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Exploiting fine-grained memory locality with predictive dispatch

Abstract

Future process technologies promise to complicate and eventu-
ally break the scaling of traditional 6T SRAM cell memory ar-
rays. In this work, we present an analysis of the microarchitec-
tural impact, and propose possible solutions based on workload
characteristics of a broad range of workloads (SPEC, transaction
processing, desktop and media).

We identify the sensitivity of the workloads to both cache
latency and bandwidth, and consider how different SRAM de-
sign choices will impact workload performance. We show that,
while the SPECcpu benchmarks are primarily throughput domi-
nated, transaction processing and many desktop workloads show
a higher sensitivity to cache access latency. We propose a
method for dynamically exploiting fine-grained memory locality
by reusing data stored in sense amp latches to improve available
memory bandwidth. Finally, we propose and evaluate a predic-
tive dispatch strategy, to recover cache bandwidth in a latency-
focused design with a instruction flush and re-issue recovery pol-
icy.

1 Introduction

As technology scaling becomes increasingly difficult, several
new issues have become important. These issues affect not only
the logic and circuit design, but also have impact on the microar-
chitecture. It is well known that process technology is not scaling
uniformly – some technology aspects are scaling better than oth-
ers. In particular, the interconnects (wires) are not scaling as well
as the logic gates.

A second, and somewhat newer concern, is that for the current
and future device sizes, the presence or absence of a few atoms
in a deposition layer can make a significant difference in terms
of the gate performance. This means that the manufacturing vari-
ability across the chip is becoming increasingly significant, par-
ticularly for circuits where carefully tuned or balanced devices
are required. In this work, we will examine some of these im-
pacts on the 6T SRAM cell, and explore possible microarchitec-
tural solutions to deal with the potential performance loss and/or

design limitations that they impose.

This work is primarily concerned with alleviating the nega-
tive performance impact on very high-frequency designs, espe-
cially in future technologies where these high core frequencies
can greatly exceed the frequencies attainable by other elements
of the system. As explained above, the memory hierarchy, espe-
cially the lower-level SRAM caches, are of particular concern.

Traditionally, the CPU market has been separated into two
distinct markets with very different market economics. First is
the consumer market segment, where product differentiation is
based on (often software-controlled) functionality differentiation
and the overall systems often have relatively lower performance.
Parts in this market segment are typically not sorted, and to con-
trol costs all (or substantially all) working parts must typically
ship in the same product offering, i.e. very high yields are re-
quired.

In the PC and workstation segment, differentiation is more
generally based on performance running user-installed software,
offering no room for software based device differentiation. Pre-
mium products are typically identified by higher performance.
To achieve this performance segmentation and exploit the dis-
tribution of parts on the performance curve, frequency sorting
is employed to offer a wide range of performance-differentiated
parts.

These two markets typically also differ in choice of core mi-
croarchitecture, due to a combination of factors including NRE
cost, time to market, and achievable yield. Where consumer elec-
tronics often rely on in-order cores, which represent the majority
of shipped microprocessors worldwide, a significant portion of
the PC and workstation market is served by out-of-order cores.

The last few years have seen a rise in demand for high-
performance consumer electronics devices to power more ad-
vanced media processing applications and game consoles. This
requires higher performance cores than have traditionally been
available in the consumer market segment, yet still requires the
cores to hold to stringent cost constraints. These cost constraints
translate into requirements on chip area and yield, and prohibits
area-intensive designs and/or complex structures which are diffi-
cult to design or to yield.
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As a result, simpler in-order designs operating at high proces-
sor frequency are attractive for this market space. However, the
emphasis here is on efficient designs which deliver high perfor-
mance and good manufacturability. An example of such a design
is the recently announced CELL Broadband Processor Architec-
ture, which is based on multiple high-frequency in-order cores
[ACG+00], [P+05], [Hof05], [GHF+05].

The contributions of this work are as follows: (1) we explore
SRAM design issues and their impact on future microarchitec-
ture, (2) we evaluate workloads for their latency and throughput
sensitivity, (3) we propose a novel scheme for taking advantage
of fine grain memory reference locality by exploiting data reten-
tion in sense amp latches, (4) we propose and explore same-line
access predictors for microarchitectures with high upset recovery
cost due to wire latency.

In this work, section 2 describes the impact of the near-future
technology on SRAM arrays, and section 2.1 discusses two pos-
sible array implementations: one optimized for array through-
put, and the other for access latency, and the performance impli-
cations of these non-pipelined array access (latency-optimized)
versus pipelined array access using small sub-arrays (throughput-
optimized) are considered in section 2.2.

Section 3 examines the microarchitectural issues surround-
ing the various near-future technology SRAM cache implemen-
tations, and section 4 proposes a microarchitectural method to
merge accesses to the same cache line, in an effort to recover
throughput within a latency-optimized implementation. Sec-
tion 5 evaluates the performance of the Same-Line Access Merge
technique for several implementations, we discuss related work
in section 6, and section 7 presents our conclusions.

2 Impact of Technology Limitations on
SRAM Array Design

The technology scaling issues outlined in the introduction impact
6T cell SRAMs in two main ways:
Non-uniform scaling increases the wire delays relative to the

logic speed (among other effects). This can have a signif-
icant impact on the time it takes to access an SRAM cell
within an array, as both word and bit lines represent a sig-
nificant portion of the array access time.

Increased manufacturing variability makes it impossible to
build minimally-sized 6T SRAM cells at very high frequen-
cies. Because the 6T SRAM cell relies on balanced (or
matched) devices to reliably hold data, the minimally-sized
6T cell, at current and near-future scales, requires fabrica-
tion depositions accurate potentially to the same number of

atoms in a layer. This is currently beyond the capabilities of
large-scale production fabs.

Because random dopant fluctuations make manufacture of re-
liable, minimally-sized 6T SRAM cell in near-future technology
extremely difficult, a number of solutions have been considered
[CFH+05]. One option is to increase the size of the matched
transistors used for building the basic 6T SRAM cell, which in-
creases the number of atoms in the device layers, and thereby
reduces the impact of slight variations in the deposition during
the manufacturing process. Another option is to use a slower
clock rate, or a more stable cell design (e.g., one using more than
six transistors per memory cell).

Note that both the impact of the different scaling rate for wires,
and the increased impact of manufacturing variability serve to re-
duce the effective frequency at which an SRAM memory array
can be accessed. These effects point towards a likely increase in
the time needed to access the SRAM array relative to the proces-
sor clock rate, very possibly to the point where the array access
time will exceed the processor clock rate, and thus the latency of
a single pipeline stage delay.

2.1 Possible Solutions

To maintain overall processor cycle time, several solutions are
possible from a cache array design perspective:
• Allocate the equivalent of two pipeline stage delays (i.e.,

two processor cycles) to the SRAM array access. This will
reduce the array access throughput to one access every other
cycle, as the actual array access will be non-pipelined.

• Organize the SRAM array as a large collection of small
sub-arrays, each of which can be accessed in one cycle,
and select from the outputs of these many subarrays us-
ing pipelined multiplexing logic. This solution will recover
fully-pipelined access to the SRAM array, but will reduce
the array density, as each subarray will need to duplicate
some logic, including address decoding logic, drivers, and
sense amps, and the overall array will include additional
routing and multiplexing logic, plus any pipeline registers
within the pipelined multiplexor logic. This density reduc-
tion may in turn force longer wiring, requiring even deeper
pipelining to overcome that additional delay. For a given
area budget, this will also reduce the size of the memory
that can be supported.

2.2 Performance Implications

Either solution can degrade the performance of some workloads.
In figure 1, we show the impact of either increasing first level
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Figure 1: Memory access latency vs bandwidth tradeoffs for first
level data cache hierarchy

cache access latency (i.e. optimized for throughput), or alter-
natively reducing the throughput of the array to every-other cy-
cle (i.e. optimized for memory access latency) by plotting the
percent CPI degradation for several SPEC workloads, a TPC-C
benchmark version, several other applications, and the geomet-
ric means for SPECint2000, SPECfpu200 and the entire SPEC-
cpu2000 benchmark suite. The other workloads of figure 1 rep-
resent some additional areas of interest, including productivity
desktop applications, multimedia applications, the Quake open-
source game, and the LINPACK high performance computation
benchmarks.

As figure 1 shows, a number of latency-sensitive applications,
such as many SPECint applications, transaction processing and
some of the desktop applications show a significant degradation
with increased cache latency (i.e. when the latency of cache ac-
cess is increased by one cycle, even with full pipelining of cache
accesses). Conversely, throughput-oriented workloads, such as
SPECfp, show significant performance degradation when mem-
ory access bandwidth is reduced (i.e. when the number of cycles
to access the cache is not increased, but the cache is reduced from
full pipelining to every-other-cycle access).

The data demonstrates that the TPC-C benchmark is much
more latency sensitive, which is understandable from the fre-
quent, often exposed dependence chains which would be directly
impacted by the increased latency of the fully pipelined array. In
contrast, the SPECfp2000 program binaries exhibit more paral-
lelism, often having independent memory operations scheduled
back-to-back, and longer load-to-use distances to take advantage
of the increased throughput and more robust performance in the

face of increased cache access latencies.
Interestingly, the latency sensitive applications in figure 1 pre-

fer to suffer a 2x reduction in memory bandwidth for a one-cycle
latency advantage (effectively 14% of the overall LSU latency
including address generation, array access, etc.). This seems to
indicate that some applications are very sensitive to the memory
access latency.

3 Microarchitectural Implications of Ar-
ray Design

As shown in section 2.2, there are some potentially large per-
formance degradations possible with the selection of either a
degraded-throughput or an increased latency cache memory ar-
ray. A number of approaches are possible to solve the issues re-
lated to the tradeoffs between degraded throughput and increased
array latency.

Choosing a processor implementation with deeply pipelined,
longer latency arrays, Chishti and Vijaykumar [CV04] evalu-
ate the use of simultaneous multithreading to turn latency-bound
problems into throughput bound problems with regard to the reg-
ister file latencies. A similar approach can be used to resolve data
cache array latency. This, however, requires workloads that can
efficiently exploit the multi-threaded processing hardware effec-
tively, and thus is little help when a single execution thread is
targeted.

Alternatively, when a different application segment is targeted
as the primary optimization point, a less deeply pipelined ar-
ray with reduced throughput can employ techniques to recover
throughput via microarchitectural means. One known approach
used in memory subsystems is the use of banking, where back to
back accesses can proceed when referring to different banks.

3.1 Exploiting Access Bursts

In this work, we propose and evaluate a new microarchitectural
approach to exploit fine grained memory locality to recover some
memory bandwidth in a non-pipelined array design. The pipeline
representation of Figure 2 illustrates a load/store unit in which
the caches can be accessed in a fully-pipelined manner, i.e. the
cache tags array, memory cell array, etc. can all be accessed at
the same frequency as the core processor operates.

The pipeline illustration of Figure 3 represents a load/store unit
in which the core processor frequency is double the access rate
for important cache units, e.g., the cache array. In a design like
that of Figure 3, the load/store units must be restricted to prevent
back-to-back accesses (i.e. one cache access per cycle) as this
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Figure 2: A basic, fully-pipelined LSU design
LSU

RF RF XL XL TA - - HM DAc - - DAv WB WBIssue Queue

TA H/M DAc DAv
Cache

Figure 3: A basic non-fully-pipelined LSU design

would exceed the ability of the cache to serve those requests.
This therefore represents a latency-optimized design (giving up
some throughput) with a high-density memory array.

Our approach to recover throughput in such a latency-
optimized high-density memory array is based on exploiting pro-
gram access patterns that show burst accesses to successive mem-
ory locations. Such burst-access behavior is not uncommon in
applications, including accesses to different fields in the same
data structure, function call and return, block copy, and unrolled
loops.

When such codes are executed, successive memory access in-
structions usually refer to data words in close proximity to one
another, most notably often in the same cache line. To size this
opportunity in some existing workloads, Figure 4 depicts a his-
togram of memory access sequences to the same 128-byte cache
line. In this example, the cache line size of 128 bytes was chosen
as this is a typical current cache line size, e.g., the cache lines
in the IBM Power4TM family of processors include 128 bytes of
data [TDF+02].
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Figure 4: Accumulated percentage of loads to the same cache
line by successive access string length

In this figure, the percentage of all loads that are members of a
string of (i.e. a sequence of successive) loads that access the same
cache line is plotted by accumulating the total opportunity. Thus,
the first group of bars at x-axis position 1 indicate the percentage
of loads in the execution trace that access the same cache line
as the immediately preceding load, and which are immediately
followed by a load to a different cache line. Figure 4 shows that
approximately 20% of the loads fall into this category.

The next group of bars adds to this the percentage of loads that
are members of 3-load sequence of accesses to the same cache
line, which brings the accumulated percentage of loads close to
30%. As one looks across the width of the plot in figure 4, the
height of the bars therefore indicates the total opportunity, were
the hardware capable of exploiting same-line access merging for
that number of successive loads. Looking to the extreme right of
the graph, one finds that the total opportunity to exploit locality of
reference to a cache line is fairly significant, falling between 35%
and 77% depending on the workload set. While this opportunity
analysis is fairly simplified, i.e. it does not take into account
the actually timing (i.e. cycles of separation in execution) of the
loads, nor memory coherence actions, etc. it does show that there
is real opportunity in some workloads to exploit same cache line
access. Note also that these workloads were not compiled and
scheduled with this kind of feature in mind – these are existing
workloads taken “as-is” and thus the potential may be greater if
the compiler is made aware of this opportunity in the hardware.

In order for the hardware to exploit this locality, accesses must
be identified which refer to the same cache line as a previous
memory operation; in the most restricted case, accesses which
refer to the same-line as an access issued in the immediately pre-
vious cycle. If such proximity can be established, then a memory
load instruction following another memory load instruction from
the same cache line does not have to perform a new data array
access. Instead, a new set of bytes can be selected from the data
recovered by the previous access, which can be retained in the
sense amp latches.

Implementing such an approach, in a core that effectively re-
quires multiple cycles for the cache array access, allows the re-
covery of back-to-back memory access operations whenever the
opportunity presents itself. Specifically, because a cache gener-
ally stores data in a cache line, which is usually larger than the
requested datum size (e.g., the cache lines in an IBM Power4TM

family of processors include 128 bytes of data, whereas the
largest single-item request size in PowerPCTM is only 16 bytes),
the cache array will actually access some amount of data sur-
rounding the requested datum [TDF+02].
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3.1.1 Base Cache Elements

Figure 5 illustrates a somewhat abstracted cache design that still
illustrates the important elements of a cache implementation, and
identifies some of the key components of the cache.
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Figure 5: A general illustration of the significant elements of a
cache array.

Looking at figure 5 one notes that the cache is accessed with
a request address. This address is used to select a unique row
of the cache array, where each row of the cache array can con-
stitute multiple distinct cache lines (i.e., a set of cache lines, or
congruence class) in which the datum is equally likely to reside.
The tags of each of the cache lines of the set (corresponding to
the selected row of the array) are checked to determine which
cache line holds the requested datum (or whether none of the
cache lines currently in the cache hold the datum, which results
in a cache miss). Assuming there is a cache hit, the proper cache
line is brought into a cache line buffer (i.e., the array’s data cells
are used to drive appropriate amplifier circuits, whose output is
thereafter captured in the state-saving cache line buffer) from
which the proper, requested datum is selected (by multiplexing)
and forwarded to the processor.

In the case where the cache can be accessed once per processor
cycle, figure 6 shows the optimal throughput flow of instructions
through the LSU pipeline. For each cycle, starting at cycle T0 and
progressing through cycle T16, the instruction currently occupy-
ing each of the LSU pipeline stages is shown. The load/store unit
pipeline stages are labeled in the boxes across the top of figure 6,
where the short-hand notations correspond as follows:

RF is register file access,
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Figure 6: Best-case throughput for a core-rate accessible cache

XL is address translation,
TA is the tags access
HM is the hit/miss notification
DAc is the data array access
DAv is the data available at the processor (which in-

cludes formatting, etc.)
WB is the data writeback by the LSU

The issue queue (labeled IssueQ), which is not a part of the
load/store unit, is included for illustrative purposes, and here is
assumed (for space in the figure) to be limited to contain no more
than four instructions on any given cycle. Each of the letters in
figure 6 represents a unique load instruction being executed in
the load/store pipeline, and represents the position of that load
operation on the given cycle, where the advance of time is from
the top to the bottom. This figure shows an optimal throughput
because it does not include any hazards in the operation of the
loads – there are no misses, address translation exceptions, or
data alignment exceptions shown in the pipeline flow.

Note that in figure 6 and figure 7 that the address transla-
tion (XL) and tag access (TA) are illustrated as successive ac-
tions performed sequentially. There are cache design which
combine or overlap these actions by utilizing virtually-indexed,
physically-tagged caches, which access the tag access and the ar-
ray using the untranslated virtual address, and then compare the
access tags using the translated physical address. Use of such
a cache, which overlaps these fully pipelined stages, would not
significantly alter any of the findings in this work.
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3.1.2 Throughput-Limited Cache

Figure 7 illustrates a similar optimal throughput case where the
core processor pipeline operates at a finer granularity (i.e., the
core is “superpipelined”) to provide a faster processor clock rate.
If the cache is unable to accept load accesses at the full processor
clock rate, e.g. the cache timings are as illustrated in the example
of Figure 3, then the issue queue must issue load instructions to
the load/store pipeline only every other cycle.
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Figure 7: Best-case throughput for half-core-rate accessible
cache

Comparing Figures 6 and 7 one can see the prodigious drop-off
in the optimal throughput, at least in terms of loads per processor
cycle. In fact, the throughput per unit wall-clock time may be
identical: in this case, figure 6 shows that load “A” is written back
in cycle T0+7, whereas in figure 7 instruction A is not written
back until cycle T0+14, but note that the cycle time of the design
for figure 7 is assumed to be twice that of figure 6, resulting in
identical elapsed time to execute the load operation.

3.1.3 Recovering Throughput

Our solution to this problem, where cache accesses cannot be
pipelined at the one per processor cycle, is to take advantage of
the additional data available within a cache line – effectively to
exploit the spatial locality of temporally near-by cache accesses.
Considering the general cache structures of Figure 5, one notes
that on each cache access, the cache stores, in a cache line buffer,
an entire cache line, from which the multiplexing elements are
used to select the requested datum which (alone) is forwarded to
the processor. In this work, we use an access granularity of an
entire cache line as our baseline.

Depending on cache array design choices made, a number of
bit lines may share a single sense amplifier, or a line may consist
of several sectors sharing a bit line, limiting the data retrieved
by a single cache access to a subline. If such an implementa-
tion is chosen, the subline or sector would be the granularity at
which data accesses can be shared. We have experimented with a
number of subline access sizes, which have confirmed the trend
described here. While shorter access sizes reduce the scope of
locality to a smaller data area, the approach explored here con-
centrates on accesses in extremely close proximity (in back to
back cycles), and tends to refer to data in close proximity, e.g.,
sequential accesses. In this work, we concentrate on our results
obtained with 128B cache line accesses for brevity.

If a subsequent load access to the cache were made to some
other datum within this same cache line, then no additional ac-
cesses to the cache data array would be necessary. Instead, such
an access could be served (assuming that the requested datum is
completely contained within the cache line) simply by altering
the settings on the datum selection multiplexers and forwarding
the new data to the processor. This effectively reduces the re-
quired number of cache data array accesses per requested load
from one to some value less than one, dependent upon the work-
load and code schedule.

In its simplest form, same-line access behavior of successive
memory instructions can be exploited by issuing a load instruc-
tion every cycle. When a memory access instruction immediately
follows another memory instruction issued in the preceding cy-
cle, a test is performed to identify if the two accesses refer to
the same cache line. If this is the case, the load instruction can
be issued with the array access suppressed; only the computa-
tion of byte select masks and appropriate shift and sign-extension
controls will be performed, and bypassed to the data formatting
stage. When the load instruction for which such a same-line ac-
cess merge has been performed reaches the data formatting stage,
a set of bytes will be retrieved from the sense amplifier latches
using the newly computed byte selects and data formatting con-
trols, and then retired to the register file.

Figure 8 shows the performance of exploiting fine grained
memory locality by testing for opportunities to perform a same
line access merge after address generation. If addresses refer to
the same-line, instructions will be issued back to back; if ad-
dresses refer to distinct lines, then an issue stall cycle will be in-
troduced. Because of the low penalty for wrongly merging loads
(a one-cycle stall in the best case), there is relatively little need
to provide any intelligence in the issue of the loads. Note that
there are some situations where additional intelligence could be
gainfully employed (e.g., in an out-of-order issue design, the is-
sue order of loads could be influenced by the likelihood for their
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Figure 8: Performance based on aggressive same-line access
merging after address generation phase

combining).
We also note that figure 4 shows good locality of reference

in data access patterns for SPECfp, but the performance advan-
tage obtained by the SPECfp workloads is only slightly better
than that of SPECint workloads. While figure 4 only considered
strings of references regardless of relative instruction distance,
figure 8 is based on simulation using specific issue rules and
policies of an assumed processor implementation. Savings only
accrue for back to back accesses referring to the same line, limit-
ing the benefit of the longer same-line reference strings found in
SPECfp.

4 Same-Line Access Merging

While the scheme outlined so far shows high effectiveness, per-
forming instantaneous stalls at the processor, or even function
unit or pipeline level, is becoming increasingly difficult due to
the increasing importance of wire length delays outline above.

While the scheme outlined in section 3.1.3 shows high effec-
tiveness, it requires the ability to introduce stalls throughout the
processor execution resources after the load/store unit performs
the address generation, propagating the stall signal throughout
the processor within a single cycle. In current and future high-
frequency designs, particularly with the relatively poorer scaling
of wires, performing instantaneous stalls at the processor, or even
function unit or pipeline level, is becoming increasingly difficult.

Microarchitects, therefore, will likely adopt a scheme that does
not stall, but instead aborts a problematic load instruction, and
re-injects it into the pipeline at a later time. This re-injection

may occur from either the instruction cache [Gsc99], or the issue
queue [GKA01]. Unfortunately, the performance lost in repeat-
edly cancelling and reissuing instructions that the issue logic has
overly aggressively scheduled together can result in a significant
performance penalty, due to the high recovery (re-injection) cost,
as shown in figure 9.
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Degradation due to Flush Penalty

Figure 9: Aggressively issuing memory operations back-to-back
and flushing prematurely issued instructions causes significant
performance degradation across all workloads.

Thus, while in a stalling microarchitecture, all loads could be
issued back-to-back in the hope that some successor loads will be
to the previously accessed cache line, a more sophisticated issue
scheme is required for those designs that suffer a higher penalty
when loads are incorrectly merged. The exact cost (in number of
cycles) of the penalty is obviously implementation-specific, but
there are really two main options:
• assuming the issue queue retains issued loads for some num-

ber of cycles, the second load instruction (and all succes-
sors) can be flushed, and the load reintroduced to the LSU
from the issue queue, or,

• assuming that the issue queue does not retain the issued
loads, then the load instruction (and all successors) must be
flushed and re-introduced from some other structure, e.g.,
from an instruction buffer (should one retain the instruc-
tions sufficiently throughout their execution) or by being re-
fetched into the processor.

The penalty for an incorrect issue is clearly greater should the
processor need to re-fetch the load and successor instructions
than were it to recirculate from the issue queue(s), but there is
still a significant penalty in either case. In order to keep the over-
all cost of speculatively issuing (merging) loads, in expectation
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that they will hit the same cache line as their predecessor load,
we introduce a prediction mechanism, which is used within the
issue queue logic, to guide the decision whether to inject a suc-
cessor load immediately after a predecessor load, or to wait an
additional cycle (at which time it need not combine with the pre-
decessor load, but can access the cache normally).

Figure 10 illustrates an optimized flow of loads through an
LSU pipeline where loads that can merge are issued back-to-
back. In Figure 10, the “Comb?” column indicates the predic-
tor’s output with regard to whether a successor load is predicted
to be combinable with a predecessor (in the figure, an entry like
“AB” indicates that A and B can combine). In this illustration,
the predictor is assumed to have always made a correct predic-
tion, producing the maximum throughput for this sequence of
loads, and this (in-order) issue policy.
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HIT0+12
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H G - F - E D C - B A - - -
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- I H G - F - E D C - B A -

J - I H G - F - E D C - B A

- J - I H G - F - E D C - B

K - J - I H G - F - E D C -

Figure 10: Best-case throughput for half-core-rate accessible
cache with SLAM prediction.

Looking at Figure 10, one notes that the number of empty pipe
stages (those signified by “–”) is significantly reduced in the case
where several successor loads can be combined, and thus issued
back-to-back. This illustrates a potential performance benefit
which could be exploited in a system which supports this con-
cept of combining loads.

4.1 Implementation

The implementation of same-line access merging involves three
functions:
• an enhanced issue function (for the LSU) that decides when

two accesses are expected to be to the same cache line, e.g.
as shown in Figure 11

• a line buffer from which a second access to the same cache
line can be recovered (without access to the main cache ar-
ray), e.g. as in Figure 12

• hardware to verify that the accesses were to the same line,
and to trigger recovery if they are found to be to different
lines.

In general, these elements are similar to other prediction hard-
ware implemented in modern microprocessors, e.g. branch pre-
dictors, etc.

LSU
RF RF XL XL TA - - HM DAc - - DAv WB WB

SLAM
Unit

TA H/M DAc DAv
Cache

Issue Queue

Figure 11: A SLAM-enabled non-fully-pipelined LSU designs
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Figure 12: A general illustration of a SLAM-enabled cache array.

The same-line access predictor, which is used to supplement
the issue queue logic and predict when two successive loads are
expected to access the same cache line, can implement any one of
a variety of prediction schemes, including n-bit saturating coun-
ters, local and/or global history based predictors, and so forth.
Such a predictor can also be accessed in a number of different
ways, including:
• using the instruction address of the candidate for same-line

access,
• using the instruction addresses of two candidates for com-

bining (i.e., the previously-issued and the next issue candi-
date)

• using instruction-word information (e.g. the base register
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number)
• using a combination of the instruction address and instruc-

tion word information, from either or both of the candidates,
among many other possible schemes. In this analysis, we primar-
ily concentrate on simple prediction mechanisms, in an effort to
keep the overall hardware costs as low as possible.

The validation mechanism, used to determine whether two
back-to-back accesses are actually to the same line, simply re-
quires that the previous access address and the current instruc-
tion’s access address map to the same cache line. This compari-
son must be made after the address of the later access instruction
has been computed (i.e., after register-file access and any addi-
tion required to generate the address), which could readily be
served by retaining the address of the prior access in a “same-
address validation” register for comparison to the address of the
successor access. In some cases, these comparisons may need to
be delayed until the second access address is translated (if the ad-
dress comparisons are made using the physical or real addresses).
In the case that back-to-back accesses are not to the same line, an
exceptional condition must be indicated and properly handled.
Generally, this would employ the same kind of hardware as other
exceptional conditions in the load/store pipeline, e.g. the hard-
ware to handle address misalignment, etc.

A determination whether two accesses refer in fact to the same
line can be made at earliest after the address generation phase.
A single register stores the effective address of the previous cy-
cle’s array access. When a memory request has been issued to
extract alternate bytes from the same line, an address check is
performed at this point. If the address check succeeds, the ex-
traction and format control is generated, and forwarded using the
same pipeline registers as for a normal array access. However,
the array access per se is suppressed, and the pipeline register
after the sense amps do not record a newly sensed data line. In-
stead, the previously formed control word is used to extract a
second set of data from the cache line.

If the address check fails after the address generation phase,
a mis-prediction is indicated. In this case, the over-aggressively
issued instruction, as well as all of its successor instructions are
immediately flushed, and subsequently must be reissued by the
frontend. This can be accomplished either by refetching the data
from the cache, by retaining speculatively issued instructions in
the issue queue (which requires an in-order issue queue which
can issue from locations other than the front ranks), or by using
a dedicated recirculation buffer or re-issue queue as described in
[GKA01].

Using the effective address to determine whether two accesses
refer to the same line ignores the – infrequent – possibility of hav-
ing two effective addresses on different pages refer to the same

physical line, as this requires translation by the effective to real
address table (ERAT).1 However, this is a conservative assump-
tion, and allows recovery to be started several cycles earlier.

While retaining data in the sense amp latches creates caching
effects, no special coherence mechanisms must be implemented2.
Since no memory operation to another address can intervene be-
tween two same-line merged memory accesses (as this would
invalidate the data stored in the sense amp latches), updates to
the global memory space are not observable by a program. In-
stead, the execution behavior will always resemble that of the
second load having been performed before any potential remote
memory update. Because no intervening load can establish any
global time ordering, this mechanism is sequentially consistent
[Lam79, AG95].

In our design point, we simulate a single issue load/store unit,
and the same line merge functionality is only engaged when the
array is unavailable during a second cycle in which a load access
is predicted to the same line as an immediately preceding (prior
cycle) load operation, thereby eliminating the danger of issuing
a store between two successive loads. This approach might be
extended to retaining data for a larger number of cycles, either
to reduce array access activity, and thereby cut the power con-
sumption, or because an array may only be available one out of
a larger number of cycles. If so extended, more synchronization
must be provided.

Generally, more elaborate cache coherence policies can also
be applied to the line buffer and SLAM predictor, but the im-
plementation cost might exceed the marginal performance bene-
fit. When synchronizing instructions are detected, which would
cause the line buffer to be invalidated an implementation may
choose to modify successive predictions based on the knowledge
that the line buffer has been invalidated until another memory
which would fetch data to the line buffer is encountered. 3

5 Experiments and Evaluation

To evaluate the effectiveness of same-line access prediction, we
have modeled the scheme with our advanced, modular PowerPC
microprocessor simulation environment. The environment mod-

1The ERAT is a merged segment and page table lookaside buffer in PowerPC
implementations.

2In some architectures, memory barrier instructions should not be issued in
the same cycle as a predicted same-line access as they might establish a global
event ordering.

3If the core implements bypassing from a store, then the invalidate needs to
occur only when the entry is retired from the store buffer. Evidently, an imple-
mentation could also decide to update the line buffer, but the cost would likely be
significant in terms of logic complexity.
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els a deeply pipelined in-order PowerPC processor design with
a stall-free backend. Instructions are issued speculatively to in-
tercept the result from the producing instruction when they can
be bypassed at the earliest point in time. When a result cannot
be produced at the predicted time, e.g. because a cache miss
has occurred, the dependent instruction and all its successor in-
structions are flushed, and they must be re-fetched and re-issued
[Gsc99]. This is the most conservative implementation (from
a CPI degradation perspective), so other recirculation schemes
may offer better performance than the data shown in this evalua-
tion.

For these experiments, we configure the latencies of the dif-
ferent pipeline stages as shown in table 1. We evaluate two
basic machine configurations which fetch, decode and dispatch
in-order, up to 4 instructions per cycle. We have explored two
base machine configurations, varying the number of execution
resources to establish the impact of available parallelism on the
the effectiveness of this scheme. We have found that relative CPI
impact of this scheme tracks closely for the machines studied.
Here we will concentrate on a base machine configuration im-
plementing one branch, two fixed point, two floating point, one
load/store and one VMX unit.

Both the baseline cores includes separate instruction and data
caches, each 32 Kbytes in size with a 128-byte linesize. The
instruction cache is 2-way set associative, while the data cache
4-way set associative. Instruction execution is performed in-
order, with a stall-free back end microarchitecture. Instructions
which have been issued speculatively, but cannot proceed, must
be flushed, re-fetched and re-issued.

Unit Latency (Cycles)
fetch 3
decode/dispatch 5
register file access 1
FXU 1
LSU 2 + array access
FPU 6

Table 1: Base latencies of the simulated processor

To assess the impact of different design options, we have ex-
plored the respective performance impact of reduced data cache
throughput and longer latency data cache accesses. Given the
constraints on array design, the choices are to pipeline the actual
array access to allow one access per cycle, at the cost of longer la-
tency, or to have an unpipelined long-latency array access, which
restricts successive accesses to the array to every-other cycle.

We have also analyzed the impact of having to reduce the

cache size to meet a given area budget when going to a smaller
sub-array size. Given a 4-way set associative cache, the small-
est area reduction possible is to move to a 3-way set associative
design, reducing the area to 3/4 size of the original area.
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Figure 13: Performance degradation from reducing cache size to
maintain area of a lower-density implementation

Figure 13 shows the performance degradation suffered by the
core when the reduced density of the throughput-optimizedcache
design requires a reduction in the total cache storage (to maintain
a similar area footprint). The impact from reducing the cache to
3/4 the original size, by reducing from a 32 Kbyte data cache
to a 24 Kbyte cache, is not particularly large, peaking at about
2.5%. In this case, the reduction was implemented simply by
stripping one of the set entries for each set, i.e., by moving from
4-way associative to 3-way set associative. We also considered
the common technique of reducing the cache area to half the orig-
inal version, in order to maintain nice power-of-two relationships
(i.e., the new cache is 16 Kbyte with 2-way set associativity).

While these relative CPI degradations may seem small at first
glance, they are consistent with other analyses of these kinds of
cores. It is important to note that the base processor design is
not a low-CPI out-of-order processor, but a relatively higher CPI
in-order design built to exploit high frequencies (rather than ILP)
for greater overall performance. Thus, while the relative CPI
degradations may seem smaller than for an out-of-order design,
the absolute increase in number of cycles of execution is not nec-
essarily smaller, as the higher baseline CPI results in a smaller
relative CPI change for the same number of cycles impact. Fur-
thermore, considering the workloads, the SPEC CPU2000 pro-
grams are not particularly cache or memory intensive, and other
applications which are memory intensive, e.g., TPC-C, are gen-
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erally much more influenced by the L2 cache than the L1 size.
Given the potential for exploiting locality, but the inability to

derive address information, we have turned to predictive tech-
niques to establish a set of memory operations which are likely
to be legally issued back to back.

Our evaluations have included local 1-bit and 2-bit saturating
counter predictors, to explore the effect of hysteresis. To deter-
mine the opportunity for each benchmark, we also use an oracle
prediction based on the observed addresses. An initial analysis
shows that a 1-bit predictor leads to performance degradation in
most cases, with only a minor overall performance improvement
using the 2-bit predictor. This can be traced to a large number
of mispredictions, as illustrated by a closer examination of the
detailed simulation statistics.

A closer analysis for the mesa benchmark shows that the 1-
bit predictor correctly predicted 7.06M instructions as eligible to
be satisfied from the line accessed by the immediately preceding
memory operation. In 1.78M cases, the predictor did not recom-
mend merging the accesses when they could have been satisfied
from the line buffered in the sense amp latches. This conser-
vatism can be attributed to a combination of cold-start (“learn-
ing”) phase for the predictor, and natural operation following a
misprediction. A total of 1.1M accesses were incorrectly (over-
aggressively) predicted to be candidates for same-line access
merge, but subsequently accessed a different cache line. This
results in a respectable 86.5% success rate in correctly predicting
that a load can be satisfied from the sense amp latches. Note,
however, that the cost model is highly skewed against mispre-
dictions, as a correct prediction saves approximately one cycle
(depending on the schedule, etc.), but a misprediction incurs a
full pipeline flush and re-fill.

Specifically, for mesa, the 1-bit predictor incurred an overall
total performance penalty of 720000 cycles over the full 100M
instruction execution segment, despite a relatively successful
86.5% correct prediction rate. The 86.5% correct accesses saved
11.7M cycles. This comes to an actual saving of 1.56 cycles
per back to back access. This is accounted for by the ability to
eliminate some issue group splits, and queuing effects which can
either hide or magnify the cost of such a prediction. The cost for
overly aggressively predicting 1.04M same-line accesses which
do not in fact refer to the same cache line, however, incurred a
penalty of 12.3M cycles, which is a penalty of 11.25 cycles per
wrong prediction.

By adding hysteresis, the 2-bit predictor makes fewer of these
overly eager mispredictions, avoiding some fraction of the ex-
pensive recovery penalties. Unfortunately, simply moving to a
2-bit predictor does not provide a very large boost in the per-
formance, as it still applies merge predictions too aggressively

overall. Based on the high asymmetry of the cost model, we de-
cided to experiment with predictors which are skewed to reflect
the asymmetry in the relative costs of decisions. To this effect we
experimented with a 2-bit saturating counter predictor which has
3 non-merge predicting states, and only a single prediction state,
as shown in figure 14.
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No 
Merge
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No Merge

Merge

Same-Line Same-Line Same-Line
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Figure 14: Asymmetric predictor FSM

This predictor is based on the observation that a correct predic-
tion will improve performance much less than an incorrect pre-
diction will degrade performance, and thus require at least two
observations of valid pairings before making a positive predic-
tion. By skewing the interpretation of the 2-bit counter states,
the predictor will be considerably more conservative in its pre-
dictions, making fewer merge predictions overall, but most no-
ticeably reducing the mispredictions (which suffer ten times in
penalty the cycles that a correct prediction saves).

The prediction array is indexed by low order bits of the instruc-
tion address in parallel with instruction fetch. The prediction is
used when making issue decisions to determine whether instruc-
tions should be issued directly after a memory operation issued in
a preceding cycle, or to stall the memory operation for one cycle.
If the instruction is stalled (the initial default of the predictor), it
is marked as a candidate for potential same-line access.
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Figure 15: 1-bit, 2-bit, and asymmetric prediction performance
improvements
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The predictors shown in figure 15, each have 1024 entries ac-
cessed by the instruction address, without tag matching. The per-
formance in figure 15 shows that the 1-bit and 2-bit predictors
are often overly aggressive, particularly when the recovery costs
are high. The 1024-entry asymmetric predictor improves greatly
upon the performance of the 1-bit and 2-bit predictors, generally
providing a positive performance improvement even under the
same large misprediction penalties.
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Figure 16: Asymmetric predictor, large asymmetric, and perfect
prediction performance improvements

A control experiment with a 1M-entry asymmetric predictor
was also performed to establish the impact of table size and false
aliasing. This was supplemented with a further control experi-
ment using a perfect predictor. Figure 16 illustrates the relative
performance (CPI) improvement afforded by use of a 1024-entry
asymmetric same-line access predictor, a large one-million en-
try asymmetric predictor, and a perfect predictor. The LINPACK
benchmark shows a uniform 40% improvement for all three pre-
dictors.

From the data, we see that the perfect predictor provides real
performance boosts for several workloads, and approximately six
percent overall on the SPECcpu set. The large, one-million en-
try asymmetric predictor provides approximately 50% of the per-
formance of the perfect predictor across the full SPECcpu suite,
though it is much closer for some of the workloads that benefit
most. The small, 1024-entry asymmetric predictor always per-
forms noticeably better than the 1-bit and 2-bit predictors, but in
some cases still results in performance degradation, and overall
only achieves about one quarter of the performance improvement
of the perfect predictor for the full SPECcpu benchmarks.

We find an overall performance improvement of 2% to 5%

over the conservatively issued case for non-pipelined arrays, ei-
ther mitigating some of the performance degradations experi-
enced by throughput-bound applications, or giving additional
improvement for latency-sensitive workloads by increasing the
available throughput when feasible.

6 Related work

A number of researchers have considered various approaches to
address issues surrounding cache accesses. L0 caches have been
proposed to exploit locality of reference at a fine granularity.
Several architecture proposals for such L0 or filter caches have
been made. Adding a full level of cache with tag comparisons,
line select, and so forth, can add significant overhead. Increased
bandwidth might be obtained by a deeper pipelining of such a
cache. In many aspects, this is akin to downsizing the L1 cache
appropriately and adding another level of cache beyond the L1.

An L0 cache might also be sized small enough to allow back
to back execution of load operations. However, when the L0 ef-
fectiveness falls below a given hit rate (especially in an in-order
pipeline), the overall pipeline flow will quickly reflect the cache
latency of the the sum of the first two levels of cache, plus any
penalties for latency and bandwidth limitations in queueing to
the next level cache. Additionally, in a stall-free back-end im-
plementation such as described here, a miss in the L0 cache will
incur a pipeline flush when a dependent operation has been is-
sued before the miss condition is detected. To avoid the flush
penalties for such a design, either the core must assume worst-
case (L0 miss) timing, or predict which cases will miss the L0
cache, and control the issue of those instructions to occur at the
L0 miss timing. Such a design is indistinguishable from the de-
sign proposed here, where multiple line buffers are retained.

Su and Despain [SD95] describe a block buffer for low power
cache operation. In many aspects, this approach is similar to an
L0 cache, and the data retention aspects described in this work.
By checking the block buffer tag before accessing the cache, the
cache latency is effectively lengthened. Since as no information
about which memory accesses can be satisfied without cache ac-
cess, proper scheduling choices can be made and high re-issue
penalties will cause both power and performance degradation in
design with high upset event recovery cost. In conjunction with
the predictive dispatch described in this work, the power savings
potential of block buffers can be obtained in high performance
microprocessor implementations.

Wilson et al. [WOR96] describe several structures to effi-
ciently exploit cache ports. The suggest a ‘load all’ strategy
to satisfy multiple accesses to the same data item, and a ‘load
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all wide’ variant which allows multiple cache access buffers by
replicating tag match logic and selectors in each cache access
buffer to satisfy their requests from a single line. This imple-
mentation will require significant hardware resources to route the
data and tags to multiple access buffers, perform the appropriate
selection. They also suggest a wide L0 cache structure organized
as FIFO.

Cache banking is a well-known technique and has been em-
ployed in several generations of architectures. Beyond just bank-
ing a cache, Yoaz et al. [YERJ99], provide a description and
evaluation of of bank prediction, wherein the processor uses a
predictor to identify when two accesses may collide in the same
cache bank. This is clearly related to same-line access prediction,
though its focus is on larger cache units (banks) and in prevent-
ing these collisions, while same-line access prediction identifies
opportunities to access the same cache entity (as a favorable ac-
tion).

In a similar vein, Kessler [Kes98] describes the use of hit/miss
prediction in instruction issue logic. The goal of this work was to
predict those accesses which were likely to miss in the cache ac-
cess, in order to better schedule dependent operations that source
the result of a load that is predicted to miss. This allows the pro-
cessor to avoid some expensive recovery actions on those loads
which are predictably misses, and allows a more aggressive spec-
ulative issue of the dependent operations for those predicted to
hit.

Another direction of cache research has considered speeding-
up the overall impact of cache access is to predict the memory
access address [GG97]. Predicting the access address allows the
processor to bypass the address-generation logic (and even trans-
lation, should the prediction return physical addresses) which can
save some load/store pipeline execution stages. This technique
does not reduce the number of cache accesses, as each predicted
address must still be used to access the memory hierarchy.

Another area of cache-related research focuses not on pre-
dicting the hit or miss behavior, or the cache access locations,
but in actually predicting the cache access results. Widigen et
al. [WSM96] propose an Operand Prefetch Cache (OPC) which
is used to predict the operand memory read results, thereby pro-
viding the operand earlier (in the decode stage) than otherwise
available, and potentially eliminating the operand read latency
entirely (at least from the critical operation path). Performance
studies in [WSM96] show that a 12 Kbyte OPC can predict ap-
proximately one third of memory reads with 95% accuracy.

Effectively, the work of [WSM96] is an implementation in the
field of value prediction, which has been heavily studied. Value
prediction [LWS96] predicts the value that would be returned by
a load access, allowing the dependent instructions to take the pre-

dicted value and speculatively begin execution using that data.
This technique may remove load accesses from the critical exe-
cution path, but does not reduce the number of cache array access
or load instruction executions (which are needed for verifying the
predictions).

In a similar approach, John et al. [JTMC98] use a code co-
alescing unit to retain stored values in a store register rename
buffer. Subsequent load accesses to addresses associated with
values in the store register rename buffer can then be satisfied
by accessing those registers, at register-file speeds. Accesses to
this register file are handled using an extension to the already-
implemented register renaming hardware. By interposing this
enhanced store-buffer, they are able to eliminate some set of load
accesses to the data cache; their experiments indicated that be-
tween 25% and 42% of the load accesses could have been elimi-
nated with an appropriately-sized buffer. It is not clear how this
technique would be applied in a processor that did not implement
out-of-order and register-renaming hardware.

Other research work has addressed means for transforming
latency-bound benchmarks into more latency-tolerant forms.
Chishti and Vijaykumar [CV04] evaluate the use of simulta-
neous multithreading to turn latency-bound benchmarks into
throughput-bound benchmarks. While this is interesting re-
search, it is really outside the scope of our work, which does
not address the transformation of the workloads, and really fo-
cuses on single-threaded applications (e.g., SPECcpu). Work-
loads which exhibit thread parallelism provide would generally
be throughput-sensitive (rather than latency-sensitive) and thus
our techniques would be less directly beneficial.

Cho et al. [CYL01] predict independent data access streams,
which they then direct to different memory pipelines in an effort
to increase overall memory bandwidth.

Bursts of store traffic, which exhibit a similar spatial locality in
many cases, are usually automatically smoothed within the pro-
cessor core by use of store combining logic, either in the store
queue, or in a separate store combining unit between the pro-
cessor and the caches. Furthermore, stores are generally not on a
critical execution path, and thus do not require the same attention
as loads.

The concept of retaining the output of the memory array for
speedy access to the same memory line has been used extensively
in DRAMs as “(fast) page mode” and its derivative modes (e.g.,
extended data out/EDO, burst EDO, etc.) [Gui98]. This is used
in DRAMs primarily to reduce latency by bypassing the array
access and sensing phases.

Capturing write locality to nearby data locations is a com-
mon feature in many processors today. Many microprocessors
use combining store queues to combine multiple write requests
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that fall within the storage capacity of a single store queue en-
try (subject, of course, to the processor architecture’s coherence
model). Such combining store queues subsequently perform a
single write of the combined data to the cache.

7 Conclusion

We have evaluated workloads for throughput and latency sensi-
tivity for different cache design options. We have shown how
to increase throughput for non-pipelined array accesses, and pro-
posed to use predictors to establish valid issue pairings. Our re-
sults show that workload characteristics for SPEC and a variety
of image filtering workloads benchmarks favor high throughput
cache design options, whereas TPC-C and several desktop work-
loads (productivity, video and audio processing) can achieve per-
formance benefits even when trading only 1 cycle reduction in
latency for a reduction of bandwidth by a factor of 2.

We have proposed a method to exploit fine-grained mem-
ory locality by suppressing cache array access and select data
from sense amp latches of the SRAM array in successive cycles.
This optimization allows to obtain performance improvements of
about 5% to 15% percent, with an average of about 7% perfor-
mance improvement across SPECcpu2000 workloads by explo-
tining back to back memory execution for cache structures which
do not support such throughput rates otherwise. 4

In architectures with high upset event cost, such as non-stalling
pipelines, this performance improvement potential is outweight
by the upset event cost when the line buffer cannot satisfy a sub-
sequent access, and lead to performance degradation up to 250%,
with an average performance penalty of 85% for SPECcpu2000
workloads.

To address this penalty, we have proposed the use of a predic-
tive dispatch technique, and evaluated several predictors for their
effectiveness in predicting valid pairings, establishing a perfor-
mance improvement potential of 2% to 5% over a conservative
alternate cycle dispatch policy in a microprocessor using a flush
and re-issue based upset event recovery policy, and preventing
performance degradation on any of the benchmarks being eval-
uated. In our simulations, this is performance equivalent to an
increase of 8KB for the first level data cache (25% size change),
using a 1000 entry 2bit predictor.

4While this work has primarily focused on a full-width line buffer for a 128-
byte cache line, the technique described also is also beneficial to designs which
include an effective line buffer width that is greater than the typical memory
access size. Analysis of address reference streams indicate that even with a 32
byte (sub-)line buffer, there is substantial locality of reference to data to provide
opportunity for subsequent accesses to hit the same line buffer data as a preceding
access.

Although beyond the scope of this evaluation which put an
emphasis on workload performance, the prediction scheme de-
scribed could be used aggressively to reduce the amount of ar-
ray accesses necessary to reduce power spent on array accesses.
The perfect prediction bar establishes higher potential than has
been achieved by any of the predictors evaluated, suggesting that
more aggressive predictors could yield even better results. Given
that the predictors can be accessed in parallel with instruction
caches, more elaborate predictors are possible without impacting
the timing-critical dispatch stages.

Report Availability

The publication approval date of this report does not indicate the
date of its public availability.
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