RC23635 (W0506-084) June 21, 2005
Computer Science

IBM Research Report

On Incremental Processing of Continual Range Queries for
Location-Aware Services and Applications

Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

On Incremental Processing of Continual Range Queries for
Location-Aware Services and Applications

Kun-Lung Wu, Shyh-Kwei Chen, and Philip S. Yu
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598
{klwu, skchen, psyu@us.ibm.com

Abstract

A set of continual range queries, each defining the geogtaphégion of interest, can be pe-
riodically re-evaluated to locate moving objects. Prowesshese continual queries efficiently and
incrementally hence becomes important for location-awargices and applications. In this paper,
we study a new query indexing method, called CES-based inggfor incremental processing of
continual range queries over moving objects. A sataftainment-encoded squar@3ES) are pre-
defined, each with a unique ID. CES'’s afigual constructqVC) used to decompose query regions
and to store indirectly pre-computed search results. Coedpaith a prior VC-based approach, the
number of VC'’s visited in an index search in CES-based intgis reduced fronf4.? — 1)/3 to
log(L) + 1, whereL is the maximal side length of a VC. Search time is hence saarifly lowered.
Moreover, containment encoding among the CES’s makesytteadentify all those VC's that need
not be visited during an incremental query reevaluation. siely the performance of CES-based
indexing and compare it with a prior VC-based approach.

Keywords. Query Indexing, Moving Objects, Mobile Computing, Locatidware Applications, and
Continual Range Queries.

1 Introduction

With the advances in mobile computing and location-sengdefnologies, location-aware services and
applications have become possible. Such applicationseardd to deliver relevant, timely and engaging
content and information to targeted customers. For exanapletail store in a mall can send timely e-
coupons to the PDA's or cell-phones of potential customedrs are close to the store.

To provide location-aware services and applications, ouastrirst know where moving objects are
currently located. A set of continual range queries, eadmidg the geographical regions of interest,
can be repeatedly re-evaluated to locate moving objectseXample, we can place a square or a circle
around the location of a hotel, an apartment building, ortavsty exit. Efficient processing of a large
number of continual range queries over moving objects is@entically important.

Depending on whether or not queries move, the processingriintial range queries over moving

objects can be roughly classified into two categories: @)mstary queries over moving objects, e.g., [3,

11,17, 25], and (b) moving queries over moving objects, g6g13]. When the query region is associated
with a moving object, such as a moving vehicle, it is a movingrg. For example, a range query
associated with a taxi cab can be used to find the customersrghdose to the taxi at a given moment.
In this paper, we focus on stationary queries where a quegignméds associated with a stationary object,
such as a landmark.

Query indexing has been used to speed up the processingtoficrstatic range queries over moving
objects [11, 17, 25]. Periodically, each object positiomsed to search the query index to find all the
range queries that contain the object. Once the contaiginger queries are identified, the object ID is
inserted into the results associated with the identifiedigsie After every object position is searched
against the query index, the most up-to-date results fahaltontinual range queries are available.

In [25], a VCR-based query indexing approach was proposeitiéoemental processing of continual
range queries over moving objects. It was main memory basgdvas shown to outperform other query
indexing approaches. It uses a set of predefirigdal construct rectangle$VCR) to decompose query
regions and to store indirectly pre-computed search esdibwever, many of the VCR’s are redundant,
unnecessarily slowing down index search time and queryatiah time.

In this paper, we propose a new query indexing method, c@lleg-based indexing, for incremental
processing of continual static range queries over movirjgotd CES stands faontainment-encoded
squares Similar to VCR’s, CES'’s areirtual constructs(VC) used to decompose query regions and to
store pre-computed search results. However, the set oéfined virtual constructs, the decomposition
algorithm and the search algorithm are all different.

There are fewer CES’s defined than VCR’s. Mare importantlg,rtumber of CES’s visited during an
index search in CES-based indexing is okly(L) + 1, much smaller tha(dL? — 1)/3 in a square-only
VCR-based indexing, wherg is the maximal side length of a VC. Search time is hence sagmifly
lowered. There are containment relationships between ittigal constructs in CES-based indexing.
These relationships are encoded in their ID’s. Containrerobding makes index search operations very
efficient because from the encoding of the smallest CES tayean object location, the encoding of all
the other covering CES'’s can be easily derived. Moreovetaitoment encoding makes it easy to identify
those VC's that need not be visited during an incrementahyoreevaluation. Simulations are conducted
to evaluate CES-based indexing and compare it with a squayeVVCR-based indexing for periodic
query reevaluation. The results show that CES-based ingexibstantially outperforms the square-only
VCR-based indexing.

The paper is organized as follows. Section 2 describeserklabrk. Section 3 briefly summarizes
a prior VCR-based indexing method. Section 4 describes B4s8d indexing method. We show the

definition of CES'’s, the decomposition and the search algms, and the incremental query reevaluation
with containment-encoded squares. Section 5 shows therpeafice evaluation. Section 6 summarizes

our paper.

2 Redated Work

Query indexing was not used in the moving object environnueril recently [11, 17, 25]. In [17], an
R-tree-based query indexing method was first proposed fuiraeal range queries over moving objects.
A safe region for each mobile object was defined, allowinglgaai not to report its location as long as it
has not moved outside its safe region. However, determmbafe region requires intensive computation.
In [11], a cell-based query indexing scheme was proposedastshown to perform better than the R-
tree-based query index [11]. The monitoring area is pant#d into cells. Each cell maintains two query
lists: full and partial. The full list stores the IDs of theeagies that completely cover the cell, while the
partial list keeps those that partially intersect with tledd.cHowever, using partial lists has a drawback.
The object locations must be compared with the range quargdaries in order to identify those queries
that truly contain an object. Because of that, it cannowalijpiery reevaluation to take advantage of the
incremental changes in object locations.

In [25], a VCR-based query indexing method was presentedthémemental processing of continual
range queries over moving objects. It was shown to outparfoe cell-based approach [11]. Itis similar
to the CES-based indexing method presented in this papkaibdth use one or more virtual constructs
to decompose the query regions. However, VCR-based qudexiimg is less efficient in query reeval-
uation. Many of the VCR’s defined are redundant, unnecdgsdggrading the index search and query
reevaluation times. Without containment-encoding, itl&odess efficient in identifying computations
that can be avoided in incremental query reevaluation.

Although range queries can be treated as rectangles,ioraispatial indexing methods, such as R-
trees [8], are not effective because they are mostly diskedapproach. As shown in [11], R-tree-based
query indexing is not as effective as the cell-based approahich is main-memory-based, even if it is
modified for main memory access. Moreover, the performahea &-tree quickly degenerates when the
regions of range queries start to overlap one another [5, 9].

There are research papers focusing on other issues of mobjagt databases. For example, various
indexing techniques on moving objects have been propos& 1D, 12, 16, 20, 22]. The trajectories, the
past, current, and the anticipated future positions of theing objects and the parameters of the motion
functions of the moving objects all have been explored fdeking. Different constraints are usually

imposed to reduce the overhead caused by location updatesdata modeling issues of representing

partition the region into R? unit grid cells Virtual construct squares (VCS) ‘
each cell defines(k +1) VCS's, with sidelength

of 2°,2,...,.2%, where2" = L.

2 size: 4x4
X —
L] L=2°=4
1 size: 2x2
total VCS sdefinedfor theregion:
(k +1)R?, wherek = log(L) size: 1x1

Figure 1: An example of virtual construct squares (VCS).

and querying moving objects were discussed in [4, 7, 19, @dtertainty in the positions of the moving
objects was dealt with by controlling the location updatgirency [23, 24], where objects report their
positions when they have deviated from the last reportedipos by a threshold. Partitioning the moni-
toring area into domains (cells) and making each movingablgi@are of the query boundaries inside its
domain was proposed in [3] for adaptive query processingec®must report to the server when they
move across query boundaries or domain boundaries. The coanplex problem of locating moving

objects when the continual range queries also move arousdtudied in [6, 13].

3 A VCR-based indexing approach

For comparison, we briefly describe a prior VCR-based imipxnethod that uses square-only virtual
constructs [25]. Because it uséistual construct squaresV/CS, we refer it here as VCS-based indexing.
For each integer grid poirt,, b), where0 < a,b < R, a set ofk + 1 virtual construct squares, or VCS’s,
are defined, wheré = 2% is the maximal side length of a VCS. Thesg- 1 VCS's share the common
bottom-left corner ata, b) but have different sizes. For @& monitoring region, the total number of
VCS'’s defined is hencé + 1)R2. In contrast, there aréR?/3 — R?/(3 x 4%) CES'’s (see Property 1).
More VCS’s than CES'’s are defined. Fig. 1 shows an example @&'%.CThere are 3 different sizes of
VCS’s: 1 x 1,2 x 2 and4 x 4.

Decomposition is relatively easy in VCS-based indexingilsir to covering a floor with square-only

tiles of different sizes [25]. A CES with the largest possibize can be used to cover the query region,

Y —
unit grid cell L

—
—
pu—

N —
S
SN N

N

N

L/4 p——

N

L/2

Figure 2: Covering VCS's that contain an object locatiorhimita unit grid cell.

beginning from the bottom-left corner and moving towardst @ad north.

The average index search time is slower in VCS-based indekem in CES-based indexing. This is
because the number of VCS'’s that can cover any object locatigCS-based indexing iglL% —1)/3, or
(4k+1 — 1) /3, significantly larger thai + 1 for the CES-based indexing. This can be derived as follows.
Consider the bottom-left VCS with sizie x L that covers the unit grid cell in Fig. 2. We can move this
L x L VCS eastwards along th€-axis and/or upwards along thé-axis. There are a total df? positions
where thel, x L VCS can be placed such that it still covers the unit grid &lhilarly, for the VCS with

size /2 x L /2, the number of positions id./2)2. Hence, the number of covering VCS's is

k
L+ (L/2° + -+ 1= (L/2)* = (4L* - 1)/3.
=0

Now, we describe the incremental reevaluation algorithmgua VCS-based query index. Query
results are maintained in an array of object lists, one fehegery. Assume thaDL(q) denotes the
object list forq. OL(q) contains the IDs of all objects that are inside the boundarfg. Periodically all
OL(q)’s, Vq € @, must be recomputed, taking into account the changes irttdbjgations since the last
reevaluation.

The pseudo code for Algorithm VCIR is described in Fig. 3. IR stands for Incremental reeviana
The object locations used in the last reevaluation are asdtobe available. These locations are referred
to as theold locations in contrast to theewlocations for the current reevaluation. For eaghe O, if
the location ofo;, denoted ad.(o;), has not been updated since the last reevaluation, notewdsrto be
done for this object. For an object whose location has bedated, we compute two covering-VCS sets:

C'Vyew(0;) With the new location data andV,;4(o;) with the old location data.

Algorithm VCSLIR
for(i =050, € O5i+ +){
if (L(0;) has not been updated)continue;}
CompUte(jVnew(Oi); CompUthold(Oi);
for (k = 0; v € CView(0;) — CVyg(oi); k + +) {
q = QL(vg);
while (¢ # NULL) {
inserto;, OL(q)); ¢ = ¢ — next; }
}

for (k = 0; v € CVy4(0;) — CVypew(0i); bk + +) {
q = QL(vy);
while (g # NULL) {
delete¢;, OL(q)); ¢ = ¢ — next; }

Figure 3: Pseudo code for Algorithm VAR.

When an object has moved, three cases need to be considkydidhds moved into a new VCS; (2)
It has moved out of an old VCS; (3) It has remained inside tieesald VCS. With bottC'V;,..,(0;) and
CVya4(0;), we can easily identify the VCS’s under each case. For any ¥QBat is in the new covering
VCS set but not the old, i.evy, € C'V,es(0;) — CVy4(0;), we insert an instance of to theOL(q) list,
Vq € QL(vi). Here,QL(vy) is the query list associated with VG. This accounts for the case that
has moved into these VCS’s. On the other hand, for a ¥{CtBat is in the old covering VCS set but not
the new, i.e.p; € CVy4(0) — CView(0;), we delete an instance of from OL(q) list, Vg € QL(v;).
This accounts for the case thgthas moved out of these VCS’s. For any VCS that is in both cogeri
VCS sets, nothing needs to be done. It accounts for the cate ties remained inside the boundaries of
these VCS's.

Note that bothC'V,,.,,(0) and C'V4(0), Yo € O, must be completely computed in VGRB. This
makes VCSIR less efficient than algorithm CE/R to be described in Fig. 9.

4 CES-based query indexing
4.1 System model

Similar to [25], we assume that there is a monitoring regitverg moving objects are tracked. The region
is partitioned intoRz, R, virtual grids. Without loss of generality, we assul¢ = R, = R. The grid

coordinates are used to specify range queries and movimgtskj terms of positions and boundaries.
Range queries are specified as rectangles defined alongithings. Namely, query boundaries are

specified with integer grid coordinates [25]. However, abjecations can be anywhere. We assume that

6

Containment-encoded squares (CES) ‘

partition the region into(%)2 level -0

virtual squareswith asidelength of L = 2*
0
L
— 92 _

| — L=2"=4
2 |
0 1

10 11 14 15

total CES sdefined for theregion: 8 |9 [12 |13

Level 2
R24k+1_1 AR? R? 2 136 |7
3753

Figure 4: An example of containment-encoded squares (CES).

continual range queries are stationary, but they can betatser deleted dynamically. Objects move
continuously. An object may report its position back to theery processor periodically or when the
position change is greater than a threshold [24]. Alteve§tj position-sensing device may be employed

to track object positions.

4.2 Containment-encoded squares (CES)

Fig. 4 shows an example of virtual containment-encodedrsguand their ID labeling. Without loss of
generality, we assume that = 2", wherer is some integer. The CES'’s are defined as follows. First,
we partition the entire? x R monitoring area intqR/L)? virtual square partitions, each of sizex L.
Here, we assume thdit = 2* and L is the maximal side length of a CES. Thex L squares are called
level-0 virtual squares. Then, we creatadditional levels of virtual squares. Level-1 virtual sopsare
created by partitioning each level-0 virtual square int@dad-sizedL /2 x L /2 virtual squares . Level-2
virtual squares are created by partitioning each leverlai squares into 4 equal-sizéd4 x L /4 virtual
squares. Levek virtual squares have unit side length, ix 1.

The total number of CES'’s defined within each level-0 virts@glare, including itself, igfj’g 4t =
(4%+1 —1)/3. These virtual squares are defined to have containmenioresatps among them in a special
way. Every unit-sized CES is contained by a CES of 8ize2, which is in turn contained by a CES of

size4 x 4, which is in turn contained by a CES of sigex 8, - - -, and so on.

, i=k i 2
Property 1 The total number of CES’s defined inax R monitoring region ig(£)? 31— 47 = 4L —
R2
3(4F)"

o]

9]

SR) (B [[() [o))]

Figure 5: An example of a perfect quaternary tree and itsatomtent-encoded labeling.

Within each level, the ID of a virtual square consists of tvastg. a partition ID and the local ID
within the partition. If a virtual square has a partition gand local IDz;, then its unique Ix; at level

1, where0 < i < k, can be computed as follows:
ci = 4ip + z;.

This is because there ateCES’s within each partition at levél The partition ID can be computed as the
row scanning order of the level-0 CES’s starting from thadatrow and moving upwards. For example,
for a level-0 CESa, b, L, L), where(a, b) is the bottom-left corner and is the side length, its partition
ID can be computed as follows:

a b. R

The labeling of local CES IDs within a partition follows thatt a perfect quaternary tree as shown
in Fig. 5, where the IDs of the four child squares dke4s + 1,4s + 2 and4s + 3 if the parent has
a local ID s. In order to preserve containment relationships betwegnalisquares at different levels,
the CES IDs within the same patrtition at each level follow zherdering space-filling curve, or Morton
order [15, 14, 18]. For example, in Fig. 4, the IDs for the M&le2 virtual squares for partition 10 follow
the z-ordering space-filling curve. In general, the loca tid4s,4s + 1,4s + 2 and4s + 3 are assigned
to the southwest, southeast, northwest and northeastemjlcespectively, of a parent virtual square with
alocal IDs.

Property 2 For any CES at level with a local ID z;, where0 < i < k, the local ID of its parent can be
computed by z; /4], or a logical right shift by 2 bits of the binary representatiof z;.

Property 3 The total number of CES'’s that can possibly cover/contaiy gimen data point within the
monitoring region isk + 1, orlog(L) + 1.

Note that we can also view the entire predefined CESisa$ levels of overlapping square grid cells
where each cell at levélcontains exactly 4 cells at level 1, where0 < i < k. Hence, there are exactly

k + 1 CES’s that cover any given data point within the monitoringga

4.3 Decomposition algorithm

Fig. 6 shows the pseudo code for decomposing a rectangle gueyyq = (a, b, w, h), where(a,b) is
the bottom-left corner and) and h are the width and height, respectively, of the range quety, dne

or more CES'’s. It is a modification of a strip-splitting-bdsaptimal algorithm for decomposing a query
window into maximal quad-tree blocks [21]. The differensdhat the algorithm in [21] allows: to be
as large asog(R), assuming thafz = 2", r is some integer, an® is the side length of the monitoring
area. In contrast, we only allow: to be as large ag§ = 2*, the maximal side length of a CES. The
decomposition algorithm performs multiple iterations adtdp-splitting processes. During each iteration
it tries, if possible, to strip away frompa column strip or a row strip of width or height of = 2¢, where

0 < i < k, from each of the four outside layers @f starting withi = 0. The column strip or row
strip is then split or decomposed into multiple x m square blocks. The goal is to use minimal number
of maximal-sized CES’s to decompaoge The entire strip-splitting process is like peeling a ragtdar
onion from the outside. The width of each layer at each ssoee#teration is doubled until it reachés
After that, it decomposes the remainipgisingL x L CES'’s.

During each iteration, the rule to determine if there is atmp ©f width or height2’ that can be
removed from the remainingis based on the bottom-left corner, width and height [#1]. Assume that
the current remaining is denoted a¢a’, b, w’, /'), if (a’ mod 2:T1) # 0, then a column strip of width
2¢, where0 < i < k, can be removed from the leftmost@f If ((' + 2') mod 2+!) # 0, then a row
strip of height2? can be removed from the topmost@fIf ((a’ + w') mod 2*1) # 0, then a column
strip of width 2 can be stripped from the rightmost @f Finally, if (5 mod 2¢+1) # 0, then a row strip
of height2¢ can be removed from the bottommostgof

As an example, Fig. 7 shows the step-by-step decomposit@namge query defined ag5, 2, 8,12).

(1) A column strip(5, 2, 1, 12) of width 1 is removed from the leftmost outsidegdiecaus¢5 mod 2) #
0. The remaining; becomeg6,2,7,12). The column strip is split into 12 CES'’s of sidex 1. (2) A
column strip(12, 2, 1, 12) of width 1 is removed from the rightmost outside of the rermajry because
((6+7) mod 2) # 0. This column strip is split into 12 CES’s of sizex 1. The remaining; becomes
(6,2,6,12). (3) A column strip(6, 2, 2, 12) of width 2 is removed from the leftmost outsideobecause
(6 mod 4) # 0. The remaining; becomes(8,2,4,12). (4) A row strip (8,12,4,2) of height 2 is

removed from the topmost outside @fbecause((2 + 12) mod 4) # 0. The remaininggy becomes

Decomposition (a, b, w, h) {
m=1;9 = (a,b,w,h) ;
while ((¢ # NULL) A (m < L)) {
strip fromgq the leftmost column strip with widtin,
if any, and split the column strip witlm x m CES’s;

strip fromgq the topmost row strip with height,
if any, and split the row strip withn x m CES’s;

strip fromg the rightmost column strip with widt,
if any, and split the column strip witlm x m CES’s;

strip fromgq the bottommost row strip with height,
if any, and split the row strip withn x m CES’s;

m=m X 2;

¥
if (¢ # NULL) {
decompose with CES'’s of sizelL x L;

}
}

Figure 6: Pseudo code for decomposition algorithm with GES’

(8,2,4,10). (5) Arow strip(8,2,4,2) of height 2 is removed from the bottommost outside because
(2 mod 4) # 0. The remaining; becomeg8, 4,4, 8). (6) Finally, (8,4,4,8) is decomposed into two
4 x 4 CES's and the remainingbecomes NULL.

4.4 Search algorithm

After decomposition, the query ID is inserted into the IEdiassociated with decomposed CES'’s. Assume
that QL (I, ¢c) denotes the query ID list associated with a lev€IES with a local IDc. These query ID
lists contain indirectly pre-computed search results. Blgnthe queries containing a CES are all stored
in the associated query ID list. To find the queries coverimglagiect location, we first find the covering
CES’s and then the covering queries.

For a given data poirtr, y), the search algorithm finds tiie+ 1 CES’s that contain or covér;, y).
Fig. 8 shows the pseudo code for a bottom-up search algarittirst finds the partition ID and the local
ID of the level% CES that containéx, y). Let p denote the partition ID and denote the local ID of the
covering CES at levet. The unique ID of the covering CES at levels 4%p + z. From Property 2, the
local ID at levelk — 1 can be easily computed by dividingby 4 because of containment encoding. This

can be implemented by a logical right shift by 2 bits. As a ltedloe entire search operation is extremely

10

strip-splitting g = (5, 2, 8, 12) ‘

@, @
column strip with a column strip with a
width of 1---(5, 2, 1, 12) @ width of 1-(12, 2, 1, 12)
q=(6,2,7,12) 5 q=(6,2 6,12)
column strip with a 8 B(©) ® 2] row strip with a
width of 2---(6, 2, 2, 12) height of 2--(8, 12, 4, 2)
q=1(8,2,4,12) q=(8,2,4,10)

4

& ®)
row strip with a column strip with a
height of 2--(8, 2, 4, 2) width of 4—(8, 4, 4, 8)
q=(8,4,4,8) 0,0 4 8 12 16 | g=null

Figure 7: An example of strip-splitting-based decompositvith CES'’s.

Bottom-up Search(z, y) {
Iy = |z]; Iy = |yl;
Py = Iz/L}; Py = [1,/L];
Il (LP,, LP,) is the partition bottom-left corner
p = P, + P,(R/L); Il partition ID
z=Z(I, — LP,, I, — LP,,2°);
/l'ocal ID of CES(I,,,,1,1)
for(l=kl1>0;l=1-1){
c = 4'p + z; Il covering CES ID at level
if (QL(l,c) # NULL) { output@QL(l,c)); }
z = z/4; Il right shifts by 2 bits
}
}

Figure 8: Pseudo code for a bottom-up search algorithm wiB-Gased indexing.

efficient.

Note that even though we partition each virtual square & lento 4 equal-sized quadrants at level
i + 1, similar to the quad-tree space partition, the bottom-w@rcsealgorithm described in Fig. 8 makes
the CES-based query index unique. It achieves efficientbday taking advantage of the containment

encoding embedded in the local IDs of virtual squares ag¢wfit levels.

4.5 Query reevaluation with CES-based indexing

Because many objects might not have moved outside some QEf#xdes since the last evaluation, the
computation should be done incrementally. Containmendding in the CES’s makes it easy to identify

the CES'’s that need not be visited during an incrementabnepuitation.

11

Algorithm CES.IR
for (j = 0505 € 055 ++) {
if (L(o;) has not been updated)continue;}
Pold = P(Lold(oj)); Prnew = P(Lnew(oj));
Zo1q4 = local ID of the unit CES covering ,;4(o;));
Znew = lOcal ID of the unit CES covering ., (0;));
if (pold 7£ pnew) {
for((=k;l>0;1——){
Cnew = 4l « DPrew + Znew;
inserto; into OL(q),Vq € QL(I, cew);
Cotd = 4" * pora + Zoid;
removeo; from OL(q),Vq € QL(l, coa);
Zold = Zold/4; Znew = Znew/4; } }
else{
for((=k;l>0;1——){
Cnew = 4l * Pnew + Znew:
Cotd = 4" * Pola + Zo1d;
if (Cnew 7£ Cold) {
inserto; into OL(q),Vq € QL(l, cnew);
removeo; from OL(q),Vq € QL(l, coa);
Zold = Zold/4; Znew = Znew/4; }
else break;
}
}
}

Figure 9: Pseudo code for Algorithm CHR.

The pseudo code for Algorithm CER is described in Fig. 9. For eaeh € O, denoting the set of all
moving objects, if the location af;, denoted ad.(o;), has not been updated since the last reevaluation,
nothing needs to be done for this object. For an object whamsstibn has been updated, we first compute
the partition ID’s of the old and new locations, denoteghas andp,,..., respectively.

Depending on whether or npt.., andp,;4 are the same, some computation can be saved. If they are
not the same, the object has since moved into a differenitipart In this case, no computation can be
saved. We need to insesf into and remove; from all the OL(q)’s for queries contained in the query
ID lists associated with the CES'’s that cover the new andaaldtions, respectively. On the other hand, if
Prew aNdpyq are the same, some CES’s in the same partition may contairttimbld and new locations.
Hence, no action is needed for these CES’s. Due to containemeoding, these CES'’s that contain both
the old and the new locations can be easily identified by theal ID’s. If 2,4 equalsz,.., for the leveli
CES, then the computation can be saved for CES's from etellevel.

12

5 Performance evaluation
5.1 Simulation studies

Simulations were conducted to evaluate and compare CEStiadexing with the VCS-based indexing
for periodic reevaluations of continual range queries oveving objects. Since it has been shown in [25]
that the VCS-based indexing approach outperforms otheyduéexing schemes, such as the cell-based
approach in [11], we focus in this paper on comparing CE®&daslexing with the VCS-based indexing.

For the simulations, the monitoring region was defineddy= R, = 512 grid units. A continual
range query was represented as a rectangle with widifv,oind heighti,. Both W, and W, were
randomly and independently chosen between 11&hdil were varied from 30 to 80. The bottom-left
corner of a range query was chosen uniformly within the nooiniy area. The maximum side length of a
VCS or CESL = 2* andk is an integer.

A total number of Q| continual range queries were inserted into the query indegtal of |O| objects
were generated. The initial locations of these objects wairmly distributed within the monitoring
area. Their subsequent locations were calculated baseteofoltowing rule. We defineV/ as the
maximal horizontal or vertical movement in terms of virtgalds between two consecutive reevaluations.
The new location of a moving object was calculated based old location and the horizontal and
vertical movements, which were independently chosen fagctibns and magnitudes. Namely, if an
object was atz, y), then its new location at the next reevaluation wageat- d,A\,,y + d,A\,), where
d, andd, were equally likely to be 1 or -1 and., and A, were independently and uniformly chosen
from [0, M]. Query results were first computed with the initial objeddtions. Then, the locations were
updated based on the movements definedhyAfterwards, a query reevaluation was performed. We
measured the time it took to complete the reevaluation amdatial storage cost for the query index. We
assumed that there were no changes to the query index betweeuery reevaluations. We conducted
our simulations on an IBM ThinkPad T30 model (CPU 2.4 GHz; ragnsize 512 Mbytes) running

cygwin under Windows XP.

5.2 Impact of L on index storage cost and query reevaluation time

The maximal side lengtlh of a virtual construct impacts both the index storage codtcamtinual query
reevaluation time. Here we examine the impacts of diffei€nt ranging from 4 to 64, under both a
CES-based and a VCS-based index. For this experimi&nt= 80, |Q| = 8,000, |O| = 50,000 and
M =1.

From Fig. 10(a), ad increases, the index storage cost steadily decrease®f@HB-based indexing.

In contrast, it decreases first and then increases for the BS8d indexing. Total index storage costs are

13

(a) W = 80; |Q| = 8,000; |O| = 50,000 (b) W = 80; |Q| = 8,000; |O| = 50,000
60 ,

=
©

-©- CES -©- CES
= VCS = VCS

= e = =
S N s~ o
T T T
w IN o
S S =)
T T T

n
=]

total index storage (M bytes)
re—evaluation time (seconds)

61 B : 4 L B :
s 4
10F

i i
10 10" 10° 10° 10" 10°
max. VC side length (L) max. VC side length (L)

Figure 10: The impact of on (a) total index storage and (b) reevaluation time.

comparable for both indexing schemes. The index storagecoansists of two components: (a) the query
ID lists, one for each VCS or CES, and (b) an array list of pomito the query ID lists. For both schemes,
component (a) generally decreased.ascreases because fewer VC's are needed to cover a range quer
As L increases, Component (b) increases much faster for the B&S&d indexing than the CES-based
indexing. This is because the total number of VC'’s defindd is 1) R? for the VCS-based indexing, but
itis 4R%/3 — R%/(3 % 4%) for the CES-based indexing, whete= log(L).

Fig. 10(b) shows the the average query reevaluation timee,Hee performance advantage of the
CES-based indexing over the VCS-based indexing is cledmdgeiwved for the entire range éfs. This
is because the number of VC’s visited during an index searett mostiog(L) + 1 for the CES-based

indexing, compared witftdL? — 1)/3 for the VCS-based indexing.

5.3 Comparisonsof CESand VCS

Now we compare CES-based with VCS-based indexing undesusnumbers of continual queries and
moving objects. We focus on the query reevaluation time Umse#he total index storage costs are com-
parable for both schemes.

Figs. 11(a) shows the impact &)
For this experimentiV = 50, L = 16 and|O| = 50,000. We varied|@| from 1,000 to 16,000. Both

M =1andM = 10 were usedM = 1 represents the scenario where most objects have not mawed to

, the number of continual range queries, on the reevaluéitioca

far from their old locations since the last evaluation. Imtcast, A/ = 10 represents the scenario where

most objects have moved far away from their old locationsesihe last evaluation. More computation

can be saved for the casef = 1. CES-based indexing outperforms VCS-based indexing faaaks.
Figs. 11(b) shows the impacts @

, the number of moving objects, on the query reevaluatioe.tim

14

(a) W = 50; |O| = 50,000 (b) W = 50; |Q| = 8,000

N
o

30

-©- CES(M=1)
35 = 1 CES(M=10)
-©- CES(M=1) L D
- CES(M=10) 25 - VCS(M=1)
30} | 2 vesv=1)] - VCS(M=10)
- VCS(M=10)

N
o
T
n
o
T

)
o
T
=
13
T

=
13
T
=
[S)
T

re—evaluation time (seconds)
re—evaluation time (seconds)

=
[S)
T

4]
T

o

i
10 10 10 10°
number of continual queries |Q| number of moving objects |O|

Figure 11: The impact of (d)| and (b)|O

, respectively, on reevaluation time.

For this experimentiy’ = 50, L = 16 and|Q| = 8000. |O| was varied from 4,000 to 64,000. Again,
CES-based indexing outperforms VCS-based indexing inygremvaluation time. Such performance

advantage becomes more prominent as the number of moviagtslijcreases.

6 Summary

Efficiently locating moving objects is critically importam supporting many location-based services and
applications. We have presented a new CES-based query fadéxcremental processing of contin-
ual range queries over moving objects to locate up-to-datations of these moving objects. A set of
containment-encoded squares (CES) is predefined, eacrawitlique ID. CES'’s are virtual constructs
used to cover each query region and to store indirectly prepuited query results. The use of CES’s
provides fast search operations. More importantly, it rsakeasy to identify the moving objects that
need not be evaluated during a periodic query reevaluaisna result, incremental processing of con-
tinual range queries is efficient. Simulations have beerected to evaluate and compare CES-based
indexing with a prior VCS-based indexing scheme. The resshbw that (1) the CES-based indexing
has comparable storage cost with the VCS-based indexing2ankde CES-based indexing substantially
outperforms the VCS-based indexing in query reevaluatime,t particularly if the number of moving

objects is large.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing movingjects. InProc. of ACM PODS2000.

15

[2] C. C. Aggarwal and D. Agrawal. On nearest neighbor indg>af nonlinear trajectories. IRroc. of
ACM PODS 2003.

[3] Y. Caiand K. A. Hua. An adaptive query management tealmifpr real-time monitoring of spatial
regions in mobile database systems.Phoc. of Int. Performance, Computing and Communication
Conf, 2002.

[4] L. Forlizzi, R. H. Guting, E. Nardelli, and M. Scheider.data model and data structures for moving
objects. InProc. of ACM SIGMOD2000.

[5] V. Gaede and O. Ginther. Multidimensional access nmith&aCM Computing Survey80(2):170—
231, June 1998.

[6] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Motion adaptivedaxing for moving continual queries
over moving objects. IProc. of ACM CIKM 2004.

[7] R. H. Guting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A. katzos, M. Schneider, and M. Vazir-
giannis. A foundation for representing and querying mowtjects. ACM Trans. on Database
Systems25(1):1-42, Mar. 2000.

[8] A. Guttman. R-trees: A dynamic index structure for splasiearching. IrProc. of ACM SIGMOD
1984.

[9] E. Hanson and T. Johnson. Selection predicate indexingdtive databases using interval skip lists.
Information System21(3):269-298, 1996.

[10] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efiid8+-tree based indexing of moving
objects. InProc. of VLDB 2004.

[11] D. V. Kalashnikov, S. Prabhakar, W. G. Aref, and S. E. Mansch. Efficient evaluation of continu-
ous range gueries on moving objects.Pioc. of DEXA 2002.

[12] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexingbile objects. IrProc. of ACM PODS
1999.

[13] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable irmmental processing of continuous
gueries in spatio-temporal databasesPtac. of ACM SIGMOD2004.

[14] J. A. Orenstein. Spatial query processing in an obgeigtnted database system. Pnoc. of ACM
SIGMOD 1986.

[15] J. A. Orenstein and T. H. Merrett. A class of data streetufor associative searching. Broc. of
ACM PODS April 1984.

[16] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel agpgres to the indexing of moving object
trajectories. IrfProc. of VLDB 2000.

[17] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, andES Hambrusch. Query indexing and
velocity constrained indexing: Scalable techniques fortiooious queries on moving object&EEE
Trans. on Computer$1:1124-1140, Oct. 2002.

[18] H. Samet.Design and Analysis of Spatial Data Structurégldison-Wesley, 1990.

16

[19] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Bliod) and querying moving objects. In
Proc. of IEEE ICDE 1997.

[20] Y. Tao, D. Papadias, and Q. Shen. The THRee: An optimized spatio-temporal access method
for predictive queries. Iroc. of VLDB 2003.

[21] Y.-H. Tsai, K.-L. Chung, and W.-Y. Chen. A strip-spilitg-based optimal algorithm for decompos-
ing a query window into maximal quadtree blockEEE TKDE, 16(4):519-523, Apr. 2004.

[22] S.Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopdexing the positions of continuously
moving objects. IrProc. of ACM SIGMOD2000.

[23] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. MendCost and imprecision in modeling
the position of moving objects. IRroc. of IEEE ICDE 1998.

[24] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yeshadating and querying databases that track
mobile units.Distributed and Parallel Database3(3):257-387, 1999.

[25] K.-L. Wu, S.-K. Chen, and P. S. Yu. Processing contimaalge queries over moving objects using
VCR-based query indexes. Rroc. of IEEE MobiQuitousAug. 2004.

17

