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Abstract

A set of continual range queries, each defining the geographical region of interest, can be pe-
riodically re-evaluated to locate moving objects. Processing these continual queries efficiently and
incrementally hence becomes important for location-awareservices and applications. In this paper,
we study a new query indexing method, called CES-based indexing, for incremental processing of
continual range queries over moving objects. A set ofcontainment-encoded squares(CES) are pre-
defined, each with a unique ID. CES’s arevirtual constructs(VC) used to decompose query regions
and to store indirectly pre-computed search results. Compared with a prior VC-based approach, the
number of VC’s visited in an index search in CES-based indexing is reduced from(4L2 − 1)/3 to
log(L) + 1, whereL is the maximal side length of a VC. Search time is hence significantly lowered.
Moreover, containment encoding among the CES’s makes it easy to identify all those VC’s that need
not be visited during an incremental query reevaluation. Westudy the performance of CES-based
indexing and compare it with a prior VC-based approach.

Keywords: Query Indexing, Moving Objects, Mobile Computing, Location-Aware Applications, and
Continual Range Queries.

1 Introduction

With the advances in mobile computing and location-sensingtechnologies, location-aware services and

applications have become possible. Such applications can be used to deliver relevant, timely and engaging

content and information to targeted customers. For example, a retail store in a mall can send timely e-

coupons to the PDA’s or cell-phones of potential customers who are close to the store.

To provide location-aware services and applications, one must first know where moving objects are

currently located. A set of continual range queries, each defining the geographical regions of interest,

can be repeatedly re-evaluated to locate moving objects. For example, we can place a square or a circle

around the location of a hotel, an apartment building, or a subway exit. Efficient processing of a large

number of continual range queries over moving objects is hence critically important.

Depending on whether or not queries move, the processing of continual range queries over moving

objects can be roughly classified into two categories: (a) stationary queries over moving objects, e.g., [3,
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11, 17, 25], and (b) moving queries over moving objects, e.g., [6, 13]. When the query region is associated

with a moving object, such as a moving vehicle, it is a moving query. For example, a range query

associated with a taxi cab can be used to find the customers whoare close to the taxi at a given moment.

In this paper, we focus on stationary queries where a query region is associated with a stationary object,

such as a landmark.

Query indexing has been used to speed up the processing of continual static range queries over moving

objects [11, 17, 25]. Periodically, each object position isused to search the query index to find all the

range queries that contain the object. Once the containing range queries are identified, the object ID is

inserted into the results associated with the identified queries. After every object position is searched

against the query index, the most up-to-date results for allthe continual range queries are available.

In [25], a VCR-based query indexing approach was proposed for incremental processing of continual

range queries over moving objects. It was main memory based and was shown to outperform other query

indexing approaches. It uses a set of predefinedvirtual construct rectangles(VCR) to decompose query

regions and to store indirectly pre-computed search results. However, many of the VCR’s are redundant,

unnecessarily slowing down index search time and query evaluation time.

In this paper, we propose a new query indexing method, calledCES-based indexing, for incremental

processing of continual static range queries over moving objects. CES stands forcontainment-encoded

squares. Similar to VCR’s, CES’s arevirtual constructs(VC) used to decompose query regions and to

store pre-computed search results. However, the set of predefined virtual constructs, the decomposition

algorithm and the search algorithm are all different.

There are fewer CES’s defined than VCR’s. More importantly, the number of CES’s visited during an

index search in CES-based indexing is onlylog(L) + 1, much smaller than(4L2 − 1)/3 in a square-only

VCR-based indexing, whereL is the maximal side length of a VC. Search time is hence significantly

lowered. There are containment relationships between the virtual constructs in CES-based indexing.

These relationships are encoded in their ID’s. Containmentencoding makes index search operations very

efficient because from the encoding of the smallest CES covering an object location, the encoding of all

the other covering CES’s can be easily derived. Moreover, containment encoding makes it easy to identify

those VC’s that need not be visited during an incremental query reevaluation. Simulations are conducted

to evaluate CES-based indexing and compare it with a square-only VCR-based indexing for periodic

query reevaluation. The results show that CES-based indexing substantially outperforms the square-only

VCR-based indexing.

The paper is organized as follows. Section 2 describes related work. Section 3 briefly summarizes

a prior VCR-based indexing method. Section 4 describes CES-based indexing method. We show the
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definition of CES’s, the decomposition and the search algorithms, and the incremental query reevaluation

with containment-encoded squares. Section 5 shows the performance evaluation. Section 6 summarizes

our paper.

2 Related Work

Query indexing was not used in the moving object environmentuntil recently [11, 17, 25]. In [17], an

R-tree-based query indexing method was first proposed for continual range queries over moving objects.

A safe region for each mobile object was defined, allowing an object not to report its location as long as it

has not moved outside its safe region. However, determininga safe region requires intensive computation.

In [11], a cell-based query indexing scheme was proposed. Itwas shown to perform better than the R-

tree-based query index [11]. The monitoring area is partitioned into cells. Each cell maintains two query

lists: full and partial. The full list stores the IDs of the queries that completely cover the cell, while the

partial list keeps those that partially intersect with the cell. However, using partial lists has a drawback.

The object locations must be compared with the range query boundaries in order to identify those queries

that truly contain an object. Because of that, it cannot allow query reevaluation to take advantage of the

incremental changes in object locations.

In [25], a VCR-based query indexing method was presented forincremental processing of continual

range queries over moving objects. It was shown to outperform the cell-based approach [11]. It is similar

to the CES-based indexing method presented in this paper in that both use one or more virtual constructs

to decompose the query regions. However, VCR-based query indexing is less efficient in query reeval-

uation. Many of the VCR’s defined are redundant, unnecessarily degrading the index search and query

reevaluation times. Without containment-encoding, it is also less efficient in identifying computations

that can be avoided in incremental query reevaluation.

Although range queries can be treated as rectangles, traditional spatial indexing methods, such as R-

trees [8], are not effective because they are mostly disk-based approach. As shown in [11], R-tree-based

query indexing is not as effective as the cell-based approach, which is main-memory-based, even if it is

modified for main memory access. Moreover, the performance of an R-tree quickly degenerates when the

regions of range queries start to overlap one another [5, 9].

There are research papers focusing on other issues of movingobject databases. For example, various

indexing techniques on moving objects have been proposed [1, 2, 10, 12, 16, 20, 22]. The trajectories, the

past, current, and the anticipated future positions of the moving objects and the parameters of the motion

functions of the moving objects all have been explored for indexing. Different constraints are usually

imposed to reduce the overhead caused by location updates. The data modeling issues of representing
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Figure 1: An example of virtual construct squares (VCS).

and querying moving objects were discussed in [4, 7, 19, 24].Uncertainty in the positions of the moving

objects was dealt with by controlling the location update frequency [23, 24], where objects report their

positions when they have deviated from the last reported positions by a threshold. Partitioning the moni-

toring area into domains (cells) and making each moving object aware of the query boundaries inside its

domain was proposed in [3] for adaptive query processing. Objects must report to the server when they

move across query boundaries or domain boundaries. The morecomplex problem of locating moving

objects when the continual range queries also move around was studied in [6, 13].

3 A VCR-based indexing approach

For comparison, we briefly describe a prior VCR-based indexing method that uses square-only virtual

constructs [25]. Because it usesvirtual construct squares, VCS, we refer it here as VCS-based indexing.

For each integer grid point(a, b), where0 ≤ a, b < R, a set ofk + 1 virtual construct squares, or VCS’s,

are defined, whereL = 2k is the maximal side length of a VCS. Thesek + 1 VCS’s share the common

bottom-left corner at(a, b) but have different sizes. For anR2 monitoring region, the total number of

VCS’s defined is hence(k + 1)R2. In contrast, there are4R2/3 − R2/(3 ∗ 4k) CES’s (see Property 1).

More VCS’s than CES’s are defined. Fig. 1 shows an example of VCS’s. There are 3 different sizes of

VCS’s: 1 × 1, 2 × 2 and4 × 4.

Decomposition is relatively easy in VCS-based indexing, similar to covering a floor with square-only

tiles of different sizes [25]. A CES with the largest possible size can be used to cover the query region,
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Figure 2: Covering VCS’s that contain an object location within a unit grid cell.

beginning from the bottom-left corner and moving towards east and north.

The average index search time is slower in VCS-based indexing than in CES-based indexing. This is

because the number of VCS’s that can cover any object location in VCS-based indexing is(4L2−1)/3, or

(4k+1 − 1)/3, significantly larger thank + 1 for the CES-based indexing. This can be derived as follows.

Consider the bottom-left VCS with sizeL × L that covers the unit grid cell in Fig. 2. We can move this

L×L VCS eastwards along theX-axis and/or upwards along theY -axis. There are a total ofL2 positions

where theL×L VCS can be placed such that it still covers the unit grid cell.Similarly, for the VCS with

sizeL/2 × L/2, the number of positions is(L/2)2. Hence, the number of covering VCS’s is

L2 + (L/2)2 + · · · + 1 =

k∑

i=0

(L/2i)2 = (4L2 − 1)/3.

Now, we describe the incremental reevaluation algorithm using a VCS-based query index. Query

results are maintained in an array of object lists, one for each query. Assume thatOL(q) denotes the

object list forq. OL(q) contains the IDs of all objects that are inside the boundaries of q. Periodically all

OL(q)’s, ∀q ∈ Q, must be recomputed, taking into account the changes in object locations since the last

reevaluation.

The pseudo code for Algorithm VCSIR is described in Fig. 3. IR stands for Incremental reevaluation.

The object locations used in the last reevaluation are assumed to be available. These locations are referred

to as theold locations in contrast to thenew locations for the current reevaluation. For eachoi ∈ O, if

the location ofoi, denoted asL(oi), has not been updated since the last reevaluation, nothing needs to be

done for this object. For an object whose location has been updated, we compute two covering-VCS sets:

CVnew(oi) with the new location data andCVold(oi) with the old location data.
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Algorithm VCS IR
for (i = 0; oi ∈ O; i + +) {

if (L(oi) has not been updated){ continue;}
computeCVnew(oi); computeCVold(oi);
for (k = 0; vk ∈ CVnew(oi) − CVold(oi); k + +) {

q = QL(vk);
while (q 6= NULL) {

insert(oi, OL(q)); q = q → next; }
}
for (k = 0; vk ∈ CVold(oi) − CVnew(oi); k + +) {

q = QL(vk);
while (q 6= NULL) {

delete(oi, OL(q)); q = q → next; }
}

}

Figure 3: Pseudo code for Algorithm VCSIR.

When an object has moved, three cases need to be considered: (1) It has moved into a new VCS; (2)

It has moved out of an old VCS; (3) It has remained inside the same old VCS. With bothCVnew(oi) and

CVold(oi), we can easily identify the VCS’s under each case. For any VCSvk that is in the new covering

VCS set but not the old, i.e.,vk ∈ CVnew(oi) − CVold(oi), we insert an instance ofoi to theOL(q) list,

∀q ∈ QL(vk). Here,QL(vk) is the query list associated with VCSvk. This accounts for the case thatoi

has moved into these VCS’s. On the other hand, for a VCSvj that is in the old covering VCS set but not

the new, i.e.,vj ∈ CVold(oi) − CVnew(oi), we delete an instance ofoi from OL(q) list, ∀q ∈ QL(vj).

This accounts for the case thatoi has moved out of these VCS’s. For any VCS that is in both covering

VCS sets, nothing needs to be done. It accounts for the case thatoi has remained inside the boundaries of

these VCS’s.

Note that bothCVnew(o) andCVold(o), ∀o ∈ O, must be completely computed in VCSIR. This

makes VCSIR less efficient than algorithm CESIR to be described in Fig. 9.

4 CES-based query indexing

4.1 System model

Similar to [25], we assume that there is a monitoring region where moving objects are tracked. The region

is partitioned intoRxRy virtual grids. Without loss of generality, we assumeRx = Ry = R. The grid

coordinates are used to specify range queries and moving objects in terms of positions and boundaries.

Range queries are specified as rectangles defined along the grid lines. Namely, query boundaries are

specified with integer grid coordinates [25]. However, object locations can be anywhere. We assume that
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Figure 4: An example of containment-encoded squares (CES).

continual range queries are stationary, but they can be inserted or deleted dynamically. Objects move

continuously. An object may report its position back to the query processor periodically or when the

position change is greater than a threshold [24]. Alternatively, position-sensing device may be employed

to track object positions.

4.2 Containment-encoded squares (CES)

Fig. 4 shows an example of virtual containment-encoded squares and their ID labeling. Without loss of

generality, we assume thatR = 2r, wherer is some integer. The CES’s are defined as follows. First,

we partition the entireR × R monitoring area into(R/L)2 virtual square partitions, each of sizeL × L.

Here, we assume thatL = 2k andL is the maximal side length of a CES. TheL × L squares are called

level-0 virtual squares. Then, we createk additional levels of virtual squares. Level-1 virtual squares are

created by partitioning each level-0 virtual square into 4 equal-sizedL/2×L/2 virtual squares . Level-2

virtual squares are created by partitioning each level-1 virtual squares into 4 equal-sizedL/4×L/4 virtual

squares. Level-k virtual squares have unit side length, i.e.,1 × 1.

The total number of CES’s defined within each level-0 virtualsquare, including itself, is
∑i=k

i=0 4i =

(4k+1−1)/3. These virtual squares are defined to have containment relationships among them in a special

way. Every unit-sized CES is contained by a CES of size2 × 2, which is in turn contained by a CES of

size4 × 4, which is in turn contained by a CES of size8 × 8, · · · , and so on.

Property 1 The total number of CES’s defined in aR × R monitoring region is(R
L

)2
∑i=k

i=0 4i = 4R2

3 −

R2

3(4k)
.
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Within each level, the ID of a virtual square consists of two parts: a partition ID and the local ID

within the partition. If a virtual square has a partition IDp and local IDzi, then its unique IDci at level

i, where0 ≤ i ≤ k, can be computed as follows:

ci = 4ip + zi.

This is because there are4i CES’s within each partition at leveli. The partition ID can be computed as the

row scanning order of the level-0 CES’s starting from the bottom row and moving upwards. For example,

for a level-0 CES(a, b, L, L), where(a, b) is the bottom-left corner andL is the side length, its partition

ID can be computed as follows:

P (a, b, L, L) =
a

L
+ (

b

L
)(

R

L
).

The labeling of local CES IDs within a partition follows thatof a perfect quaternary tree as shown

in Fig. 5, where the IDs of the four child squares are4s, 4s + 1, 4s + 2 and4s + 3 if the parent has

a local ID s. In order to preserve containment relationships between virtual squares at different levels,

the CES IDs within the same partition at each level follow thez-ordering space-filling curve, or Morton

order [15, 14, 18]. For example, in Fig. 4, the IDs for the 16 level-2 virtual squares for partition 10 follow

the z-ordering space-filling curve. In general, the local IDs of4s, 4s + 1, 4s + 2 and4s + 3 are assigned

to the southwest, southeast, northwest and northeast children, respectively, of a parent virtual square with

a local IDs.

Property 2 For any CES at leveli with a local ID zi, where0 < i ≤ k, the local ID of its parent can be

computed bybzi/4c, or a logical right shift by 2 bits of the binary representation ofzi.

Property 3 The total number of CES’s that can possibly cover/contain any given data point within the

monitoring region isk + 1, or log(L) + 1.
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Note that we can also view the entire predefined CES’s ask+1 levels of overlapping square grid cells

where each cell at leveli contains exactly 4 cells at leveli+1, where0 ≤ i < k. Hence, there are exactly

k + 1 CES’s that cover any given data point within the monitoring area.

4.3 Decomposition algorithm

Fig. 6 shows the pseudo code for decomposing a rectangle range queryq = (a, b, w, h), where(a, b) is

the bottom-left corner andw andh are the width and height, respectively, of the range query, into one

or more CES’s. It is a modification of a strip-splitting-based optimal algorithm for decomposing a query

window into maximal quad-tree blocks [21]. The difference is that the algorithm in [21] allowsm to be

as large aslog(R), assuming thatR = 2r, r is some integer, andR is the side length of the monitoring

area. In contrast, we only allowm to be as large asL = 2k, the maximal side length of a CES. The

decomposition algorithm performs multiple iterations of 4strip-splitting processes. During each iteration

it tries, if possible, to strip away fromq a column strip or a row strip of width or height ofm = 2i, where

0 ≤ i < k, from each of the four outside layers ofq, starting withi = 0. The column strip or row

strip is then split or decomposed into multiplem × m square blocks. The goal is to use minimal number

of maximal-sized CES’s to decomposeq. The entire strip-splitting process is like peeling a rectangular

onion from the outside. The width of each layer at each successive iteration is doubled until it reachesL.

After that, it decomposes the remainingq usingL × L CES’s.

During each iteration, the rule to determine if there is any strip of width or height2i that can be

removed from the remainingq is based on the bottom-left corner, width and height ofq [21]. Assume that

the current remainingq is denoted as(a′, b′, w′, h′), if (a′ mod 2i+1) 6= 0, then a column strip of width

2i, where0 ≤ i < k, can be removed from the leftmost ofq. If ((b′ + h′) mod 2i+1) 6= 0, then a row

strip of height2i can be removed from the topmost ofq. If ((a′ + w′) mod 2i+1) 6= 0, then a column

strip of width2i can be stripped from the rightmost ofq. Finally, if (b′ mod 2i+1) 6= 0, then a row strip

of height2i can be removed from the bottommost ofq.

As an example, Fig. 7 shows the step-by-step decomposition of a range queryq defined as(5, 2, 8, 12).

(1) A column strip(5, 2, 1, 12) of width 1 is removed from the leftmost outside ofq because(5 mod 2) 6=

0. The remainingq becomes(6, 2, 7, 12). The column strip is split into 12 CES’s of size1 × 1. (2) A

column strip(12, 2, 1, 12) of width 1 is removed from the rightmost outside of the remaining q because

((6 + 7) mod 2) 6= 0. This column strip is split into 12 CES’s of size1 × 1. The remainingq becomes

(6, 2, 6, 12). (3) A column strip(6, 2, 2, 12) of width 2 is removed from the leftmost outside ofq because

(6 mod 4) 6= 0. The remainingq becomes(8, 2, 4, 12). (4) A row strip (8, 12, 4, 2) of height 2 is

removed from the topmost outside ofq because((2 + 12) mod 4) 6= 0. The remainingq becomes
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Decomposition (a, b, w, h) {
m = 1;q = (a, b, w, h) ;
while ((q 6= NULL) ∧ (m < L)) {

strip fromq the leftmost column strip with widthm,
if any, and split the column strip withm × m CES’s;

strip fromq the topmost row strip with heightm,
if any, and split the row strip withm × m CES’s;

strip fromq the rightmost column strip with widthm,
if any, and split the column strip withm × m CES’s;

strip fromq the bottommost row strip with heightm,
if any, and split the row strip withm × m CES’s;

m = m × 2;
}
if (q 6= NULL) {

decomposeq with CES’s of sizeL × L;
}

}

Figure 6: Pseudo code for decomposition algorithm with CES’s.

(8, 2, 4, 10). (5) A row strip(8, 2, 4, 2) of height 2 is removed from the bottommost outside ofq because

(2 mod 4) 6= 0. The remainingq becomes(8, 4, 4, 8). (6) Finally, (8, 4, 4, 8) is decomposed into two

4 × 4 CES’s and the remainingq becomes NULL.

4.4 Search algorithm

After decomposition, the query ID is inserted into the ID lists associated with decomposed CES’s. Assume

thatQL(l, c) denotes the query ID list associated with a level-l CES with a local IDc. These query ID

lists contain indirectly pre-computed search results. Namely, the queries containing a CES are all stored

in the associated query ID list. To find the queries covering an object location, we first find the covering

CES’s and then the covering queries.

For a given data point(x, y), the search algorithm finds thek + 1 CES’s that contain or cover(x, y).

Fig. 8 shows the pseudo code for a bottom-up search algorithm. It first finds the partition ID and the local

ID of the level-k CES that contains(x, y). Let p denote the partition ID andz denote the local ID of the

covering CES at levelk. The unique ID of the covering CES at levelk is 4kp + z. From Property 2, the

local ID at levelk − 1 can be easily computed by dividingz by 4 because of containment encoding. This

can be implemented by a logical right shift by 2 bits. As a result, the entire search operation is extremely
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Figure 7: An example of strip-splitting-based decomposition with CES’s.

Bottom-up Search(x, y) {
Ix = bxc; Iy = byc;
Px = bIx/Lc; Py = bIy/Lc;
// (LPx, LPy) is the partition bottom-left corner
p = Px + Py(R/L); // partition ID
z = Z(Ix − LPx, Iy − LPy, 2

0);
// local ID of CES(Ix, Iy, 1, 1)
for (l = k; l ≥ 0; l = l − 1) {
c = 4lp + z; // covering CES ID at levell
if (QL(l, c) 6= NULL) { output(QL(l, c)); }
z = z/4; // right shifts by 2 bits

}
}

Figure 8: Pseudo code for a bottom-up search algorithm with CES-based indexing.

efficient.

Note that even though we partition each virtual square at level i into 4 equal-sized quadrants at level

i + 1, similar to the quad-tree space partition, the bottom-up search algorithm described in Fig. 8 makes

the CES-based query index unique. It achieves efficient search by taking advantage of the containment

encoding embedded in the local IDs of virtual squares at different levels.

4.5 Query reevaluation with CES-based indexing

Because many objects might not have moved outside some CES boundaries since the last evaluation, the

computation should be done incrementally. Containment encoding in the CES’s makes it easy to identify

the CES’s that need not be visited during an incremental re-computation.
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Algorithm CES IR
for (j = 0; oj ∈ O; j + +) {

if (L(oj) has not been updated){ continue;}
pold = P (Lold(oj)); pnew = P (Lnew(oj));
zold = local ID of the unit CES coveringLold(oj));
znew = local ID of the unit CES coveringLnew(oj));
if (pold 6= pnew) {

for (l = k; l ≥ 0; l −−) {
cnew = 4l ∗ pnew + znew;
insertoj into OL(q),∀q ∈ QL(l, cnew);
cold = 4l ∗ pold + zold;
removeoj from OL(q),∀q ∈ QL(l, cold);
zold = zold/4; znew = znew/4; } }

else{
for (l = k; l ≥ 0; l −−) {

cnew = 4l ∗ pnew + znew;
cold = 4l ∗ pold + zold;
if (cnew 6= cold) {

insertoj into OL(q),∀q ∈ QL(l, cnew);
removeoj from OL(q),∀q ∈ QL(l, cold);
zold = zold/4; znew = znew/4; }

else break;
}

}
}

Figure 9: Pseudo code for Algorithm CESIR.

The pseudo code for Algorithm CESIR is described in Fig. 9. For eachoj ∈ O, denoting the set of all

moving objects, if the location ofoj, denoted asL(oj), has not been updated since the last reevaluation,

nothing needs to be done for this object. For an object whose location has been updated, we first compute

the partition ID’s of the old and new locations, denoted aspold andpnew, respectively.

Depending on whether or notpnew andpold are the same, some computation can be saved. If they are

not the same, the object has since moved into a different partition. In this case, no computation can be

saved. We need to insertoj into and removeoj from all theOL(q)’s for queries contained in the query

ID lists associated with the CES’s that cover the new and old locations, respectively. On the other hand, if

pnew andpold are the same, some CES’s in the same partition may contain both the old and new locations.

Hence, no action is needed for these CES’s. Due to containment encoding, these CES’s that contain both

the old and the new locations can be easily identified by theirlocal ID’s. If zold equalsznew for the level-l

CES, then the computation can be saved for CES’s from level-0 to level-l.
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5 Performance evaluation

5.1 Simulation studies

Simulations were conducted to evaluate and compare CES-based indexing with the VCS-based indexing

for periodic reevaluations of continual range queries overmoving objects. Since it has been shown in [25]

that the VCS-based indexing approach outperforms other query indexing schemes, such as the cell-based

approach in [11], we focus in this paper on comparing CES-based indexing with the VCS-based indexing.

For the simulations, the monitoring region was defined byRx = Ry = 512 grid units. A continual

range query was represented as a rectangle with width ofWx and heightWy. Both Wx andWy were

randomly and independently chosen between 1 andW . W were varied from 30 to 80. The bottom-left

corner of a range query was chosen uniformly within the monitoring area. The maximum side length of a

VCS or CESL = 2k andk is an integer.

A total number of|Q| continual range queries were inserted into the query index.A total of |O| objects

were generated. The initial locations of these objects wereuniformly distributed within the monitoring

area. Their subsequent locations were calculated based on the following rule. We defineM as the

maximal horizontal or vertical movement in terms of virtualgrids between two consecutive reevaluations.

The new location of a moving object was calculated based on its old location and the horizontal and

vertical movements, which were independently chosen for directions and magnitudes. Namely, if an

object was at(x, y), then its new location at the next reevaluation was at(x + dx4x, y + dy4y), where

dx anddy were equally likely to be 1 or -1 and4x and4y were independently and uniformly chosen

from [0,M ]. Query results were first computed with the initial object locations. Then, the locations were

updated based on the movements defined byM . Afterwards, a query reevaluation was performed. We

measured the time it took to complete the reevaluation and the total storage cost for the query index. We

assumed that there were no changes to the query index betweentwo query reevaluations. We conducted

our simulations on an IBM ThinkPad T30 model (CPU 2.4 GHz; memory size 512 Mbytes) running

cygwin under Windows XP.

5.2 Impact of L on index storage cost and query reevaluation time

The maximal side lengthL of a virtual construct impacts both the index storage cost and continual query

reevaluation time. Here we examine the impacts of differentL’s, ranging from 4 to 64, under both a

CES-based and a VCS-based index. For this experiment,W = 80, |Q| = 8, 000, |O| = 50, 000 and

M = 1.

From Fig. 10(a), asL increases, the index storage cost steadily decreases for the CES-based indexing.

In contrast, it decreases first and then increases for the VCS-based indexing. Total index storage costs are
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Figure 10: The impact ofL on (a) total index storage and (b) reevaluation time.

comparable for both indexing schemes. The index storage cost consists of two components: (a) the query

ID lists, one for each VCS or CES, and (b) an array list of pointers to the query ID lists. For both schemes,

component (a) generally decreases asL increases because fewer VC’s are needed to cover a range query.

As L increases, Component (b) increases much faster for the VCS-based indexing than the CES-based

indexing. This is because the total number of VC’s defined is(k + 1)R2 for the VCS-based indexing, but

it is 4R2/3 − R2/(3 ∗ 4k) for the CES-based indexing, wherek = log(L).

Fig. 10(b) shows the the average query reevaluation time. Here, the performance advantage of the

CES-based indexing over the VCS-based indexing is clearly observed for the entire range ofL’s. This

is because the number of VC’s visited during an index search is at mostlog(L) + 1 for the CES-based

indexing, compared with(4L2 − 1)/3 for the VCS-based indexing.

5.3 Comparisons of CES and VCS

Now we compare CES-based with VCS-based indexing under various numbers of continual queries and

moving objects. We focus on the query reevaluation time because the total index storage costs are com-

parable for both schemes.

Figs. 11(a) shows the impact of|Q|, the number of continual range queries, on the reevaluationtime.

For this experiment,W = 50, L = 16 and |O| = 50, 000. We varied|Q| from 1,000 to 16,000. Both

M = 1 andM = 10 were used.M = 1 represents the scenario where most objects have not moved too

far from their old locations since the last evaluation. In contrast,M = 10 represents the scenario where

most objects have moved far away from their old locations since the last evaluation. More computation

can be saved for the case ofM = 1. CES-based indexing outperforms VCS-based indexing for all cases.

Figs. 11(b) shows the impacts of|O|, the number of moving objects, on the query reevaluation time.
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Figure 11: The impact of (a)|Q| and (b)|O|, respectively, on reevaluation time.

For this experiment,W = 50, L = 16 and |Q| = 8000. |O| was varied from 4,000 to 64,000. Again,

CES-based indexing outperforms VCS-based indexing in query reevaluation time. Such performance

advantage becomes more prominent as the number of moving objects increases.

6 Summary

Efficiently locating moving objects is critically important in supporting many location-based services and

applications. We have presented a new CES-based query indexfor incremental processing of contin-

ual range queries over moving objects to locate up-to-date locations of these moving objects. A set of

containment-encoded squares (CES) is predefined, each witha unique ID. CES’s are virtual constructs

used to cover each query region and to store indirectly pre-computed query results. The use of CES’s

provides fast search operations. More importantly, it makes it easy to identify the moving objects that

need not be evaluated during a periodic query reevaluation.As a result, incremental processing of con-

tinual range queries is efficient. Simulations have been conducted to evaluate and compare CES-based

indexing with a prior VCS-based indexing scheme. The results show that (1) the CES-based indexing

has comparable storage cost with the VCS-based indexing and(2) the CES-based indexing substantially

outperforms the VCS-based indexing in query reevaluation time, particularly if the number of moving

objects is large.
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