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On Nearly Orthogonal Lattice Bases
Ramesh Neelamani, Richard G. Baraniuk, and Sanjeeb Dash ∗

May 27, 2005

Abstract

We study ”nearly orthogonal” lattice bases, or bases where the angle between any basis vector and
the linear space spanned by the other basis vectors is greater than π

3 radians. We show that a nearly
orthogonal lattice basis always contains a shortest lattice vector. Also, if the basis vectors have lengths
within a certain constant factor of one another (that is, they are “nearly equal”), then the basis is the
unique nearly orthogonal lattice basis, up to multiplication of basis vectors by ±1. These results are
motivated by an application involving JPEG image compression.
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1 Introduction

Lattices are regular arrangements of points in space, and are studied in various fields such as coding theory,
number theory, and crystallography [1, 6, 7, 10]. Formally, a lattice is the set of all linear integer combina-
tions of a finite set of vectors. A lattice basis is a linearly independent set of vectors whose linear integer
combinations span the lattice points. In this paper we study the properties of lattice bases whose vectors are
“nearly orthogonal” to one another.

We quantify the closeness to orthogonality of a lattice basis in terms of angles between the basis vectors.
We define a basis to be θ-orthogonal if the angle between a basis vector and the linear subspace spanned
by the remaining basis vectors is at least θ. A θ-orthogonal basis is deemed to be nearly orthogonal if θ is
greater than π

3 radians.
Our interest in nearly orthogonal lattices stems from an interesting digital image processing problem.

Digital color images are routinely subjected to compression schemes such as JPEG [11]. The various settings
used during JPEG compression of an image—termed as the image’s JPEG compression history—are often
discarded after decompression. For recompression of images which were earlier in JPEG-compressed form,
it is useful to estimate the discarded compression history from their current representation. We refer to this
problem as JPEG compression history estimation (JPEG CHEst). In [9], we show that the JPEG compression
step maps color images into points in a collection of related lattices and that the JPEG CHEst problem can
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be solved by estimating the nearly orthogonal bases spanning these lattices. We use some of the results in
this paper in a heuristic to solve the JPEG CHEst problem [9].

In this paper, we derive two simple but appealing properties of nearly orthogonal lattice bases.

1. A π
3 -orthogonal basis always contains a shortest non-zero lattice vector.

2. If all the vectors of a θ-orthogonal (θ > π
3 ) basis have lengths no more than

√
3

sin(θ)+
√

3 cos(θ)
times the

length of a shortest basis vector, then the basis is the unique π
3 -orthogonal basis for the lattice (up to

multiplication of basis vectors by ±1).

Thus, a nearly orthogonal basis is unique if its vectors are nearly equal in length. Gauss [5] proved the
first property for lattices in R

2. We prove (slight generalizations of) both properties for lattices in R
n for

arbitrary n.
The paper is organized as follows. Section 2 provides some basic definitions and well-known results

about lattices We formally state our contributions and furnish their proofs in Section 3. Section 4 describes
the JPEG CHEst problem, and how our results can be used in a heuristic to solve the problem. We conclude
with some discussions of the limitations of our results in Section 5.

2 Lattices

A lattice L in R
n is the set of all linear integer combinations of a finite set of vectors, which we assume to

be rational. That is, L = {u1b1 + · · · + umbm |ui ∈ Z} for some b1, . . . , bm in R
n. The set of vectors B =

{b1, . . . , bm} is said to span the lattice L. A linearly independent set of vectors spanning L is a basis of L.
A lattice has many bases. Any two bases B1 and B2 of a lattice L have the same number of vectors;

this common number is denoted by dim(L). Further, B1 and B2 are related (when treated as matrices) as
B1 = B2U , where U is a unimodular matrix, i.e., an integer matrix with determinant equal to ±1. A lattice
L in R

n is full-dimensional if dim(L) equals n. We only consider full-dimensional lattices here.
The shortest vector problem (SVP) consists of finding a vector in a lattice L with the shortest non-zero

length λ(L). Here we refer to the Euclidean norm of a vector v in R
n as its length, and denote it by ‖v‖.

SVP is NP-hard under randomized reductions (Ajtai [2]), but the decision version of SVP is not known to
be NP-complete in the traditional sense.

Orthogonal bases always contain a shortest non-zero lattice vector. Hence, one approach to finding
short vectors in lattices is to obtain a basis which is close (in some sense) to being an orthogonal basis,
and then use the shortest vector in such a basis as an approximate solution to the SVP. A commonly used
measure to quantify the “orthogonality” of a lattice basis {b1, b2, . . . , bm} is its Orthogonality defect[7],

which is defined as
Qm

i=1 ‖bi‖
|determinant([b1,...,bm])| . The Lovász basis reduction algorithm [7], often called the LLL

algorithm, obtains an LLL-reduced lattice basis in polynomial time. Such a basis has a small orthogonality
defect. There are other notions of reduced bases due to Minkowski, and Korkin and Zolotarev (KZ). Both
Minkowski-reduced and KZ-reduced bases contain the shortest lattice vector, but it is NP-hard to obtain
such bases.

We use the following definitions to quantify the closeness to orthogonality of a basis. By an ordered
basis, we mean a basis with a certain ordering of the basis vectors. We represent an ordered basis by an
ordered set, and also by a matrix whose columns define the basis vectors and their ordering. For vectors
u, v ∈ R

n, we use both uT v and 〈u, v〉 to stand for the inner product of u and v. We use the braces (, ) for
ordered sets, and {, } otherwise.
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• Weak θ-orthogonality: We define an ordered set of vectors (b1, b2, . . . , bm) to be weakly θ-orthogonal
if for i = 2, . . . ,m, the angle between bi and the subspace spanned by {b1, . . . , bi−1} lies in the range
[θ, π

2 ]. That is,

cos−1

 |〈bi,
∑i−1

j=1 λi bi〉|
‖bi‖

∥∥∥∑i−1
j=1 λi bi〉

∥∥∥
 ≥ θ, for all λj ∈ R with

∑
j

|λj | > 0. (1)

• θ-orthogonality: We define a set of vectors {b1, b2, . . . , bm} to be θ-orthogonal if every ordering of
the vectors yields a weakly θ-orthogonal set.

A (weakly) θ-orthogonal basis is one whose vectors are (weakly) θ-orthogonal. Thus, a weakly θ-orthogonal
basis is assumed to be ordered, whereas a θ-orthogonal basis is not.

In the JPEG CHEst application we describe in Section 4, we will encounter weakly θ-orthogonal bases
with θ ≥ π

3 . In R
n, Babai [3] proved that an LLL-reduced basis is θ-orthogonal where sin(θ) = (

√
(2)/3)n;

for large n this value of θ is very small. Thus the notion of an LLL-reduced basis is quite different from that
of a weakly π

3 -orthogonal basis.

3 Our Contributions and Proofs

It is trivial to show that one of the basis vectors in an orthogonal lattice basis is a shortest lattice vector.
More generally, given a lattice basis {b1, . . . , bm}, let θi be the angle between bi and the subspace spanned
by the other basis vectors. Then

λ (L) ≥ min
i∈{1,...,m}

‖bi‖ sin (θi) .

Therefore a weakly θ-orthogonal basis has a basis vector whose length is no more than λ (L) / sin (θ); if
θ = π

3 , this bound becomes (2/
√

(3))λ (L). So nearly-orthogonal lattice bases contain short vectors.
Gauss proved that in two dimensions every π

3 -orthogonal lattice basis indeed contains a shortest lattice
vector, and provided a polynomial time algorithm to determine such a basis; see [14] for a nice description.
We first show that Gauss’s result can be extended to higher-dimensional lattices with an appropriate measure
of closeness to orthogonality.

Theorem 1 Let B = (b1, b2, . . . , bm) be an ordered basis of a lattice L. If B is weakly
(

π
3 + ε

)
-orthogonal

where 0 ≤ ε ≤ π
6 , then a shortest vector in B is a shortest non-zero vector in L. More generally,

min
j∈{1,...,m}

‖bj‖ ≤
∥∥∥∥∥

m∑
i=1

uibi

∥∥∥∥∥ , for all ui ∈ Z with
m∑

i=1

|ui| ≥ 1, (2)

with equality possible only if ε = 0 or
∑

i=1,...,m |ui| = 1.

We set down two immediate corollaries of Theorem 1.

Corollary 1 If 0 < ε ≤ π
6 , then a weakly (π

3 + ε)-orthogonal basis contains every shortest non-zero lattice
vector (up to multiplication by ±1).

Corollary 2 A π
3 -orthogonal basis contains a shortest non-zero lattice vector.
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Figure 1: (a) The vectors comprising the lattice are denoted by circles. One lattice basis has two orthogonal vectors
with lengths 1 and 1.5. As 1.5 < η

(
π
2

)
=

√
3, the lattice contains no other basis such that the angle between its

vectors is greater than π
3 radians. (b) The figure illustrates a lattice that contains at least two π

3 -orthogonal bases. One
of the lattice basis comprises two orthogonal vectors with lengths 1 and 2. Here 2 > η

(
π
2

)
, and this basis is not the

only π
3 -orthogonal basis.

For a lattice defined by some basis B1, a weakly π
3 -orthogonal basis B2 = B1U with U having polynomially

bounded size provides a polynomial-size certificate for λ (L). However, we do not expect all lattices to have
such bases because this would imply that NP=co-NP, assuming SVP is NP-complete. We show in Section 5
that even in R

3, there exist lattices that do not have any weakly π
3 -orthogonal basis.

Our second observation describes the conditions under which a lattice contains the unique (modulo
permutations and sign changes) set of nearly orthogonal lattice basis vectors.

Theorem 2 Let B := (b1, b2, . . . , bm) be a weakly θ-orthogonal basis for a lattice L with θ > π
3 . For all

i ∈ 1, . . . ,m, if
‖bi‖ < η (θ) min

j∈{1,...,m}
‖bj‖ , (3)

with η (θ) =
√

3
| sin (θ) | + √

3| cos (θ) | , (4)

then any π
3 -orthogonal basis consists of the vectors in B multiplied by ±1.

In other words, Theorem 2 claims that a nearly orthogonal basis is essentially unique when the lengths of all
the basis vectors are nearly equal. For example, both Figures 1(a) and (b) illustrate 2-D lattices that can be
spanned by orthogonal basis vectors. For the lattice in Fig. 1(a), the ratio of the lengths of the basis vectors
is less than η

(
π
2

)
=

√
3. Hence, there exists only one (modulo sign changes) basis such that the angle

between the vectors is greater than π
3 . In contrast, the lattice in Fig. 1(b) contains many distinct strongly

π
3 -orthogonal bases.

In the JPEG application studied in this paper, the target lattice bases in R
3 are known to be weakly(

π
3 + ε

)
-orthogonal, but not

(
π
3 + ε

)
-orthogonal. Theorem 2 addresses the uniqueness of π

3 -orthogonal
bases, but not weakly π

3 -orthogonal bases. To estimate the target lattice basis, we need to understand
how different weakly orthogonal bases are related. The following theorem guarantees that in R

3 a weakly(
π
3 + ε

)
-orthogonal basis with nearly equal length basis vectors is related to every weakly orthogonal basis

by a unimodular matrix with small entries.
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Theorem 3 Let B = (b1, b2, . . . , bm) and B̃ be two weakly θ-orthogonal bases for a lattice L in R
m, where

θ > π
3 . Let U = (uij) be a unimodular matrix such that B̃U = B. Define

κ (B) :=
(

2√
3

)m−1 maxi∈{1,...,m} ‖bi‖
mini∈{1,...,m} ‖bi‖ . (5)

Then, |uij | ≤ κ (B), for all i and j.

For example, if B is a weakly θ-orthogonal basis of a lattice in R
3 with

maxm∈{1,2,3}‖bm‖
minm∈{1,2,3}‖bm‖ < 1.5, then the

entries of the unimodular matrix relating another weakly θ-orthogonal basisB̃ to B are either 0 or ±1.

3.1 Proof of Theorem 1

We first prove Theorem 1 for two-dimensional lattices (Gauss’s result) and then tackle the proof for higher
dimensional lattices via induction.

3.1.1 Proof for 2-D lattices

Consider a two-dimensional lattice with a basis B = {b1, b2} satisfying the conditions of Theorem 1. By
rotating the lattice, the basis vectors b1 and b2 can be expressed as the columns of[‖b1‖ ‖b2‖ cos(θ)

0 ‖b2‖ sin(θ)

]
,

with θ being the angle between b1 and b2. By definition, π
3 ≤ θ ≤ 2π

3 . Any non-zero vector v in the lattice
can be expressed as

v =
[‖b1‖ ‖b2‖ cos(θ)

0 ‖b2‖ sin(θ)

] [
u1

u2

]
=
[
u1‖b1‖ + u2‖b2‖ cos(θ)

u2‖b2‖ sin(θ)

]
where u1, u2 ∈ Z and |u1| + |u2| > 0. The squared-length of v equals

(u1‖b1‖ + u2‖b2‖ cos(θ))2 + (u2‖b2‖ sin(θ))2

= |u1|2‖b1‖2 + |u2|2‖b2‖2 + 2u1u2‖b1‖‖b2‖ cos(θ)

≥ |u1|2‖b1‖2 + |u2|2‖b2‖2 − 2|u1||u2|‖b1‖‖b2‖ cos
(π

3

)
= (|u1|‖b1‖ − |u2|‖b2‖)2 + |u1||u2|‖b1‖‖b2‖ (6)

≥ min
(‖b1‖2, ‖b2‖2

)
,

with equality possible only if either |u1|+ |u2| = 1 or θ ∈ {π
3 , 2π

3 }. This proves Theorem 1 for 2-D lattices.
�

3.1.2 Proof for higher dimensional lattices

Let k be an integer greater than 2, and assume that Theorem 1 is true for every (k − 1)-dimensional lattice.
Consider a k-dimensional lattice L spanned by a weakly

(
π
3 + ε

)
-orthogonal basis (b1, b2, . . . , bk), with

ε ≥ 0. Any non-zero vector in L can be written as
∑k

i=1 ui bi for integers ui, where ui 	= 0 for some

5



i ∈ {1, . . . , k}. If uk = 0, then
∑k

i=1 ui bi is contained in the (k − 1)-dimensional lattice spanned by the
weakly

(
π
3 + ε

)
-orthogonal basis (b1, b2, . . . , bk−1). By the induction hypothesis, we have∥∥∥∥∥

k∑
i=1

ui bi

∥∥∥∥∥ =

∥∥∥∥∥
k−1∑
i=1

ui bi

∥∥∥∥∥ ≥ min
j∈{1,...,k−1}

‖bj‖ ≥ min
j∈{1,...,k}

‖bj‖ .

If ε > 0, the first inequality in the above expression can hold as equality only if
∑k−1

i=1 |ui| = 1. If uk 	= 0
and ui = 0 for i = 1, . . . , k − 1, then again∥∥∥∥∥

k∑
i=1

ui bi

∥∥∥∥∥ ≥ ‖bk‖ ≥ min
j∈{1,...,k}

‖bj‖ .

Again, it is necessary that |uk| = 1 for equality to hold above.
Assume that uk 	= 0 and ui 	= 0 for some i = 1, . . . , k − 1. Now

∑k
i=1 ui bi is contained in the 2-D

lattice spanned by the vectors
∑k−1

i=1 ui bi and ukbk. As the ordered set (b1, b2, . . . , bk) is weakly
(

π
3 + ε

)
-

orthogonal, the angle between the non-zero vectors
∑k−1

i=1 ui bi and ukbk lies in the interval
[

π
3 + ε, 2π

3 − ε
]
.

Invoking Theorem 1 for 2-D lattices, we have∥∥∥∥∥
k∑

i=1

ui bi

∥∥∥∥∥ ≥ min

(∥∥∥∥∥
k−1∑
i=1

ui bi

∥∥∥∥∥ , ‖ukbk‖
)

≥ min
(

min
j∈{1,...,k−1}

‖bj‖ , ‖ukbk‖
)

≥ min
j∈{1,...,k}

‖bj‖ . (7)

Thus, the set of basis vectors {b1, b2, . . . , bk} contains a shortest non-zero vector in the k-dimensional lattice.
Also, if ε > 0, then equality is not possible in (7), and the second part of the theorem follows. �

3.2 Proof of Theorem 2

As in the proof of Theorem 1, we first prove Theorem 2 for 2-D lattices, and then prove the general case by
induction.

3.2.1 Proof for 2-D lattices

Consider a lattice with basis vectors b1 and b2 such that the basis {b1, b2} is weakly θ-orthogonal with
θ > π

3 . Note that in R
2, weak θ-orthogonality is the same as θ-orthogonality. Without loss of generality

(w.l.o.g.), we can assume that 1 = ‖b1‖ ≤ ‖b2‖. Further, by rotating the 2-D lattice, the basis vectors can
be expressed as the columns of [

1 ‖b2‖ cos(θ̃)
0 ‖b2‖ sin(θ̃)

]
,

with θ̃ ∈ [θ, 2π − θ] the angle between b1 and b2. Let
{

b̃1, b̃2

}
denote another π

3 -orthogonal basis for the

same 2-D lattice. Using Theorem 1 and its Corollary 1, we infer that {b1, b2} contains every shortest lattice

6



vector (multiplied by ±1), and {b1, b2} and
{
b̃1, b̃2

}
contain a common shortest lattice vector. Assume

w.l.o.g. that b̃1 = ±b1 is a shortest lattice vector. Then, we can express[
b̃1 b̃2

]
=
[
b1 b2

] [±1 u
0 ±1

]
=

[
1 ‖b2‖ cos(θ̃)
0 ‖b2‖ sin(θ̃)

] [±1 u
0 ±1

]
, with u ∈ Z.

To prove Theorem 2, we need to show that u = 0.

The angle between b̃1 and ±b̃2, denoted by ∠
(
b̃1,±b̃2

)
, is given by

∠
(
b̃1,±b̃2

)
:= tan−1

(∣∣∣∣∣ ‖b2‖ sin(θ̃)

‖b2‖ cos(θ̃) ± u

∣∣∣∣∣
)

.

As ∠
(
b̃1,±b̃2

)
lies in the interval [π3 , 2π

3 ] by construction, we have

tan2
(π

3

)
= 3 ≤ tan2

(
∠
(
b̃1,±b̃2

))
⇔ 3

(
‖b2‖2 cos2

(
θ̃
)

+ u2 ± 2u‖b2‖ cos
(
θ̃
))

≤ ‖b2‖2 sin
(
θ̃
)

⇔ 3u2 ± 6u‖b2‖ cos
(
θ̃
)

+ 3‖b2‖2 cos2
(
θ̃
)
− ‖b2‖2 sin

(
θ̃
)

≤ 0. (8)

The left-hand side of (8) is a quadratic expression in u, say Q(u). The roots of Q(u) = 0 are given by

1
6

(
±6‖b2‖ cos(θ̃) ±

√(
6‖b2‖ cos(θ̃))2 − 12(3‖b2‖2 cos2

(
θ̃
)
− ‖b2‖2 sin(θ̃)

))
.

Simplifying further, we obtain the roots of Q(u) = 0 to be

‖b2‖
(
± cos(θ̃) ± sin(θ̃)√

3

)
.

To satisfy Q(u) ≤ 0, u must lie between the roots of Q(u) = 0. Hence,

|u| ≤ ‖b2‖
∣∣∣∣∣
(
± cos(θ̃) ± sin(θ̃)√

3

)∣∣∣∣∣
≤ ‖b2‖

| sin
(
θ̃
)
| + √

3| cos
(
θ̃
)
|

√
3

=
‖b2‖
η
(
θ̃
) .

Note that η (θ) is an increasing function of θ for π
3 ≤ θ ≤ π

2 . Hence we have

|u| ≤ ‖b2‖
η
(
θ̃
) ≤ ‖b2‖

η (θ)
< ‖b1‖ = 1.

As u ∈ Z and |u| < 1, u = 0. This proves Theorem 2 for 2-D lattices. �
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3.2.2 Proof for higher dimensional lattices

Let B and B̃ be two n × n matrices defining bases of the same n-dimensional lattice. We can express
B = B̃U for some integer unimodular matrix U = (uij). Using induction on n, we will show that if B
is weakly θ-orthogonal with π

3 < θ ≤ π
2 and the columns of B satisfy (3), and B̃ is π

3 -orthogonal, then B̃
can be obtained by permuting the columns of B and multiplying them by ±1. Equivalently, we will show
every column of U has exactly one component equal to ±1 and all others 0 (we call such a matrix a signed
permutation matrix).

Assume that Theorem 2 holds for all (n − 1)-dimensional lattices with n > 2. Let b1, b2, . . . , bn denote
the columns of B and b̃1, b̃2, . . . , b̃n denote the columns of B̃. As permuting the columns of B̃ does not
destroy π

3 -orthogonality, we can assume w.l.o.g. that b̃1 is B̃’s shortest vector. From Theorem 1, b̃1 is also a

shortest lattice vector. Further, using Corollary 1, ±̃b1 is contained in B. Assume that bk = ±b̃1 for some
k ∈ {1, . . . , n}. Then

B = B̃


u11 . . . u1k−1 ±1 u1k+1 . . . u1n

...
U ′

1 0 U ′
2

...

 (9)

We will show that u1j = 0, for all j ∈ {1, . . . , n} with j 	= k. Define

Br :=
[

bk bj

]
, B̃r :=

[
b̃1

∑n
i=2 uij b̃i

]
. (10)

From (9) and (10),

Br = B̃r

[ ±1 u1j

0 1

]
.

As Br and B̃r are related by a unimodular matrix, they both define bases of the same 2-D lattice. Further,
Br is weakly θ-orthogonal with ||bj || < η (θ) ||bk||, and B̃r is π

3 -orthogonal. Invoking Theorem 2 for 2-D
lattices, we can infer that u1j = 0. It remains to be shown that U′ := [U ′

1 U ′
2] is also a signed permutation

matrix, where
B′ = B̃′U ′,

with B′ := [b1, . . . , bk−1 bk+1, . . . , bn] and B̃′ :=
[
b̃2, . . . , b̃n

]
. Observe that det(U ′) = det(U) = ±1.

Both B′ and B̃′ are bases of the same (n − 1)-dimensional lattice as U′ is unimodular. B̃′ is π
3 -orthogonal,

whereas B′ is weakly θ-orthogonal and its columns satisfy (3). By the induction hypothesis, U′ is a signed
permutation matrix. Therefore, U is also a signed permutation matrix. �

3.3 Proof of Theorem 3

Theorem 3 is a direct consequence of the following lemma.

Lemma 1 Let B = (b1, . . . , bm) be a weakly θ-orthogonal basis of a lattice, where θ > π
3 . Then, for any

integers u1, . . . , um, ∥∥∥∥∥
m∑

i=1

uibi

∥∥∥∥∥ ≥
(√

3
2

)m−1

max
i∈{1,...,m}

‖uibi‖ . (11)
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Lemma 1 can be proved as follows. Consider the vectors b1 and b2; the angle θ between them lies in the
interval

(
π
3 , 2π

3

)
. Recall from (6) that

‖u1b1 + u2b2‖2 ≥ (|u1| ‖b1‖ − |u2| ‖b2‖)2 + |u1||u2|‖b1‖‖b2‖.

Consider the expression (y − x)2 + yx with 0 ≤ x ≤ y. For fixed y this expression attains its minimum
value of

(
3
4

)
y2 when x = y

2 . By setting y = |u1| ‖b1‖ and x = |u2| ‖b2‖ w.l.o.g, we can infer that

‖u1b1 + u2b2‖ ≥
√

3
2

max
i∈{1,2}

‖uibi‖.

As B is weakly θ-orthogonal, the angle between ukbk and
∑k−1

i=1 uibi lies in the interval
(

π
3 , 2π

3

)
for k =

2, . . . ,m. Hence (11) follows by induction. �

We now proceed to prove Theorem 3 by invoking Lemma 1. Define ∆ =
(√

3
2

)m−1
. For any j ∈

{1, 2, . . . ,m}, we have

‖bj‖ =

∥∥∥∥∥
m∑

i=1

uij b̃i

∥∥∥∥∥ ≥ ∆ max
i∈{1,...,m}

∥∥∥uij b̃i

∥∥∥ ≥ ∆ min
i∈{1,...,m}

‖b̃i‖ max
i∈{1,...,m}

|uij |.

As B and B̃ are both weakly θ-orthogonal with θ > π
3 , mini∈{1,...,m} ‖b̃i‖ = mini∈{1,...,m} ‖bi‖. Therefore,

∆ max
i∈{1,...,m}

|uij | ≤ ‖bj‖
mini∈{1,...,m} ‖b̃i‖

≤ maxi∈{1,...,m} ‖bi‖
mini∈{1,...,m} ‖bi‖ = ∆κ (B) .

Thus, |uij | ≤ κ (B), for all i and j. �

4 JPEG Compression History Estimation (CHEst)

In this section, we describe the JPEG CHEst problem that motivated our study of nearly orthogonal lattices,
and how we use this paper’s results to solve this problem. We first touch upon the topic of digital color image
representation and briefly describe the essential components of the JPEG image compression scheme.

4.1 Digital Color Image Representation

Traditionally, digital color images are represented by specifying the color of each pixel, the smallest
unit of image representation. According to the trichromatic theory [13], three parameters are sufficient
to specify any color perceived by humans.1 For example, a pixel’s color can be conveyed by a vector
w

RGB
= (w

R
, w

G
, w

B
) ∈ R

3, where w
R

, w
G

, and w
B

specify the intensity of the color’s red (R), green (G),
and blue (B) components respectively. Call w

RGB
the RGB encoding of a color. RGB encodings are vectors

in the vector space where the R, G, and B colors form the standard unit basis vectors; this coordinate system
is called the RGB color space. A color image with M pixels can be specified using RGB encodings by a
matrix P ∈ R

3×M .
1The underlying reason is that the human retina has only three types of receptors that influence color perception.
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4.2 JPEG Compression and Decompression

To achieve color image compression, schemes such as JPEG first transform the image to a color encoding
other than the RGB encoding and then perform quantization. Such color encodings can be related to the
RGB encoding by a color-transform matrix C ∈ R

3×3. The columns of C form a different basis for the
color space spanned by the R, G, and B vectors. Hence an RGB encoding w

RGB
can be transformed to the

C encoding vector as C−1w
RGB

; the image P is mapped to C−1P . For example, the matrix relating the
RGB color space to the ITU.BT-601 Y CbCr color space is given by [12]w

Y

w
Cb

w
Cr

 =

 0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.081

w
R

w
G

w
B

 . (12)

The quantization step is performed by first choosing a diagonal, positive (non-zero entries are positive),
integer quantization matrix Q, and then computing the quantized (compressed) image from C−1P as Pc =⌈
Q−1C−1P

⌋
, where �.� stands for the operation of rounding to the nearest integer. JPEG decompression

constructs Pd = CQPc = CQ
⌈
Q−1C−1P

⌋
. Larger Qs achieve more compression but at the cost of greater

distortion between the decompressed image Pd and the original image P .
In practice, the image matrix P is first decomposed into different frequency components P =

[P1, P2, . . . , Pk], for some k > 1 (usually k = 64), during compression. Then, a common color transform
C is used for all the sub-matrices P1, . . . , Pk, but each sub-matrix Pi is quantized with a different quantiza-
tion matrix Qi. The compressed image is Pc = [Pc,1, . . . , Pc,k] = [

⌈
Q−1

1 C−1P1

⌋
, . . . ,

⌈
Q−1

k C−1Pk

⌋
], and

the decompressed image is Pd = [CQ1Pc,1, . . . , CQkPc,k].
During compression, the JPEG compressed file format stores the matrices C and the Qis along with Pc.

These stored matrices are utilized to decompress the JPEG image, but are discarded afterwards.

4.3 Problem Statement

This paper’s contributions are motivated by the following question: Given a decompressed image Pd =
[CQ1Pc,1, . . . , CQkPc,k] and some information about the structure of C and the Qis, can we estimate the
color transform C and the quantization matrices Qis? We refer to this problem as JPEG CHEst. We refer
to the set {C,Q1, . . . , Qk} as the compression history of the image. An image’s compression history is
useful for applications such as JPEG recompression [4, 8, 9].

4.4 Near-Orthogonality and JPEG CHEst

The columns of CQiPc,i lie on a 3-D lattice with basis CQi because Pc,i is an integer matrix. The estimation
of CQi comprises the main step in JPEG CHEst. As a lattice can have multiple bases, we must exploit
some additional information about practical color transforms to correctly obtain CQi from CQiPc,i. Most
practical color transforms aim to represent a color using an approximately rotated reference coordinate
system. Consequently, most practical color transform matrices C (and thereby, CQi) can be expected
to be almost orthogonal. We have verified that all Cs known to us are weakly

(
π
3 + ε

)
-orthogonal, with

0 < ε ≤ π
6 .2 Thus, nearly orthogonal lattice bases are central to JPEG CHEst.

2In general, the stronger assumption of π
3

-orthogonality does not hold for some practical color transform matrices.
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4.5 Our Approach

Our approach is to first estimate the products CQi by exploiting the near-orthogonality of C , and to then
decompose CQi into C and Qi. We will assume that C is weakly

(
π
3 + ε

)
-orthogonal, 0 < ε ≤ π

6 .

4.5.1 Estimating the CQis

Let Bi be a basis of the lattice Li spanned by CQi. Then, for some unimodular matrix Ui,

Bi = CQiUi. (13)

If Bi is given, then estimating CQi is equivalent to estimating the respective Ui.
Thanks to our problem structure, the correct Uis satisfy the following constraints. Note that these con-

straints become increasingly restrictive as the number of frequency components k increases.

1. The Uis are such that BiU−1
i is weakly

(
π
3 + ε

)
-orthogonal.

2. The product UiB−1
i BjU−1

j is diagonal with positive entries for any i, j ∈ {1, . . . , k}.
This is an immediate consequence of (13).

If in addition, Bi is weakly
(

π
3 + ε

)
-orthogonal, then

3. The columns of Ui corresponding to the shortest columns of Bi are the standard unit vectors times ±1.
This follows from Corollary 1, because the columns of both Bi and CQi indeed contain all shortest
vectors in Li up to mulitplication by ±1.

4. All entries of Ui are ≤ κ(Bi) in magnitude.
This follows from Theorem 3.

We now outline our heuristic.

(i) Obtain bases Bi for the lattices Li, i = 1, . . . , k. Construct a weakly
(

π
3 + ε

)
-orthogonal basis B� for

at least one lattice Ll, � ∈ {1, . . . , k}.

(ii) Compute κ(B�).

(iii) For every unimodular matrix U� satisfying constraints 1, 3 and 4, go to step (iv).

(iv) For U� chosen in step (iii), test if there exist unimodular matrices Uj for each j = 1, . . . , k, j 	= � that
satisfy constraint 2. If such a collection of matrices exists, return this collection else go to step (iii).

For step (i), we simply use the LLL algorithm to compute LLL-reduced bases for each Li. Such bases
are not guaranteed to be weakly

(
π
3 + ε

)
-orthogonal, but in practice this is usually the case for a number of

Lis. In step (iv), for each channel j 	= �, we need to compute the diagonal matrix Dj with smallest positive
entries such that Ũj = B−1

j B�U−1
� D is integral, and test if Ũj is unimodular. If not, for the given U�, no

appropriate unimodular matrix Uj exists.
The overall complexity of the heuristic is determined mainly by the number of times we repeat step (iv),

which equals the number of distinct choices for U� in step (iii). This number is typically not very large, as
in step (i) we are usually able to find some weakly

(
π
3 + ε

)
-orthogonal basis Bl with κ < 2. In fact, we

enumerate all unimodular matrices satisfying constraints 3 and 4, and then test constraint 1. (In practice, one
can avoid enumerating permutations of an enumerated matrix). Table 1 provides the number of unimodular

11



κ constraint 4 constraints 3 and 4
1 6960 5232
2 135408 43248
3 1281648 197616
4 5194416 513264
5 20852976 1324272

Table 1: Number of unimodular matrices satisfying constraints 3 and 4 for small κ

matrices satisfying constraint 4 alone, and also constraints 3 and 4. Clearly, constraints 3 and 4 help us to
significantly limit the number of unimodular matrices we need to test, thereby speeding up our search.

Our heuristic returns a collection of unimodular matrices {Ui} that satisfy constraints 1 and 2; of course,
they also satisfy constraints 3 and 4 if the corresponding Bis are weakly

(
π
3 + ε

)
-orthogonal. From the Uis,

we compute CQi = BiU−1. If constraints 1 and 2 can be satisfied by another solution {U′i}, then it is easy
to see that U ′

i 	= Ui for every i = 1, . . . , k. In Section 4.5.3, we will argue (without proof) that constraints 1
and 2 are likely to have a unique solution.

4.5.2 Splitting CQi into C and Qi

Decomposing the CQis into C and Qis is equivalent to determining the norm of each column of C because
the Qis are diagonal matrices. As the Qis are integer matrices, the norm of each column of CQi is an
integer multiple of the corresponding column norm of C . In other words, the norms of the jth column
(j ∈ {1, 2, 3}) of different CQis form a sub-lattice of the 1-D lattice spanned by the jth column norm of C .
As long as the greatest common divisor of the jth diagonal values of the matrices Qi is 1, we can obtain the
jth column of C; the values of Qi follow trivially.

4.5.3 Uniqueness of solutions

Does JPEG CHEst have a unique solution ? In other words, is there a collection of matrices

(C ′, Q′
1, . . . , Q

′
k) 	= (C,Q1, . . . , Qk)

such that C′Q′
i is a weakly

(
π
3 + ε

)
-orthogonal basis of Li for all i ∈ {1, . . . , k}? We believe that the

solution can be non-unique only if the Qis are chosen carefully. For example, let Q be a diagonal matrix with
positive diagonal coefficients. Assume that for i = 1, . . . , k, Qi = λi×Q, with λi ∈ R and λi > 0. Further,
assume that there exists a unimodular matrix U not equal to the identity matrix I such that C′ = CQU
is weakly

(
π
3 + ε

)
-orthogonal. Define Q′

i = λiI for i = 1, . . . , k. Then C′Q′
i is also a weakly

(
π
3 + ε

)
-

orthogonal basis for Li. Typically, JPEG employs Qis that are not related in any special way. Therefore, we
believe that for most instances JPEG CHEst has a unique solution.

4.5.4 Experimental Results

We performed a set of experiments where our approach provided accurate estimates of an image’s JPEG
compression history. In reality, Pd is also corrupted with some additive noise. To estimate the desired
compression history, the techniques described in this paper were combined with some additional noise
mitigation steps. We refer the reader to [8, 9] for details on the experimental setup and results.
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5 Discussions and Conclusions

In this paper, we presented some interesting properties of nearly orthogonal lattice bases. We chose to
directly quantify the orthogonality of a basis in terms of the minimum angle θ between a basis vector and
the linear subspace spanned by the remaining basis vectors. If θ > π

3 radians, we defined such a basis to be
nearly orthogonal. Our main result is that a nearly orthogonal lattice basis always contains a shortest lattice
vector. Further, we also investigated the uniqueness of nearly orthogonal lattice bases. We proved that if
the basis vectors of a nearly orthogonal basis are nearly equal in length, then the lattice essentially contains
only one nearly orthogonal basis.

Our results were motivated by a fascinating digital color imaging application called JPEG compression
history estimation (JPEG CHEst). Given a digital color image, JPEG CHEst aims to estimate the settings
used during previous JPEG compression operations. These operations make the color image coefficients
conform to a lattice. The settings are encoded in a nearly orthogonal basis spanning the lattice. We use
some of the results in this paper to design an effective heuristic for JPEG CHEst.

Our definition of nearly orthogonal bases is probably too strong for general applications as there are
lattices with no π

3 -orthogonal bases. Consider a lattice L spanned by the basis

B =

 1 0 1
2

0 1 1
2

0 0 1√
2

 . (14)

It is not difficult to verify that (1 0 0)T is a shortest lattice vector. Thus, λ(L) = 1. Now, assume L has
a weakly π

3 -orthogonal basis B̃ = (b1, b2, b3). Let θ1 be the angle between b2 and b1, and θ2 be the angle
between b3 and the subspace spanned by b1 and b2. As b1, b2 and b3 have length equal to 1,

det(B̃) = ‖b1‖ ‖b2‖ ‖b3‖ | sin (θ1) | | sin (θ2) | ≥ sin
(π

3

)2
=

3
4
. (15)

But det(B) = 1√
2

< det(B̃), which shows that a lattice L with basis B in (14) has no weakly π
3 -orthogonal

basis. Thus lattices that contain a nearly orthogonal basis are somewhat special.
We pose two questions related to our work. First, is a shortest vector of a maximally orthogonal (in

terms of θ-orthogonality or other measures such as orthogonality defect) lattice basis a solution of the SVP?
Second, how do lattice reduction algorithms perform when the lattice is known to contain a nearly orthogonal
basis? Note that currently we only understand the “worst-case” performance of lattice reduction algorithms
such as the LLL algorithm. Lattices with nearly orthogonal bases could be used to gauge the “best-case”
performance of such algorithms.
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