2 Process-centric support of inter-disciplinary 
collaboration 

SDM therefore exclusively aims at supporting inter-
disciplinary collaboration and is a collaboration and 
infrastructure pattern. The authors assume that the pattern 
depicted in Figures 1 and 2 adequately supports intra-
disciplinary collaboration within any individual discipline. To 
understand the concept of SDM, it is necessary to know the 
reasons that this pattern is not appropriate for inter-disciplinary 
processes in practice. There are at least two reasons. 

A careful examination of existing PDM and SCM systems 
[10, 26, 6, 7] shows how qualitatively different discipline-
specific implementations of this pattern are in practice. The 
detailed data models, evolutionary models and interfaces of 
each repository arise from specific needs and development 
paradigms of its discipline.  These are often not known by 
developers of other disciplines, neither should they need to be 
known in general. In these circumstances, it might be 
unrealistic to reconcile several data models and associated 
practices into a universal kind of repository and practice, as 
required by this pattern. This motivates the need to investigate 
inter-disciplinary collaboration and infrastructure patterns that 
will respect these multiple de facto discipline-specific 
infrastructures and leverage them “as is”, if possible. 

Another argument is the existence of strategic investments 
in PDM and SCM implementations in organizations 
traditionally dominated by a specific engineering discipline. 
The investment in skills and processes which use these 
infrastructures provides additional reasons to consider an 
integration approach that does not violate, but instead 
leverages, the discipline-specific infrastructures in place. 

To understand the concept of SDM, it is also necessary to 
know its positioning with respect to systems engineering 
artifacts and practices. The discipline of systems engineering, 
in many regards, does support inter-disciplinary collaboration. 
In effect, its artifacts, such as models of systems, allow the joint 
expression of mechanical, electrical, electronics, software and 
requirements aspects in a common language such as, for 
instance, SysML. This offers a basis for reasoning, and 
therefore making decisions, on the systems structures and 
behaviors which will best satisfy all the product and product 
development requirements. However, from the artifacts 
lifecycle management perspective, systems engineering is 
merely another discipline. Let us illustrate this point. The set of 
all development artifacts associated with a given product 
typically contains artifacts representing its individual 
components, and artifacts representing the integrated system. 
The first subset might contain for instance Computer Aided 
Design (CAD) or Computer Aided Engineering (CAE) 
documents, specifications, software code, or test cases. The 
second subset might contain SysML system models or any 
other description of how all these components should fit 
together to form the whole. 

However, an important piece of information still missing is 
the set of concrete links existing between all these artifacts, if 
they are seen as different resources kept under revision control 
in specific repositories. The SysML model does not contain this 
information and, from this perspective, is merely such as 
resource itself. This missing traceability information is 
necessary so that the abstract systems model can accurately 
reflect all the aspects of the product and lead to correct product 
development decisions. 

3.3 SDM conceptual model 

This section introduces the SDM conceptual model of 
collaboration, beginning with a formal description and 
supporting it with an example. 

Under the SDM data model, discipline-specific artifacts 
remain under the management of their respective teams and 
repositories. The inter-disciplinary traceability information is 
explicitly captured and managed in an additional discipline-
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agnostic repository called the SDM Repository. Within this 
repository, the traceability information is organized and 
managed according to prescribed inter-disciplinary processes 
associated with the system being developed. For each such 
process, the SDM repository maintains references to the set of 
multi-disciplinary artifacts (seen as concrete resources) needed 
to execute it. The integrity of the traceability information is 
guarantied through the enforcement of a collaboration protocol 
between discipline-specific repositories and the SDM 
repository. 

For illustration, assume that a given testing process P 
consists of “loading” a specific version of a software 
component S on a specific revision of a hardware component H, 
executing the software program in the context of a specific 
version of a use case UC and verifying that some specific 
versions of associated performance requirements PR are 
satisfied. This process is assumed to be prescribed by the 
methodology of the development organization and needs to be 
executed multiple times during the development phase. Each 
specific version of P, S, H, UC and PR takes the form of a file 
document, database records, or any other digital form. These 
artifacts are possibly stored in different repositories and 
managed by different organizations. Since each of these 
constituents participate to the specification of a system, the 
logical relationships between S, H, UC and PR, as intended by 
a systems engineering team, are specified in a SysML model 
Sys, or any other systems modeling language. Seen from the 
perspective of the SDM data model, Sys is yet another artifact, 
stored in yet another repository and managed by the systems 
engineering team. Next, taking the perspective of an inter-
disciplinary team in charge of executing the testing process P, it 
is necessary to know how to access and reserve each of these 
artifacts in their individual repositories. Therefore, for the sake 
of both efficiency and correctness, there is a need to record the 
association between the process to be executed and the artifacts 
required to execute it, so as to enable the team to involve the 
“right” artifacts at the “right” time. This is illustrated in Figure 
5, in which each lower circle represents all the information 
needed to access an artifact in its own repository, e.g., PDM or 
SCM. 

The set of references to the artifacts in their respective 
repositories (or artifact proxies) that are needed to execute any 
inter-disciplinary process is called the artifact tuple associated 
with the process, in our example the testing process. This 
artifact tuple is stored in the SDM repository, along with other 
tuples associated with other processes. From a lifecycle 
management perspective, the artifacts referenced from the 
artifact tuple pursue their individual lifecycle, e.g., go through 
their next revisions. Therefore, the references stored in the tuple 
need to be updated accordingly. The artifact tuple itself is 
updated whenever any of its referenced artifacts is changed. 
Therefore, the artifact tuple needs to be kept under revision 
control in the SDM repository. In other words, the artifact tuple 
is an artifact itself. This new artifact, now part of the set of 
artifact describing the system, captures process knowledge 
regarding the development of the system. Indeed, the artifact 
tuple will facilitate the re-execution of this process in the 
future. Furthermore, since the artifact tuple is an artifact, it 
might be referenced from a parent artifact tuple as well. For 
instance, in a different scenario, a “large” testing process may 
involve not just direct concrete artifacts of the system, as in our 

prior example, but may also need as input the outcome of a 
number of smaller tests. In this case, a parent tuple associated 
with the parent test process may reference child artifact tuples 
associated with child testing processes. Therefore, hierarchies 
of artifact tuples, or more general graphs of them, capture 
arbitrarily complex process knowledge of development 
processes associated with a system. This process knowledge is 
now part of the set of development artifacts that describe the 
system. 

In particular, this can be particularly useful to raise the 
level of granularity at which reuse is performed from the level 
of individual components to that of entire subsystems. Indeed, 
if care is taken in packaging the set of artifacts associated with 
a subsystem so that this process knowledge always remains 
attached with it, then artifact tuples may facilitate the re-
execution of customization and integration processes associated 
with that particular sub-system and therefore effectively 
support its reuse in different contexts and products. In some 
sense, SDM defines system reuse as a process. 

Note that, a priori, organizing the artifacts traceability in 
such a process-centric manner is not the only possibility. For 
instance, one could “directly” capture the information that 
component H and component S are associated by creating and 
managing a link from H to S. However, the role of this 
relationship is not clear as one considers practical use cases. In 
effect, the same hardware component H could, in principle, be 
as well associated with another software component S2 in other 
products of the portfolio. Then, by induction, any component 
artifact could be “directly” linked to an arbitrary number of 
other components artifacts. It is not clear then how these links 
may be distinguished from one another by a team in charge of 
executing a process involving these artifacts. The same 
argument would apply if one would attempt to “directly” 
capture the traceability between Sys and the discipline-specific 
artifacts. In practice, traceability links always depend upon a 
specific process context, and their only reason to exist is to 
support this process. This motivates the process-centric 
approach taken by the authors. Let’s now turn to the challenges 
of this approach. 

Supposing that artifact tuples are stored in the SDM 
repository and their referenced resources are each managed in 
their own repositories, an obvious challenge is to keep the links 
up to date as each referenced artifact goes through its next steps 
in its evolutionary model (cf. Figure 5). “How does the SDM 
repository know that component H has now a new version?” 
This problem can be solved if communication takes place 
between the SDM repository and the discipline-specific 
repository owning component H. Without this transfer of 
information, P might be performed using outdated artifacts. In 
SDM, the integrity of artifact tuples is guarantied by a simple, 
but strictly enforced request/update collaboration pattern 
between the SDM repository and the various discipline-specific 
repositories. This requires a minimal but necessary alteration to 
each of the discipline-specific development environments: the 
addition of a light infrastructure component providing “SDM 
Client Services” that enforce the communication protocol each 
time “Check In” or “Check Out” requests are made by a 
development team. Each instance of this component handles the 
negotiation with the SDM repository that exposes its “SDM 
Core Services”. This alteration can be made transparent to the 
team members by programmatically routing requests to reserve 
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or commit artifacts to the SDM Service, instead of to the 
repository client. In the case of a non-integrated development 
environment (IDE), the SDM Client Services may as well be 
exposed to end-user using an additional trivial graphical user 
interface (GUI). 

In more detail, and referring to the sequence diagram of 
Figure 4, the request/update collaboration pattern functions as 
follows. Whenever a team member requests to reserve an 
artifact, its “local” instance of the SDM Client Services needs 
to request authoring permission to the SDM Core Services, 
before it may actually access the artifact within its own “local” 
repository. As a result of this request, the SDM Core Services 
return detailed access information that is used by the SDM 
Client Services to reserve the artifact in its own “local” 
repository. Similarly, when the same team member requests to 
commit the artifact after having updated it, the same instance of 
the SDM Client Services first commits the artifact to its own 
“local” repository and then needs to notify the SDM Core 
Services of the new access information to be used for the next 
access of this artifact. The SDM Core Services update the 
traceability data kept under revision control in the SDM 
Repository. This alteration of the infrastructure and 
collaboration pattern is depicted in Figures 3 and 4. 

A second challenge is that artifacts in different disciplines 
might a priori follow different evolutionary models. This could 
be a problem since the details of the negotiations between the 
SDM Client Services and the SDM Core Services that track 
these evolutions would in this case differ, depending on the 
discipline. For this reason, SDM assumes the most general 
evolutionary model. One observes indeed that there are two 
basic evolutionary models: linear models (mostly adopted by 
PDM) and tree models (mostly adopted by SCM). The 
motivation for tree models is to have multiple lifecycle 
branches running simultaneously and allowing, for instance, 
multiple teams to concurrently update the same artifact. 
Historically, this evolutionary model became plausible in 
software engineering thanks to the possibility of analyzing 
incremental differences between two text files, or for that 
matter software source code, and merge them into a third file 
containing all the differences. The difference and merge 
capabilities have been extended to many other formats, 
including that of visual models but is not a standard operation 
for most artifacts of other disciplines. However, since the tree 
evolutionary model is a generalization of the linear one, in 
SDM, it may be assumed, without loss of generality, that all the 
artifacts follow a tree evolutionary model. Possible applications 
of such a general lifecycle model at the system-level include 
the simultaneous investigation of design alternatives or the 
simultaneous resolution of independent design issues across 
multiple disciplines. For instance, two pairs of software and 
hardware teams could, in principle, simultaneously investigate 
two different ways to solve a system design issue involving 
changes in both software and hardware. It must be noted that 
although branching models are not supported by traditional 
PDM practices, the actual underlying technologies of PDM 
support may support arbitrarily general evolutionary models 
thanks in particular to the notion of “objects primary 
identifiers”, which may be used to give multiple identities to 
the “same” object. 

4 System Data Management Proof Of Concept 

The authors have developed a prototype SDM infrastructure 

based on a service-oriented architecture (SOA) and existing 

PDM and SCM technologies. The purpose of this prototype is 

to provide an early validation of the concept of SDM in the 

context of hypothetical use-cases, prescribed system-

engineering methodology and discipline-specific product 

development environments. This prototype is not intended as a 

reference solution but merely as an example. In effect, each 

development organization has its own prescribed product 

development methodology and environments. Therefore, SDM 

must be customized accordingly. SDM being technology-

agnostic and methodology-agnostic, its hypotheses of 

applicability are largely met by modern development 

organizations. 

4.1 Use-cases 

The authors have defined a set of automotive use-cases 

focused on the reconciliation of system-level requirements 

through inter-disciplinary collaboration. The sub-systems of 

interest are the brake system and the adaptive cruise control, 

with a focus on mechanical analysis and embedded systems. 

The addressed requirements include hypothetical cost 

requirements and the publicly available regulatory requirements 

of the National Highway Traffic Safety Administration 

(NHTSA) of the United States for passenger vehicle brake 

systems [13]. According to one use-case, for instance, a team of 

systems engineers evaluates possible design changes targeting a 

brake system cost reduction. This use-case involves the work of 

mechanical engineers in charge of verifying brake system 

thermal-stress requirements, of software engineers in charge of 

adapting existing embedded software of various functions 

(Anti-lock brake system (ABS), electronic stability program 

(ESP), traction control system (TCS) and adaptive cruise 

control (ACC), [7]), and of requirements engineers in charge of 

managing the corresponding cost and safety requirements. 

4.2 Prescribed methodology 

The assumed prescribed methodology is the Rational Unified 

Process for Systems Engineering [17]. Note that any 

methodology explicitly prescribing inter-disciplinary 

collaboration processes is an equally good candidate to apply 

SDM and since artifact tuples may be created on-demand, 

detailed processes need not be defined in advance. 

4.3 Discipline-specific environments 

Each engineering discipline has it own specific 

development environment, in agreement with Figures 1 and 2. 

The environments used in the prototype are summarized in 

Table 1. The authors have installed, configured and populated 

these environments in their laboratory so as to approximate a 

representative production environment as closely as possible. 



 6 Copyright © #### by ASME 

4.4 System data management deployment 

The authors have implemented the data model of Figure 6 using 

PDM technology, used as a basic combination of object-

oriented and database technologies. This data model is logically 

independent from that of usual PDM data models such as those 

used for the Bill of Material (BOM). Indeed, from a logical 

perspective, PDM systems are the intra-disciplinary repositories 

of choice for mechanical and electrical engineering, while the 

SDM repository is inter-disciplinary. From a physical 

deployment perspective, though, SDM can be implemented 

using existing technologies, and even use the same PDM 

engine as for the BOM. Other candidate technologies for 

implementing the SDM data model are object-oriented SCM, 

stellation technology or object-oriented stores persisting data in 

relational databases, such as in the Enterprise Java Beans 

technologies [18, 4]. 

Figure 4 defines functional interfaces between the various 

environments. It is therefore natural to select the SOA 

integration paradigm [19], which focuses on the definition and 

deployment of such interfaces and not in the specifics of their 

implementations. Each discipline-specific environment and 

PDM repository exposes “web services”, or possibly 

“enterprise services” that invoke one another. 

4.5 Comment 

Based on the experience gained with this prototype, the authors 

conjecture that the services (or network interfaces) needed in 

deployments of the SDM architecture in actual production 

environments may be classified as in Table 2. This 

classification provides additional guidance for future SDM 

deployments. 

 

Table 1 Disciplines considered in SDM prototype. 

Discipline Role 

Discipline-

specific 

authoring tool 

Discipline-

specific 

repository 

Systems 

engineering 

Conceptual design of 

brake system and 

adaptive cruise control 

using SysML 

Rational 

Software 

Architect [15] 

Rational 

ClearCase 

[14] 

Requirements 

engineering 

Management of brake 

system and adaptive 

cruise control 

requirements 

Rational 

RequisitePro [16] 

Rational 

RequisitePro 

database 

Mechanical 

engineering 

CAD/CAE design and 

mechanical analysis of 

disk brake system 

Dassault 

Systèmes CATIA 

[5] 

SmarTeam as 

PDM 

with DB2 

[20] 

Software 

engineering 

Design of embedded 

software for brake 

system and adaptive 

cruise control 

Websphere 

Studio 

Application 

Developer [25] 

Rational 

ClearCase 

[14] as SCM 

 

Table 2 Conjectured classification of SDM Interfaces. 

Class Members Role 

Session 

Control and 

Credentials 

Services 

Handles context of negotiation session between 

discipline-specific environments and SDM 

repository 

Systems 

Engineering 

Artifacts 

Authoring 

Services 

Handles authoring of information residing in the 

SDM repository (e.g. artifact tuples) 

SDM 

Core 

Services 

Systems 

Engineering 

Traceability 

Services 

Handles algorithmic traversals of inter-

disciplinary traceability links for purpose of 

system analysis 

Inter-

disciplinary 

Services 

Handles negotiations between discipline-

specific repository client and SDM Core 

Services SDM 

Client 

Services 

Discipline-

Specific 

Introspection 

Services 

Handles algorithmic traversal of intra-discipline 

traceability links for purpose of finer system 

analysis 

5 Conclusion 

In this paper, the authors have presented an approach 
which supports inter-disciplinary collaboration, called “system 
data management” (SDM) and have contrasted it with the prior 
art. The principle underlying the SDM is to keep discipline-
specific development artifacts where they naturally belong and 
manage the inter-disciplinary traceability links separately. Such 
links support associated prescribed inter-disciplinary 
collaboration processes. The integrity of the traceability is 
guarantied by a simple, but strictly enforced, request/update 
protocol collaboration pattern between the individual 
disciplines and the SDM repository. 

From a deployment perspective, this process-centric 
approach is less invasive than those of prior art and is lighter, 
therefore more scalable. In particular, it respects existing 
infrastructures and may also be implemented using their 
underlying technologies. Moreover, the SDM architecture 
captures development process knowledge in a reusable way 
since artifacts are linked only from the perspective of 
(repeatable) processes. The applicability of the SDM 
architecture relies on the existence of prescribed inter-
disciplinary collaboration processes. However, the wider 
adoption of such systems engineering practices is an industry 
trend. 

The authors have implemented a prototype in their 
laboratory that provides an early validation of the feasibility 
and value of the SDM concept, and they are currently involved 
in an industrial validation study. 
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Figure 1 Intra-disciplinary infrastructure pattern represented according to the 
Unified Modeling Language (UML) convention [24] (cf. Section 3.1). 

Figure 2 Intra-disciplinary collaboration pattern (cf. Section 3.1). 
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Figure 3 Inter-disciplinary infrastructure pattern (cf. Section 3.3). 

Figure 4 Inter-disciplinary collaboration pattern (cf. Section 3.3). 
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Figure 5 Set of multi-disciplinary resources needed to 
execute a given process (cf. Section 3.3). 

Figure 6 SDM data model (cf. Section 3.3). 


