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ABSTRACT
Video games represent a class of media applications for which
creating video content is as important as displaying it. In
this work, we compare modern, 3D video games running on
an Apple Macintosh G5 to the traditional multimedia con-
tent rendering applications of DVD playback and the Quick-
Time media player. We use performance monitor counters to
find several metrics of the workload performance, including
the IPC, the L1 data cache miss rate and both the AGP and
processor memory bandwidth. We find the frame-oriented
nature of these applications reflected in many of the metrics
used in this study. Video game applications exhibit signif-
icantly less idle time between updates to the screen than
either the DVD playback or QuickTime applications. The
results also show that adding computer controlled characters
to a video game, increasing the work per frame in the game
application, further reduces the idle time, and also causes
a decrease in the L2 cache pressure by spreading the access
misses over a longer time period. This illustrates the im-
pact of the content-creation task on the overall execution of
the programs, where this content-creation is present in the
game workloads and absent in the recorded-media playback
applications.

1. INTRODUCTION
Video games have become a leading edge software ap-

plication in the past several decades. According to a re-
cent study by the Entertainment Software Association [3],
U.S. computer and video game software sales topped $7 bil-
lion in 2003, and the age of the average video game player
was 29 years (and increasing). Video game console systems
in particular have evolved from low-end microcontrollers to
high-end microprocessors and even multiprocessor systems.
In the process, platform performance growth has consis-
tently exceeded Moore’s Law (and typical workstation sys-
tem performance improvement rates) as shown in figure 1.

Historically, this rate of game consol system performance

increase has been relatively easy to attain by adopting more
sophisticated cores containing more aggressive performance
features in each generation of systems. Effectively, the high
rate of growth has been partly achieved by starting with a
much lower base system performance, and steadily adopting
more “workload system” features in each console generation.
This, in turn, has become possible because these mainstream
workstation features have become much less expensive over
time, in terms of component cost, processor performance at
desired yield levels, etc.

While this approach has been an adequate response to
the increased performance demands of successive video game
generations, incremental performance increases have become
more difficult and expensive in the most recent generations,
both in terms of chip area and power. Not surprisingly, as
game console core performance reaches that of traditional
workstation cores, the law of diminishing returns on invest-
ment, in terms of both area and power, apply increasingly
to game console cores. To continue delivering more perfor-
mance to game applications in the future, console and game
designers must focus on obtaining a better understanding of
the workload characteristics and how better to exploit them
to deliver greater core and system performance.
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Figure 1: Performance growth of video game console
systems (in Mops).

Video games represent a unique and interesting class of
applications: they embody the practical intersection of com-
puter graphics, scene databases, and artificial intelligence.
Game applications are also developed for a wide variety of
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Execution Cycles 7.55 ∗ 109 3.98 ∗ 109 33.3 ∗ 109 54.1 ∗ 109 71.0 ∗ 109 85.9 ∗ 109
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2 Instr Completed 7.92 ∗ 109 1.03 ∗ 109 9.02 ∗ 109 16.4 ∗ 109 24.9 ∗ 109 37.3 ∗ 109

Execution Cycles 9.48 ∗ 109 4.07 ∗ 109 24.9 ∗ 109 46.7 ∗ 109 74.1 ∗ 109 71.0 ∗ 109

Instr Per Cycle 0.835 0.253 0.370 0.352 0.336 0.526
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3 Instr Completed 7.81 ∗ 109 1.02 ∗ 109 9.28 ∗ 109 17.6 ∗ 109 17.5 ∗ 109 37.9 ∗ 109

Execution Cycles 9.40 ∗ 109 4.07 ∗ 109 25.0 ∗ 109 49.5 ∗ 109 58.1 ∗ 109 17.5 ∗ 109

Instr Per Cycle 0.830 0.251 0.372 0.356 0.301 0.532

Table 1: Instruction throughput metrics.

systems, including low-power embedded devices (handheld
games), sophisticated embedded environments with special-
ized hardware (console systems) and desktop PCs alike.
Video games can be included in the category of media ap-
plications, as they produce the same kinds of visual and
auditory data streams. The study of video games in this
regard is especially interesting because they can at once be
considered a streaming media application and a multimedia
content creation application.

Games are required to continually produce and display
real-time video content. They are, however, distinct from
traditional streaming multimedia content rendering applica-
tions, such as DVD and (other) MPEG players, in that the
content to be displayed is generated in real-time, and not
taken from pre-recorded input data (e.g., a locally stored
MPEG-encoded file, or a streaming feed of encoded frames
from the network). It is to be expected that the require-
ments of content creation, especially in real (or pseudo-real)
time, will provide some distinct challenges and thus some
unique workload characteristics over traditional media play-
ing applications.

Games are also distinguished from most multimedia con-
tent creation applications, in that traditional multimedia
content creation is frequently targeted to the generation of
files, and thus is not subject to real-time constraints. In this
respect, video games are also representative of other future
virtual-world applications, such as military training, battle-
field simulations, or even virtual-reality interactive environ-
ments like virtual shopping malls, which have been discussed
as a possible direction for online entertainment.

Throughout this report, we focus extensively on the time-
varying behavior of a variety of performance metrics. Previ-
ous studies have explored predicting the phase behavior of
performance metrics for system optimization [2,9] for SPEC
benchmarks. An examination of figures 2 through 7 shows
that our results are consistent with the work of Düsterwald
et al. [2] which finds that for a given application from the
SPEC CPU 2000 benchmark suite the waveforms of different
performance metrics have characteristically different shapes,
but share a quasi-periodic structure. Our results from the
analysis of video games and multimedia applications differ
from [2], however, in that the phases we find in the time-
varying behavior of these performance metrics are shorter
(on the order of milliseconds instead of seconds) and cor-
related directly to the application’s frame rate. Effectively,
the phases in multimedia applications, including in games,
are directly linked to the intra-frame activity, as reflected
across the frames.

This work compares video games, as Real-time Multime-
dia Content Creation applications, to traditional streaming
media content rendering applications. We make extensive
use of the built-in performance counters in the IBM Pow-
erPC 970 processor in a Macintosh G5 desktop PC from
Apple. In section 2, we discuss the methodology used in our
study, including the hardware, data-gathering methods, and
the workloads that were analyzed for this paper. Section 3
presents some of the data we have gathered, and provides an
analysis comparing and contrasting the game workloads and
the streaming media player applications. Section 4 presents
our conclusions to date, and describes our ongoing work in
this area.

a

2. METHODOLOGY
A great deal of work has been done over many years in an-

alyzing computer benchmarks and workloads. Tremendous
efforts have been expended both academically and commer-
cially on the analysis of what are deemed to be important
benchmarks, including the SPECcpu performance evalua-
tion suite. Companies have also expended a great deal of
effort in the analysis and characterization of transaction
benchmarks, including the TPC-C and TPC-D benchmarks.

Aware of this historic work and these traditional approaches,
one is tempted to apply them in the analysis of game work-
loads. There are, however, some obvious qualitative differ-
ence between traditional benchmarks and the game work-
loads being analyzed here:

• Most PC-based and all console-based game workloads
are commercially packaged application programs for
which source code is typically not available.

• Video games typically involve high-bandwidth work-
loads and a strong dependence on I/O, particularly
graphics I/O. Thus, impacting the execution speed of
the game application may change the relative ratios of
graphics and program memory activity.

• To run across a range of platforms with varying per-
formance, PC-based game workloads change their real-
time behavior in response to compute power available.

• Computer games are not easily scripted and have lim-
ited repeatability. As such, successive runs may not be
able to reproduce the same execution behavior based
on timing and type of use input.
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Figure 2: Memory Bandwidth as seen by the Accelerated Graphics Port (AGP) for (a) DVD Player, (b)
QuickTime and a first person shooter video game with (c) 0 on-screen characters and (d) 32 on-screen
characters, (e) a second first person shooter video game, and (f) a run of the SPECcpu2000 benchmark
197.parser.

These characteristics necessitate an analysis methodology which does not require access to source code either for mod-
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Figure 3: IPC for (a) DVD Player, (b) QuickTime and a first person shooter video game with (c) 0 on-screen
characters and (d) 32 on-screen characters, (e) a second first person shooter video game, and (f) a run of the
SPECcpu2000 benchmark 197.parser.

ification or inspection. Further, to address the real-time re-
quirements, the analysis tools must only minimally impact

the performance profile of the application.
In the following sections we discuss the methodology and



the tools we used to study and characterize video game
and multimedia player workloads. Section 2.1 discusses the
desktop PC environment in which our study was performed,
drawing important comparisons to video game console sys-
tems. Section 2.2 details the performance counters and the
tools used to access them. Section 2.3 discusses the appli-
cation workloads used in the study.

2.1 Environment
There are two major classes of game application environ-

ments, general purpose personal computers and video game
consoles. While at their core each of these systems is a mi-
croprocessor, and in some cases the actual hardware is quite
similar, e.g., the first generation Xbox system and a desk-
top PC, dedicated video game console systems and desktop
PCs have some important differences that may significantly
impact some aspects of workload behavior.

Games developed for console systems are designed for a
fixed, application-specific set of hardware; they are typically
connected to a TV screen and are usually architected to at-
tempt maintaining a regular frame rate of 30 (or 60) frames
per second (fps). While desktop PC games can require cer-
tain minimum hardware specifications, in order to apply to a
large potential marketplace, they must support a relatively
wide variety of hardware configurations and abilities. Thus,
PC games are often characterized by variable frame rates,
where the frame rate is largely determined by the computa-
tional needs of the application and the underlying power of
the particular hardware platform. The desktop PC games
generally provide a series of user-selectable setting controls,
governing aspects of the game’s graphics (and in some cases
even AI and physics models). Most desktop PC games strive
to put out the maximum frame rate possible on the given
hardware and under the specific video and game settings; if
the hardware cannot produce a sufficient frame rate, the user
typically must alter these settings to achieve an acceptable
frame rate.

Both the desktop PC and console game platforms can
also be distinguished by the type of graphics adapters they
use. Some platforms opt for highly specialized, high func-
tion graphics cards which implement much of the graph-
ics pipeline in hardware (e.g., texture mapping, lighting
and shading, rasterization), while other platforms require
the general-purpose computing resources to implement the
graphics pipeline. Typically, PC-based gaming systems (both
Intel x86 and IBM PowerPC based system) use high function
graphics cards (such as Nvidia and ATI adapters). In the
dedicated game console space, the Microsoft Xbox and the
Nintendo Gamecube follow the same high function graphics
card paradigm, while Sony’s Playstation 2 uses programmable
vector units to implement a larger portion of the graph-
ics pipeline in programmable CPUs, driving a lower func-
tion graphics adapter. Evidently, these system architecture
choices will impact workload characteristics on these plat-
forms, i.e., systems with low function graphics adapters will
have a higher fraction of image processing code.

Finally, video game applications developed for PCs are
run on top of a general purpose operating system. To date,
most console systems have their OS functions tightly inte-
grated into each game, and starting a game involves “reboot-
ing” the system with its own private embedded OS service
functions (often in the form of libraries provided by the con-
sole vendor). Even where the OS is not implemented as a

set of library functions, but as a more dedicated layer (e.g.,
on the current Xbox system, or Linux game consoles) each
game generally includes a copy of the OS code on which it
runs (and which is booted when loading the media).

In current generation console systems, the system is ded-
icated to a single application and all threads are usually
under the control of that single (game or other) application.
Thus, general-purpose OS function like context switching
have no impact on video games developed for console sys-
tems, except at the level exploited by programmers of that
game, and often then in an application-centric streamlined
and performance-focused form. No other system functions
run on today’s video game console when a game is being
played.

2.2 Performance Monitor Counters
To meet the requirements for analyzing game workloads,

we have turned to time-interval based sampling and perfor-
mance monitor counters [6] for program analysis. The time-
interval based sampling methodology and results are de-
scribed in [7]. Here, we report results based on the use of the
PowerPC 970’s Performance Monitor Counters (PMCs).1

Using the processor’s built-in PMCs provides a non-intru-
sive method of extracting data from an application while it
runs very close to real time. The remainder of this section
describes our methodology and the tools used in this study.

The PowerPC 970 G5 processors support 8 performance
monitor counters that can be configured to count from a
large variety of events. The Apple Mac G5 U3 Northbridge
chip also includes additional counters which can be used
to track memory traffic between the various system com-
ponents. Peaks in AGP traffic corresponding to a screen
update, for example, can be used to identify logical frame
boundaries as a reference point for inspecting the per-frame
behavior of other metrics.

To count more than 8 events for a given workload, the
data must be gathered by altering the performance mon-
itor counter controls and taking data either across several
different runs or at least across several different sampling in-
tervals. The resulting data must then be combined (and cor-
related) to provide the larger set of metrics. Given the un-
scripted, non-repeatable behavior, particularly of the game
applications (and especially so at the architectural and mi-
croarchitectural levels), this kind of analysis is best used for
aggregating statistics across longer time intervals. In ta-
ble 1, we compare basic metrics across three 50 second runs,
to identify variability between runs. While the macroscopic
behavior can vary across runs, depending on system state,
activity of other processes, and timing of user inputs, it fre-
quently tends to be repeatable. This suggests that large
portions of the execution are fairly independent of specific
input data, e.g., a game may allocate a fixed time budget to
an activity such as game AI, or that the processing effort for
different computer-controlled character actions is relatively
consistent.

To access the PMCs under Mac OS-X, we have used the
Apple CHUD toolset, as well as IBM proprietary PMC anal-
ysis tools. We use the core PMCs to obtain data for a
number of attributes, including IPC (instructions per cycle),
branch prediction accuracy, and cache hierarchy access be-

1
It should be noted that PMCs are primarily designed for performance tuning

and hardware diagnosis, not for workload characterization work. As such, events

tend to reflect behavior of a workload on a specific microarchitecture, not in a

more abstract microarchitecture-independent form.



havior for the applications in this study. We use the PMCs
on the U3 system controller to analyze memory traffic as
seen by the processor and the Accelerated Graphics Port.

The Apple CHUD toolset also provides a set of (pseudo)
counters that can monitor activities within the operating
system. While there are a number of interesting studies
that could be pursued using these counters, those studies
would be less representative of game workloads in general
(especially when considering such dedicated game platforms
as consoles), and any such work is outside the scope of this
paper.

2.3 Workloads
For our study, we compare video game applications to two

traditional streaming media applications: the Quicktime
media player and the playback of DVDs. MPEG video en-
codings typically use 3 types of frame encodings, key frames
containing a full image (I-frames), and intermediate P- and
B-frames (representing predictive and bi-directionally pre-
dictive coded frames, based on motion estimation). DVD
video data is typically displayed at a frame rate of 24 or
29.97 fps with a frame size of 720x480 (NTSC) or 25 fps at
720x576 (PAL).

To understand the behavior of game workloads, we have
used several commercial game applications for the Apple
Macintosh PowerMac G5 under OS X. All game applica-
tions use the system OpenGL implementation for graphics
rendering. While in previous work we have studied a vari-
ety of game applications representing different game playing
styles (first person shooter games, war games, racing games,
etc.) [7], we concentrate on two first person shooter games in
this study. Some applications allow the user to change the
number of game-controlled actors (“game bots”), providing
a way to study the impact of varying amounts of game AI
and other control code.

3. ANALYSIS
Figures 2 through 7 each show a selection of fundamental

workload metrics comparing video game applications to tra-
ditional streaming multimedia rendering applications (DVD
and Quicktime movie). Each of these graphs highlights
one second of operation, taken from a 50-second execution
of (a) a DVD Player; (b) the QuickTime media player; a
First-Person Shooter game application (FPS1), where the
computer either controlled (c) 0 or (d) 32 additional non-
player characters (“bots”); (e) a second First-Person Shooter
video game; and as reference for a more traditional comput-
ing workload, (f) a run of the SPECcpu2000 benchmark
197.parser. We elected to show one second of each run
(specifically the 31st second) in order to provide, in a sin-
gle set of graphs, both a reasonably large number of frames
(for the game and multimedia workloads) and the ability to
distinguish relatively fine-grain behavior.

For the media applications, the behavior shown in fig-
ures 2 through 7 for the selected time slice (31st second)
is representative of a control set of plots each consisting of
other, different 1-second time intervals. The execution be-
havior of media workloads is periodic, reflecting the frame-
oriented nature of their computations. This observation
supports the same observation, i.e., that media rendering
applications show some periodic behavior reflecting the se-
quence of different frame types, previously discussed in [5].
For these media workloads, however, no higher-level phase

behavior is discernible; all phase behavior appears to be at
the frame level.

This periodicity behavior is notably different from some of
the traditional desktop computing benchmark workloads, as
exemplified by the SPEC CPU suite. For reference, we show
the 31st second of 197.parser from the SPECint2000 bench-
mark suite.2 As can be seen from figures 12(b) and 15(b),
197.parser has significant phase behavior that cannot be
captured within any single one second interval of the run.
This illustrates that the behavior of the 197.parser work-
load over its 31st second of operation in figures 2 through 7
cannot be considered representative of the overall execution
behavior for 197.parser. In fact, as can be seen from 3(f),
there are several distinct non-periodic phases visible even
within the 1 second segment displayed there.

To summarize, the media workloads tend to show peri-
odic phase behaviors in a more regular and localized way.
For some applications and application phases, phases of be-
havior are also observable within a frame, i.e., where each
frame’s computation will have a similar performance profile,
which follows from the sequence of actions taken (computa-
tions made) within each frame for frame processing. There
is also phase-like behaviors between frames, e.g., for me-
dia playback applications, where the media stream consists
of different kinds of frames, presumably in a fixed relative
ordering, each of which requires slightly different process-
ing (e.g., I-frames compared to P- and B-frames for MPEG
players). The media workloads, and in particular the game
workloads, do not consistently show longer-term phases of
behavior as are often evident in desktop benchmarks.

3.1 AGP Bandwidth
Figure 2 shows the measured memory bandwidth (in MB/s)

as seen by the accelerated graphics port (AGP) for each of
the applications. In each of the cases, all memory trans-
actions seen by the AGP were reads, indicating that the
graphics card does not transmit data back to the processor.
This corresponds to our understanding of the current usage
of graphics rendering hardware in game workloads, where
transfer to graphics adapters is largely (if not exclusively)
unidirectional. Note, however, that future game applica-
tions may transfer rendered image data back to the proces-
sor for further post processing, e.g., for use as computed
textures.

On the G5 PowerMac, all graphical applications use the
AGP bus to transmit data to the ATI graphics card, and
thereby to the display. For all the applications shown here,
the peaks in the AGP memory bandwidth correspond di-
rectly to the transfer of one frame of output. Graphs of the
FFT magnitude spectrum of the 31st second of AGP Mem-
ory bandwidth are given in Figure 8. The first significant
peak in each of the graphs in figure 8 is its fundamental
frequency and is equivalent to the frame rate. This is espe-
cially useful for determining the frame rate (or at least an
aggregated or average frame rate) for video games where the
frame rate varies during execution.

The AGP traffic generated by game workloads and media
players are markedly different.3 Comparing the different

2We show a single SPECint2000 benchmark for reference.
The present report discusses media workloads, and a broader
discussion of SPECcpu benchmark behavior would distract
from the focus of this report. [1]
3This observation may be specific to the evaluation environ-



workloads, one notes that for the DVD and Quicktime me-
dia players, the AGP transfers are quite regular, with very
sharply delineated peaks. Further, each transfer tends to in-
volve a single block of data pushed over the AGP bus. This
is consistent with the transfer of a full frame of (pixels to be
rendered) data, presumably in a single AGP transfer action.

The game applications also show fairly regular peaks, though
these peaks occur over a larger number of sample intervals
(i.e., the transfers occur over a longer absolute time inter-
val). The total volume of data transferred by the games is
notably higher, than for the (single frame of pixels trans-
ferred by the) media player applications. This behavior is
consistent with the expected utilization of a high-function
graphics card by a game workload.

The game (i.e., content creation) workload communicates
at a significantly higher abstraction level than the simple
bitmap descriptions generally used for transferring the re-
sults of media content rendering. Thus, the AGP traffic for
the game workload applications – in a high function graphics
card environment – corresponds to the collection and pro-
cessing of the high-level screen description over an extended
time period.

This higher-level data consists of a collection of object
types which are further processed by the graphics adapter,
and currently include textures and polygon information. There
is a potential movement in the game industry toward an
even higher level of abstraction (e.g., NURBs or other sur-
face representations), but this is not a current mainstream
technology, and is not represented by these game workloads.

In comparison, the media players decode a video stream,
e.g., in MPEG typically consisting of stored data for I-, P-,
and B-frames, into unstructured bitmaps that are more or
less directly transferred from the DVD player to the frame
buffer.

The volume of data transferred is markedly different for
the application types: The FPS1 video game application
transfers, on average, approximately 2.6 MB of data across
the AGP bus when there are 0 computer-controlled actors.
In the case where there are 32 actors, the FPS1 video game
transfers on average about 3.1 MB of data. The two media
players transfer much less data per frame, with the DVD
player sending 700 KB of data, and the QuickTime player
sending only 281 KB of data per frame, in each case re-
flecting the size (resolution) of the videos being rendered.
The FPS2 video game averages transfers of about 3.3 MB
per frame, which is fairly consistent with the FPS1 with 32
actors results. As to be expected, the 197.parser command
line application has no AGP traffic, and is shown here for
completeness only.

3.2 Instructions Per Cycle
We analyze IPC for media workloads for phase and pe-

riodic behavior at both the multi-second and frame level.
Figures 10, 11 and 12 show the distribution of the IPC met-
ric based on sampled performance monitor counters at 1
millisecond intervals for instructions completed, and cycles
executed in the application. While figures 10, 11 and 12 give
a good reflection of the IPC range, the distribution between
the 50000 different sample points is hard to establish from
these charts. Figures 13, 14, and 15 show a moving aver-
age of the sampled IPC data points using a 200 millisecond
sliding window for averaging.

ment based on a high-function graphics card.

Referring to figure 10, the DVD Player shows IPC samples
covering a wide spectrum (with a few data points exceed-
ing 1.5 instructions per cycle), compared to the Quicktime
format rendering software which has a significantly more
narrow CPI distribution band to a maximum of about 0.4
CPI. The average IPC for these applications is about 0.84
instructions per cycle for the DVD player and 0.25 instruc-
tions per cycle for Quicktime. Note that the IPC of the
Quicktime player also shows the effects of optimizing me-
dia software – compared to a previous analysis run with an
older version of the same Quicktime rendering software, the
new version has a significantly worse CPI, yet only executes
about 1/4 of the number of instructions to render the same
video clip.4

The moving averages shown in figure 13 show a relatively
narrow IPC range for both movie decoding applications.
The DVD rendering application has narrow IPC variations
in the 0.8 to 0.9 instructions per cycle range, whereas Quick-
time shows a stable CPI around 0.25 across the entire 50
second run. Both applications represent only a light system
load, with most cycles not spent in the actual application.

Figures 11 and 14 show the same metrics for a first person
shooter video game without computer controlled characters,
and with 32 computer controlled characters. The IPC distri-
bution is generally below 0.5 with some samples periodically
exceeding this range. This behavior is significantly more
pronounced in figure 14(b) which points at higher IPC – and
variability – in control code responsible for computer con-
trolled characters (such as game AI). This behavior is also
reflected in the moving averages, where the game applica-
tion without computer controlled characters oscillates with a
very regular pattern in a narrow (0.3 – 0.35 instructions per
cycle) range. The overall moving average IPC is higher for
the same application when computer controlled characters
are present, which also leads to increased variability and less
regular IPC variations. While these oscillations are regular
and probably influenced by the regular frame rate pattern,
these oscillations are at a much lower frequency and do not
directly correspond to single frame updates.

The second video game shown in figures 12(a) and 15(a)
shows a range of distributions in the 0 to 0.75 instructions
per cycle range, with no sample points outside this IPC
range. The moving average IPC is similarly limited to a
very narrow range throughout the execution. All the game
applications show a very high (up to 100%) utilization of
the processing capacity of a single PowerPC 970 core.

The 197.parser benchmark shows a markedly different be-
havior from the media applications discussed in this work,
and is typical of a range of SPEC benchmark applications.
Regions with high ILP are interrupted with regions that
are characterized by low ILP. In 197.parser, high ILP re-
gions also havre high IPC variability covering the entire IPC
range from about 0.25 instructions per cycle to about 1.25
instructions per cycle, whereas the DVD player benchmark
has a more bi-modal distribution with dense regions below
0.40 instructions per cycle, and within the 0.9 and 1.0 IPC
range. Games show a distribution with most sample points
located in a single range, although a number of other sample
points exist – the number and randomness of these “outliers”

4This might for example occur when a memory bound ap-
plication is optimized to reduce the number of instructions
executed. Fewer instructions over which to apportion the
memory-dominated latency remain.



increases with the introduction of computer-controlled char-
acters, pointing to more variability in the associated code.

To analyze frame-level application behavior in media work-
loads, Figure 3 compares instructions per cycle (IPC) for
each of the six workloads for the 31st 1 second interval. IPC
for the QuickTime media player shows high, discrete peaks,
beginning immediately after a frame transfer, followed by
idle time after processing each frame. While similar idle pe-
riods can be seen in figure 3(a) for the DVD player, several
of the IPC peaks in the DVD data are sustained for longer
periods. Variations in the duration of IPC peaks for the
DVD player correspond to the three types of frames in an
MPEG-2 stream: the I-frames require processing over all
the pixels of the frame, hence the wider IPC peaks, while
the B- and P-frames only require processing on a subset of
the frame’s pixels. These variations should occur roughly
as a one-in-twelve pattern, i.e., one I-frame out of 12 total
frames, and this behavior is represented in the graph.

Video games do not exhibit these idle processing peri-
ods, as shown for the execution segment captured in fig-
ures 3(c), 3(d) and 3(e). Since video games on desktop PCs
typically update the screen at a variable frame rate, track-
ing the maximum achievable frame rate, no such idle pe-
riods (which would normally be used to synchronize to an
underlying frame rate) can be observed. Note that this is
a difference between desktop PC games and video consoles,
where the consoles provide a fixed hardware platform and
the game workloads are usually architected to match the
fixed frame rate of the TV output signal.

The computation load on the processor is significantly dif-
ferent between traditional media content rendering applica-
tions, as exemplified by both the DVD and Quicktime for-
mat rendering, and the game workloads. This difference is
due to the fact that the content is created in realtime in a
game, and not rendered from a static (compressed) source.
To this effect, games typically must perform a number of
processing steps, such as game AI (the operation of com-
puter controlled characters), collision detection, and game
physics to create the video content to be displayed on each
frame update.

It should be pointed out that graphs of IPC and other
metrics plotted against time (including all cache miss rates
and branch misprediction rates) that are calculated as ratios
of performance counter values do not represent the entire in-
formation about workload behavior, because they represent
the ratios without regard to the amplitude of a metric. This
can be especially misleading in time slices where few cycles
are spent in an application (e.g., because the application is
idle most of the time). While the rates are “correct” per
se, they are likely irrelevant for the program performance
due to the small amplitude of the phenomenon, which is not
reflected in ratios which assign similar importance to the
ratios in all time slices. While longer time slices allow cor-
rection for such effects, it will also tend to average out some
phase behavior. To correct for this and show overall impor-
tance of specific effects, we also show summary information
as rates and magnitude in tabular form.

Table 1 gives the overall IPC of for each of the applica-
tions.

3.3 Branch Prediction
Figure 4 shows the branch misprediction rates for the me-

dia rendering workloads, two configurations of FPS1, FPS2

address decision total
DVD Player 0.25% 7.99% 8.24%
QuickTime 1.86% 3.93% 5.79%
FPS1 w/0 2.62% 5.33% 7.94%
FPS1 w/32 1.92% 5.91% 7.84%
FPS2 0.73% 3.95% 4.68%
Parser 0.01% 6.04% 6.05%

Table 2: Branch misprediction summary

and the 197.parser SPECInt workload. More detailed mis-
prediction rates are shown in table 2 which breaks down the
mispredictions by target address misprediction and mispre-
diction of the branch decision (taken or not-taken) outcome.
Like many recently produced games, FPS1 is a C++ pro-
gram and shows a commensurately higher number of indirect
function calls, leading to a higher fraction of target address
mispredictions. This is not inherent in the application type,
as shown by the second game application, FPS2, which has
much lower overall branch misprediction rates.

The contemporary game development industry trend ap-
pears to be increasingly toward higher-level languages and
more general programming methodologies. With the in-
creasing complexity of both the hardware (consoles and PCs)
and the games themselves, developers are finding greater
need to employ abstraction layers and structured design
methods. These trends toward “big-programming” gener-
ally imply an increasing emphasis on aspects typical of C++
code, i.e., indirect function calls, middleware layers, etc.

3.4 Cache Memory Hierarchy
Figures 5, 6 and 7 illustrate the performance of these ap-

plications with respect to the memory hierarchy. Aggregate
values of these and other performance metrics related to the
memory hierarchy are also given in table 3.

Figure 5 shows the L1 data cache misses per instruction
completed during one second of the run. Referring to fig-
ure 5, we note that all applications have a similar range of
rates, ranging no higher than 0.2 L1 misses per instruction.

The idle periods of the QuickTime and DVD player appli-
cations are again evident, as there are a significant number
of intervals where these applications experienced no misses
(and no accesses). The video games have a much more reg-
ular stream of accesses to the memory system, which is con-
sistent with the work that they must conduct to generate
the frame content that is to be displayed. All applications
show a strong, repeating, periodic behavior that is aligned
with each application’s frame rate.

Figure 6 shows the frequency of L2 data cache misses per
completed instruction. The DVD player graph, figure 6(a)
is truncated, as the tall spike occurring at approximately
30.035 seconds reaches 0.076 misses per instruction.

Comparing the game workloads of figure 6(c) and fig-
ure 6(d) to the two multimedia players, there are some no-
table differences. First, the DVD and QuickTime players ex-
hibit noticeable periods where there are no L2 data misses,
while the game workloads provide a much more consistent
L2 miss rate, particularly when the computer is controlling
the 32 non-player characters in figure 6(d). This is another
expression of the idle periods in the media player workloads,
but also illustrates that the game workload has phases (per
frame) where the L2 is not strenuously exercised (particu-



FP Shooter 1 1600x1200
DVD Player QuickTime 0 Actors 32 Actors FP Shooter 2 Parser

L2 Dcache Loads 1.35 ∗ 107 1.01 ∗ 107 17.4 ∗ 107 26.6 ∗ 107 32.1 ∗ 107 68.2 ∗ 107

L2 Dcache Stores 32.9 ∗ 107 6.92 ∗ 107 72.9 ∗ 107 130. ∗ 107 150. ∗ 107 243. ∗ 107

L2 Dcache Load Misses 1.51 ∗ 106 2.85 ∗ 106 33.7 ∗ 106 52.8 ∗ 106 90.9 ∗ 106 84.9 ∗ 106

L2 Dcache Store Misses 35.8 ∗ 105 3.88 ∗ 105 108. ∗ 105 195. ∗ 105 403. ∗ 105 54.5 ∗ 105

L2 Load Misses/1000 Instr 0.24 2.87 3.05 2.78 3.73 1.64
L2 Store Misses/1000 Instr 0.56 0.39 0.97 1.03 1.65 0.11
L2 Data Misses/1000 Instr 0.80 3.26 4.02 3.81 5.38 1.75

Table 3: Memory hierarchy performance metrics.

larly note the periodic zero-misses per instruction regions in
figure 6(c) as in relation to the periodic spikes).

Another means of comparing the L2 data cache miss be-
haviors is by utilizing a moving-average, where the data from
a 200-millisecond sliding window is used. Figures 16 through
18 present plots of this moving average of the L2 data cache
miss rate per 1000 instructions for the full 50-second sam-
pling run.

Looking at figure 17(a) which illustrates the L2 data cache
miss rate for the FPS1 first person shooter video game in
which the computer is not controlling non-player characters,
there is an interesting semi-periodic behavior, with short pe-
riods of higher miss rates followed by lower miss rates, in
what looks something like a square-wave pattern. Compar-
ing this plot to figure 14(a) which plots the instructions per
cycle metric using the same moving average, one notes that
the patterns appear to be well harmonized.

Note, however, when comparing figure 17(b) to figure 17(a)
this semi-periodic behavior is no longer apparent. This same
difference is apparent in comparing figures 14(a) and (b).
In both cases, the primary difference in the workloads is
the addition of 32 computer-controlled non-player charac-
ters. As has been noted earlier, the addition of computer
controlled characters adds significant work per frame, much
of which is not as regular as in the 0-actors case. Com-
paring figures 14(a) and (b) one again sees that the IPC
variation for the 32-actors case is much more pronounced
than for the 0-actors case. A higher variability in the L2
data cache miss rate would certainly contribute to a higher
variability in overall measured IPC, and thus the correlation
between figure 14(a) and figure 17(a), and similarly between
figures 14(b) and 17(b) is expected and reasonable.

One other notable effect of adding the 32 computer con-
trolled actors is a very large reduction in the frame rate
sustained by the game workload – from approximately 30
frames per second to roughly 13 frames per second. At 30
frames per second, each frame requires 33.3 milliseconds,
and a 200 millisecond sample window should contain almost
exactly six frames. At the lower 13 frames per second rate,
however, each frame requires about 77 milliseconds, and a
200 millisecond window would contain slightly less than 3
frames. This might distort the periodicity of the applica-
tion.

Figure 7 presents the rate of L2 instruction misses, i.e.,
misses in the (unified) L2 that result from instruction re-
quests. Again, the DVD application has a single data spike,
at approximately 30.850, which exceeds the scale (the value
of that data point is actually 0.25, which far exceeds all
other data in these graphs).

Comparing figure 7 to figure 6 one must observe that the

scale of the instruction L2 misses per instruction rate is at
least the equal of the data miss rate. In fact, comparing
the DVD player graphs of figure 7(a) and figure 6(a) we
find that the DVD player suffers many more instruction L2
misses than data L2 misses, often three to five times as many.
The Quicktime player, on the other hand, shows much more
parity between the instruction and data misses.

The game application is somewhat more variable in its
behavior, but generally tends to have a higher rate of data
L2 misses than instruction L2 misses per instruction. This is
particularly evident in the case where there are no computer-
controlled actors in the game, and thus the game is simply
generating frame content for display, and shipping that con-
tent to the AGP port. When 32 computer-controlled actors
are added, the data L2 misses per instruction drops some-
what (comparing figure 6(c) to figure 6(d)) leading one to
conclude that the character-control code has better cache
behavior, and that this, coupled with the dilation of the
frame time (evidenced by the drop in the frame rate from
near 30 to nearer 13 frames per second), leads to less pres-
sure on the L2 cache in a fixed time interval.

Referring to figure 6 and figure 7, we note that the L2
data cache miss per instruction rates show very high peaks
(up to 60 L2 misses per 1000 completed instructions), but
looking at the aggregate data in Table 3 the overall rates
are not nearly as alarming as these peaks. Note that the
game workloads generally have a higher L2 miss rate per
thousand instructions than the media applications (and the
SPEC workload).

With larger game worlds, larger code footprints, etc., in
future games, it is likely that the overall memory pressure
will increase over time. It is not clear, however, whether this
memory pressure will increase at a rate faster than the gen-
eral increase in the L2 cache size for future processors. This
may be a concern for future console systems, as console hard-
ware is less frequently updated (refreshed) and attempts a
larger leap forward in performance at each new console in-
troduction; missing the L2 balance could have long-lasting
repercussions even when the underlying processor and hard-
ware computational power are competitive.

3.5 Computer-Controlled Characters
Another interesting question is how the game applica-

tions are affected by the various tasks they are required to
conduct, i.e., the content generation compared to the con-
tent rendering and display. In the game application runs
of figures 2 through 6, there are two different runs of FP
Shooter 1. The first run was taken where the game applica-
tion ran with a single camera (observer) alone in the world;
this primarily required the game application to render the



background world. The second run was taken when the com-
puter controlled 32 additional non-player actors (“bots”)
within the game world. In this case, the game application
needs not only to do all the work of the 0-bots case, but also
to execute the artificial intelligence (planning) for each bot,
and calculate additional physics for both the bots and any
other objects that they interact with (e.g., projectiles and
explosion particles, etc.).

Comparing the graphs of these runs, we note that the ad-
ditional processing required for the 32 bots has significantly
degraded the overall frame rate (from the approx. 30 frames
per second of Figure 2(c) to the approx. 13 fps shown in the
Figure 2(d)). Furthermore, the volume of data transferred
across the AGP bus has increased significantly (presumably
for the rendering of the bots, projectiles, explosion particle
effects, etc.) and there is an additional sub-peak per frame
in the 32-bots case. Similarly, the IPC graphs of figure 3
show significantly more peaking per frame, and much more
irregularity in the overall profile, when the 32 additional
bots are included.

Interestingly, the addition of 32 bots to the game has not
increased the L1 Dcache misses per instruction, as shown in
figure 5. Furthermore, the L2 Dcache misses per instruction
of figure 6 indicate lower peaks, and the data of Table 3 show
that the L2 misses per instruction actually decreased. This
seems counter-intuitive, but is at least partially explained by
the dilation of the frame time corresponding to the reduced
overall frames-per-second rate. The 32-actor run does have
a larger number of total misses, but apparently the actor
control code provides a larger proportion of instructions that
have good cache behavior, and thus the overall miss rate is
lower. For the AI code, this could be understood, at least for
the L2, because the data structures used in the computation
of the planning could readily fit within an L1 cache (at least
per bot) and may be referenced many times.

3.6 Phase Behavior
The Fast discrete Fourier Transform (FFT) is widely used

for performing frequency analysis of time-varying signals.
Derived from an efficient implementation of the well-known
Fourier Series, strong peaks in the graph of the FFT magni-
tude (or alternatively, the magnitude spectrum) of a wave-
form both identify periodic behavior and quantify the pe-
riods (or inversely, the frequencies) of its strong frequency
components.

Figures 8 and 9 show plots of the magnitude spectrum
of a 1024-point FFT of the AGP memory bandwidth and
the IPC, respectively, for the traditional multimedia appli-
cations (DVD player and QuickTime), video games (FPS1
with 0 bots and with 32 bots, and FPS2) and an application
from the SPEC CPU 2000 benchmark suite (197.parser).
Prominent peaks are discernable in all graphs in figures 8
and 9 that pertain to video game and multimedia applica-
tions, but not in the 197.parser. The plot of the magnitude
spectrum of AGP memory bandwidth for DVD player in fig-
ure 8(a), for example, has clearly visible peaks at 24.4Hz,
as well as 48.8Hz, 73.2Hz and all other integer multiples of
24.4Hz shown in the figure.

As discussed in section 2.3, 24Hz is one of the common
frame rates used to encode video with the MPEG-2 algo-
rithm and clearly shows up5 in figure 8(a) as the lowest
significant frequency component (hereafter referred as the

5With a 1024-pt FFT, only 512 equally-spaced, discrete fre-

fundamental frequency). The integer multiples of the funda-
mental frequency are resonances due to sharp cut-offs in the
time-varying AGP bandwidth visible in figure 2 (a). Further
discussion of resonant frequencies is beyond the scope of this
paper and is available in a variety of classic texts on signal
processing [8]. We limit the discussion of resonant frequen-
cies in the time-varying behavior of performance metrics to
the fundamental frequency (i.e., the first peak in each graph
of the magnitude spectrum) in this paper, as we have found
that it matches the frame rate for video game and multime-
dia applications in almost all cases.

Table 4 gives the fundamental frequency of the AGP mem-
ory bandwidth and the IPC for each of the six applications
taken from an inspection of the FFT magnitude spectrum.
The time-varying AGP memory bandwidth and IPC graphs
for parser do not exhibit any apparent periodicity (at least
not in the 1-second periods for which the analysis was done)
and thus no discernable fundamental frequency in the FFT.
For DVD player, QuickTime and Game 1 with 32 actors,
the fundamental frequencies for the AGP memory band-
width and the IPC match exactly. The fundamental fre-
quencies for DVD player and QuickTime match each other
exactly for AGP memory bandwidth and IPC. They also
match their documented frame rates of 30Hz and 15Hz, re-
spectively. The fundamental frequencies for AGP memory
bandwidth and IPC are also equal for Game 1 with 32 actors.
The frame rates for video games on desktop PCs, however,
are not nearly as well documented nor consistent as with tra-
ditional multimedia applications. In fact, for video games
on desktop PCs, the frame rate varies with time and, with
respect to video games, we hereafter refer to the frame rate
as the instantaneous frame rate since it changes as the appli-
cation runs. The instantaneous frame rate for video games
can only be measured by observation, i.e. several of the
video game applications in our suite provide an option for
displaying the frame rate while the application runs. Ob-
servations of the instantaneous frame rate for video games
were consistently close to the fundamental frequency in the
AGP memory bandwidth and IPC.

It is interesting to point out the strong influence of the
frame rate on phase behavior in multimedia applications be-
cause the frame rate is a characteristic of the application’s
high-level behavior, and must be consistent across variations
in software and hardware. Phase behavior in SPEC bench-
mark applications is likely due to program structure and the
underlying hardware and, as such, specific to the implemen-
tation. For video games on desktop PCs, the analysis is
complicated further: the frame rate is still a characteristic
of the application’s high-level behavior, but it is affected at
a higher level by the resources allocated to the application
by the operating system which varies with time.

4. SUMMARY AND CONCLUSIONS
Computer-based consumer entertainment devices have be-

come a major fraction of the CPU market, and an increas-
ingly important segment of the (cost constrained) high-per-
formance CPU market. We have analyzed and compared
traditional media applications such as DVD and Quicktime

quencies between 0 and 500Hz (the frequency range shown
in the figure) are detectable. This is why a peak at 24.4Hz,
and not 24Hz exactly, is detected in the FFT, i.e., it is the
nearest to 24Hz in the discrete set of frequencies.



DVD Player QuickTime Game 1 (0 Actors) Game 1 (32 Actors) Game 2 Parser
AGP 24.4 15.625 27.344 12.69 27.344(????mistake????) N/A
IPC 24.4 15.625 32.226 12.69 31.25 N/A

Table 4: Fundamental frequencies for AGP memory bandwidth and IPC.

rendering, and emerging media applications such as video
games.

While many of today’s pervasive consumer applications
(such as digital audio or video) exhibit lower compute per-
formance requirements, video games and other digital con-
tent creation applications will demand significantly higher
computer performance.6

The phase behavior in both game workloads and more
traditional multimedia players is dominated by the frame
rate intervals and associated processing. Phase behavior
across larger time intervals was not discernable for any of
the explored media applications.

It is interesting to note that these measurements were
taken on a high-end desktop PC system, with performance
specifications well ahead of the current game consoles. Nev-
ertheless, the game workloads were unable to generate a
consistent 30 fps frame rate even at lower resolution than
high-definition TV standards. Considering that game con-
soles will likely target the HDTV marketplace in the near
future, one could argue that such consoles will require much
more computing power (performance) than current consoles,
and perhaps even than current desktop PCs. A promising
way to supply this increased computing power at acceptable
hardware complexity and power cost will be the adoption of
a chip multiprocessing (CMP) approach.
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Figure 4: Branch misprediction rate for (a) DVD Player, (b) QuickTime and a first person shooter video
game with (c) 0 on-screen characters and (d) 32 on-screen characters, (e) a second first person shooter video
game, and (f) a run of the SPECcpu2000 benchmark 197.parser.
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Figure 5: L1 D-Cache Misses per Instruction for (a) DVD Player, (b) QuickTime and a first person shooter
video game with (c) 0 on-screen characters and (d) 32 on-screen characters, (e) a second first person shooter
video game, and (f) a run of the SPECcpu2000 benchmark 197.parser.
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Figure 6: L2 D-Cache Misses per Instruction for (a) DVD Player, (b) QuickTime and a first person shooter
video game with (c) 0 on-screen characters and (d) 32 on-screen characters, (e) a second first person shooter
video game, and (f) a run of the SPECcpu2000 benchmark 197.parser.
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Figure 7: L2 I-Cache Misses per Instruction completed for (a) DVD Player, (b) QuickTime and a first person
shooter video game with (c) 0 on-screen characters and (d) 32 on-screen characters, (e) a second first person
shooter video game, and (f) a run of the SPECcpu2000 benchmark 197.parser.
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(a) DVD Player
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Figure 8: FFT Magnitude Spectrum of the AGP memory BW graphs in figure 2 for (a) DVD Player, (b)
QuickTime and a first person shooter video game with (c) 0 on-screen characters and (d) 32 on-screen
characters, (e) a second first person shooter video game, and (f) a run of the SPECcpu2000 benchmark
197.parser.
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Figure 9: FFT Magnitude Spectrum of the IPC graphs in figure 3 for (a) DVD Player, (b) QuickTime and a
first person shooter video game with (c) 0 on-screen characters and (d) 32 on-screen characters, (e) a second
first person shooter video game, and (f) a run of the SPECcpu2000 benchmark 197.parser.
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Figure 10: IPC scatter plots for 50 seconds of execution for the (a) DVD Player and (b) Quicktime applica-
tions.
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Figure 11: IPC scatter plots for 50 seconds of execution for a video game with (a) 0 computer-controlled
characters and (b) 32 computer-controlled characters.
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Figure 12: IPC scatter plots for 50 seconds of execution for (a) Video Game 2 and (b) Parser.
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Figure 13: IPC (moving average) plots for 50 seconds of execution for the (a) DVD Player and (b) Quicktime
applications.
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Figure 14: IPC (moving average) plots for 50 seconds of execution for a video game with (a) 0 computer-
controlled characters and (b) 32 computer-controlled characters.
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Figure 15: IPC (moving average) plots for 50 seconds of execution for (a) Video Game 2 and (b) Parser.
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Figure 16: L2 cache data miss (moving average) plots for 50 seconds of execution for the (a) DVD Player
and (b) Quicktime applications.
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Figure 17: L2 cache data miss (moving average) plots for 50 seconds of execution for a video game with (a)
0 computer-controlled characters and (b) 32 computer-controlled characters.
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Figure 18: L2 cache data miss (moving average) plots for 50 seconds of execution for (a) Video Game 2 and
(b) Parser.


