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ON THE p-MEDIAN POLYTOPE OF A SPECIAL CLASS OF

GRAPHS

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract. In this paper we consider a well known class of valid inequalities for the
p-median and the uncapacitated facility location polytopes, the odd cycle inequalities.
It is known that their separation problem is polynomially solvable. We give a new
polynomial separation algorithm based on a reduction from the original graph. Then,
we define a nontrivial class of graphs, where the odd cycle inequalities together with
the linear relaxations of both the p-median and uncapacitated facility location prob-
lems, suffice to describe the associated polytope. To do this, we first give a complete
description of the fractional extreme points of the linear relaxation for the p-median
polytope in that class of graphs.

1. Introduction

Let G = (V,E) be a directed graph, not necessarily connected, where each arc (u, v) ∈
E has an associated cost c(u, v). The p-median problem (pMP) consist of selecting p
nodes, usually called centers, and then assign each non-selected node to a selected node.
The goal is to select p nodes that minimize the sum of the costs yield by the assignment
of the non-selected nodes. This problem has several applications such as location of
bank accounts [9], placement of web proxies in a computer network [22], semistructured
data bases [21, 18]. When the number of centers is not specified and each opened center
induces a given cost, this is called the uncapacitated facility location problem (UFLP).

In this paper we study the so called odd cycle inequalities. We give a new separation
algorithm, and we show that when they are added to the linear programming relaxation
of the pMP, a complete description of the polytope is obtained for the so called Y -free
graphs. To accomplish that, first we have to characterize the extreme points of this linear
programming relaxation for the class of Y -free graphs. Finally and for the same class of
graphs, we show that when we add the odd cycle inequalities to the linear programming
relaxation of the UFLP, we also obtain an integral polytope. We do not know of any
other class of graphs for which the p-median polytope has been characterized.

The pMP is NP-hard in general [16]. For some particular cases it has been shown that
it is polynomially solvable. This is the case when the underlying graph is an undirected
tree and the cost function c is defined by c(u, v) = w(u)d(u, v), where w(u) is a positive
weight associated with each node u ∈ V , and d(u, v) is the length of the unique path
in the tree from u to v, and it satisfies the triangle inequalities. An O(p|V |2) algorithm
has been presented in [20] improving a previous algorithms in the same class of graphs,
O(p2|V |2) in [16] and O(p|V |3) in [14]. When the tree is directed, an O(p2L) algorithm
based on dynamic programming is given in [22], where L is the path length of the tree.

Many heuristics without guaranties on the value of the solution have been given (see [9]
for references). In [9] some known heuristics were evaluated using Lagrangian relaxation.
This study has been used in [13] for evaluating heuristics based on a reduction from the
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set-covering problem. Later, α-approximation algorithms were developed, where α is not
a constant factor, see [4, 5, 6]. The first constant-factor approximation algorithm was
given in [8], with α = 6 2

3 . Algorithms that achieve a performance within a ratio of 6 and 4
were presented in [15] and [7], respectively. Most of approximation algorithms are based
on rounding the optimal fractional solution of the following natural linear programming
relaxation for the pMP:

minimize
∑

(u,v)∈E

c(u, v)x(u, v),(1)

∑

v:(u,v)∈E

x(u, v) = 1 − y(u) ∀u ∈ V,(2)

∑

v∈V

y(v) = p,(3)

x(u, v) ≤ y(v) ∀(u, v) ∈ E,(4)

0 ≤ y(v) ≤ 1 ∀v ∈ V,(5)

x(u, v) ≥ 0 ∀(u, v) ∈ E.(6)

If in addition the variables are 0-1, then we obtain an integer linear programming
formulation. The 0-1 variable y(v), v ∈ V is 1 if the node v is selected as a center and 0
otherwise. The 0-1 variable x(u, v) takes a the value 1 if a non-selected node u is assigned
to a selected node v. Constraints (2) ensure that each node must be assigned to some
center, constraints (3) ensure that exactly p centers must be selected and constraints (4)
indicate that if a node v is not selected as center then no node u may be assigned to v.

Denote by Pp(G) the polytope defined by constraints (2)-(6), and let pMP (G) be the

convex hull of Pp(G) ∩ {0, 1}|E|+|V |, this is called the p-median polytope of G.

Let Q(G) the polytope defined by constraints (2), (4), (5) and (6). Let UFLP (G) be
the convex hull of Q(G)∩{0, 1}|E|+|V |, this is the uncapacitated facility location polytope
of G.

Some polyhedral properties of Pp(G) and the integrality gap are discussed in [23],
when G is restricted to be a tree. This relaxation has also been studied for trees in [11].
In [12], an extended formulation by adding O(|V |p−1) variables characterize the p-median
polytope for any fixed p; also the 2-median polytope is characterized in the original set
of variables.

A formulation based on the arc variables is studied in [2]. Then the relationship with
the stable set problem is exploited. This approach was also used in [10] for the UFLP.
Also in [2], they remark that the p-median polytope when p = 2 is completely described
using a result in [17]. In [3] a Branch-and-Cut-and-Prize algorithm is developed to solve
large instances for the p-median polytope.

We conclude this introduction with a few definitions. For a vector x ∈ R
S and a

subset A ⊆ S, we denote
∑

a∈A x(a) by x(A). For a set W ⊂ V , we denote by δ+(W ),
the set of arcs (u, v) ∈ E, with u ∈ W and v ∈ V \ W , and by δ−(W ) the set of arcs
(u, v), with v ∈ W and u ∈ V \ W . We write δ+(v) and δ−(v) instead of δ+({v}) and
δ−({v}), respectively. For a solution (x, y) of Pp(G), define, for simplicity, z = (x, y)
as z(u, v) = x(u, v) for (u, v) ∈ E and z(v) = y(v) for v ∈ V . If an inequality (4) is
satisfied as equation by z with respect to an arc (u, v), we say that (u, v) is saturated by
z, otherwise it is non saturated by z.



ON THE p-MEDIAN POLYTOPE OF A SPECIAL CLEASS OF GRAPHS 3

A directed graph G = (V,E), not necessarily connected, is called a Y -free graph if
(u, v) ∈ E implies (v, u) /∈ E and it does not contain as induced subgraph the graph of
Figure 1. This class of graphs may contain cycles and it contains the class of 1-rooted
directed trees, Figure 2 shows a Y -free graph.

Figure 1. The graph Y .

Figure 2. A Y -free graph.

This paper is organized as follows. In Section 2 we give a separation algorithm for
the odd cycle inequalities. In Section 3 a complete description of the fractional extreme
points of Pp(G) is given for Y -free graphs. In Section 4 we show that when we add the
odd cycle inequalities to (2)-(6), we obtain a complete description of pMP (G) when G is
Y -free. In Section 5 it is proved that when equation (3) is removed from the description
of pMP (G) and G is Y -free, then the polytope is still integral.

2. Odd cycle inequalities

In this section we describe this class of inequalities and their separation algorithm.
Let C be the cycle

C = {(vi, vi+1) | i = 1, . . . , 2l} ∪ {(v2l+1, v1)}.

The inequality

(7) x(C) ≤
|C| − 1

2
is called an odd cycle inequality.

Lemma 1. Inequality (7) is valid for pMP (G) and for UFLP (G).

Proof. The combination of inequalities (2) and (4) gives

x(ui, ui+1) + x(δ+(ui+1)) ≤ 1, for i = 1, . . . , 2l,

x(u2l+1, u1) + x(δ+(u1)) ≤ 1.
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Adding these inequalities and non-negativity constraints we obtain

2x(C) ≤ 2l + 1 = |C|.

Dividing by 2 and rounding down the right hand side yields inequality (7). �

Odd cycle inequalities are a special case of Wq inequalities introduced in [3] with q = 1.
Since we might have an exponential number of odd cycle inequalities, it is important to
have an efficient algorithm to solve the separation problem: Given a vector x̄ satisfying
(2)-(6), find a violated odd cycle inequality if there is any, or prove that none exists. We
describe such a procedure below.

The odd cycle inequalities we consider here, are equivalent to the odd cycle inequalities
that are valid for the stable set polytope in the intersection graph. The intersection graph
has a node for every arc in E, and for any two arcs of the form (u, v), (v, w) there is
an edge in the intersection graph. Their separation can be reduced to |E| shortest path
problems in an auxiliary graph with positive arc-weights obtained from the intersection
graph, see Theorem 68.1 in [19] for instance. Below, we give a reduction to |V | shortest
path problem in an auxiliary graph with no negative cycle, obtained from the original
graph.

Inequality (7) can be written as

(8) |C| − 2x(C) ≥ 1.

To find a violated inequality, if there is any, we create an auxiliary graph as follows. For
each node u, we make two copies u′, u′′. For each arc (u, v) we create arcs (u′, v′′) and
(u′′, v′) with weights 1 − 2x̄(u, v). Then for each node u we find a shortest path P from
u′ to u′′. We identify every node in P with its copy, this gives a union of cycles, and and
least 1 of them is odd. If the weight of P is less than 1, then we have found an odd cycle
of weight less than 1. On the other hand, if for every node u the weight of a shortest
path from u′ to u′′ is at least 1, then there is no violated odd cycle inequality.

Since the arc-weights could be negative, we should apply Bellman-Ford algorithm for
finding a shortest path, see [1]. We have to see that this graph has no negative cycle.

Lemma 2. The auxiliary graph has no cycle of negative weight.

Proof. Let (u, v) and (v, w) be two consecutive arcs in a cycle C. It follows from (2) and
(4) that x̄(u, v) + x̄(v, w) ≤ 1. This implies

(9) x̄(C) ≤
|C|

2
.

If C is a cycle of negative weight, we have

|C| − 2x̄(C) < 0,

or

x̄(C) >
|C|

2
,

this contradicts (9) �

Since each shortest path computation takes O(|V |3) time, the entire separation algo-
rithm takes O(|V |4) time.

Remark that the number of odd cycles in a Y -free graph is polynomially bounded.
Indeed in a Y -free graph no two cycles can intersect, so an arc can belong to at most
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one cycle. Hence for this class of graphs the system defined by (2)-(6) and (7) has a
polynomial number of inequalities.

3. The extreme points of Pp(G), when G is a Y -free graph

In this section we give a description of the extreme points of Pp(G), when G is a Y -free
graph. Let G = (V,E) be a Y -free graph. Let z = (x, y) ∈ Pp(G). Let Ez = {(u, v) ∈ E :
0 < z(u, v) < 1} and denote by Gz = (Vz, Ez) the subgraph of G induced by Ez. Denote
by V <

z the set of nodes v with z(v) > 0 such that either z(u, v) < z(v) for (u, v) ∈ Ez or
|δ−Gz

(v)| = 0 or z(v) = 1. Call a node v with z(v) = 1 a pendent node. A directed path
from v to w is denoted by P v

w. Define the size of P v
w to be the number of its inner nodes

(nodes different from v and w). If the size of P v
w is even (resp. odd) , we say that P v

w is
an even path (resp. odd path). Two paths are said to be node-disjoint, if the sets of their
inner nodes are disjoint.

For a solution z = (x, y) and a path P v1
vk

= v1, . . . , vk, define z[P v1
vk

]δ ∈ IR|E|+|V | to be:

z[P v1
vk

]δ(v1) = z(v1) if z(v1) = 0,
z[P v1

vk
]δ(v1) = z(v1) − δ if z(v1) > 0,

z[P v1
vk

]δ(vi) = z(vi) + (−1)iδ for i = 2, . . . , k − 1

z[P v1
vk

]δ(vk) = z(vk),
z[P v1

vk
]δ(vi, vi+1) = z(vi, vi+1) + (−1)i+1δ for i = 1, . . . , k − 1,

and z[P v
w]δ(u, v) = z(u, v), z[P v

w]δ(u) = z(u), for all other arcs and nodes (not in the
path).

Let G1
z , . . . , G

q
z be the connected components of Gz. In the following, we shall study

the structure of these connected components when z is a fractional extreme point of
Pp(G). For this purpose, let us consider G1

z = (V 1
z , E1

z ).

Remark that for every node v ∈ V that is not pendent, we have |δ−Gz
(v)| ≤ 1. This

remark is used implicitly in all the proofs of this section. Let z = (x, y) be an extreme
fractional point of Pp(G).

Lemma 3. G1
z does not contain an odd path P v

w with v, w ∈ V <
z .

Proof. Suppose that P v
w = v, v1, v2, . . . , vk, w is such a path, with k odd. Then the same

constraints that are tight for z are also tight for z[P v
w]−ε. This contradicts the fact that

z is an extreme point of Pp(G). �

Lemma 4. G1
z cannot contains two node-disjoint paths P v

u and P v
w having the same

parity, where u, w are in V <
z and are not necessarily different.

Proof. Let P v
u = v, u1, u2, . . . , uk1

, u and P v
w = v, w1, w2, . . . , wk2

, w be two node-disjoint
paths such that k1 and k2 are of the same parity. Let z1 = z[P v

u ]ε and z2 = z1[P
v
w]−ε.

Then the same constraints that are tight for z are also tight for z2, a contradiction. �

Lemma 5. Let w, t ∈ V 1
z be two non necessarily different pendent nodes. If G1

z contains
two node-disjoint paths P u

w and P v
t , such that there is no saturated arc directed into u

and v, then z(u) = z(v) = 0 and u = v.

Proof. Let P u
w = u, u1, u2, . . . , uk1

, w and P v
t = v, v1, v2, . . . , vk2

, t. Three cases are dis-
tinguished, as described by the figure below, (a) u and v in V <

z , (b) v ∈ V <
z and z(u) = 0

and (c) z(u) = z(v) = 0 and u 6= v.
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Figure 3.

(a) From Lemma 3, these two paths are even. And from Lemma 4 u 6= v. Let
z1 = z[P u

w ]ε. Then the same constraints that are tight for z are also tight for z1[P
v
t ]−ε, a

contradiction.

(b) By definition, there must exist a path P u
w′ = u, u′

1, . . . , u
′
k3

, w′ from u to a pendent

node w′, w′ may coincide with w and t, (see Figure 3 (b)). By Lemma 4, k3 and k1

are of different parity, and by Lemma 3, k2 is even. Let z1 = z[P u
w′ ]ε, z2 = z1[P

u
w]−ε,

z3 = z2[P
v
t ]−ε, and z4 = z2[P

v
t ]ε. Then the same constraints that are tight for z are also

tight for either z3 or z4, again a contradiction.

(c) There must exist paths P u
w′ = u, u′

1, . . . , u
′
k3

, w′ and P v
w′′ = v, v′1, . . . , v

′
k4

, w′′, where

w′ and w′′ are pendent nodes, w, t, w′ and w′′ are not necessarily different, (see Figure
3 (c)). From Lemma 4, k1 with k3 and k2 with k4 are of different parity. Again we are
going to construct a new vector z∗ such that all constraints that are tight for z are also
tight for z∗. Suppose for simplicity that k3 and k2 are odd and that k1 and k4 are even.
The other cases may be treated similarly. Let z1 = z[P u

w′ ]ε, z2 = z1[P
u
w ]−ε, z3 = z2[P

v
t ]−ε,

finally z3[P
v
w′′ ]ε has the desired property. �

Lemma 6. Let C = {(vi, vi+1) | i = 1, . . . , 2l}∪{(v2l+1, v1)} be an odd cycle of G1
z. Then

at most one arc of C is not saturated.

Proof. Suppose we have two arcs (vi, vi+1) and (vj , vj+1) not saturated, that is,

z(vi, vi+1) < z(vi+1), and

z(vj , vj+1) < z(vj+1),

so vi+1 and vj+1 are in V <
z . And since C is odd then, either P

vi+1
vj+1

or P
vj+1

vi+1
is odd.

This contradicts Lemma 3. �

We say that r ∈ V 1
z is a root if |δ−

G1
z
(r)| = 0.

Lemma 7. If G1
z contains a root r then it contains a directed path from r to a pendent

node.

Proof. Starting from r perform a depth-first search for a pendent node using the arcs of
G1

z . Since there is no Y the search should end on a pendent node. �

Lemma 8. If G1
z contains a root then it contains exactly one.
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Proof. Let r1 and r2 be two roots in G1
z. Since G1

z has no Y , there is a directed path
P r1

w1
from r1 to a pendent node w1. Also there is a directed path P r2

w2
from r2 to a

pendent node w2 . These two paths are disjoint because there is no Y . Lemma 5 implies
r1 = r2. �

Lemma 9. In G1
z there is a path from r to any pendent node.

Proof. Consider a pendent node v in G1
z. There is an undirected path P from r to v.

Let P1 be the maximal directed path directed away from r using only arcs in P . Let w
be the last node in P1, since there is no Y , w is a pendent node. If w = v we are done,
otherwise let P2 be the maximal path directed into v, included in P . Let s be the first
node in P2. Let P3 the other maximal path directed away from s included in P . Since
there is no Y , the last node in P3 is pendent. From Lemma 4 we have that P2 and P3

have different parity. Let z1 = z[P2]
ε, z2 = z1[P3]

−ε. If z(r) > 0, then from Lemma 3, P1

must be even. Hence z2[P1]
ε or z2[P1]

−ε is a vector that satisfies as equation the same
constraints as z.

Otherwise, if z(r) = 0, then there must be a path P ′
1 from r to pendent node, where

P1 and P ′
1 are node-disjoint. From Lemma 4, P1 and P ′

1 have different parity. Define
z3 = z2[P1]

ε and z4 = z2[P1]
−ε, then either z3[P

′
1]
−ε or z4[P

′
1]

ε is a vector that satisfies as
equation the same constraints as z. �

Now we have to study two cases as follows.

Case 1. G1
z does not contain a directed cycle.

In this case, G1
z must contain a root r. From Lemma 8, the root r is unique. From

Lemma 4, |δ+
G1

z
(r)| ≤ 2. Otherwise, since G1

z is Y -free, there must exist two node-disjoint

paths having the same parity from r to two pendent nodes w1 and w2.

2 l1+ 1u l2 2

r

v1u1

ww2 1

v

Figure 4. Two node-disjoint paths, P r
w1

and P r
w2

, where k1 = 2l1 + 1,
k2 = 2l2 and P r

w1
may be empty.

Proposition 10. G1
z consists either of

• two paths P r
w1

= r, v1, . . . , vk1
, w1 and P r

w2
= r, u1, . . . , uk2

, w2 of different parity,
or

• just the even path P r
w2

= r, u1, . . . , uk2
, w2, see Figure 4.
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Moreover, all the arcs, different from (vk1
, w1) and (uk2

, w2), are saturated by z, and

k1
∑

i=1

z(vi) +

k2
∑

i=1

z(ui) + z(r) = l1 + l2 + z(uk2
), if G1

z consists of two paths,(10)

k2
∑

i=1

z(ui) + z(r) = l2 + z(uk2
), if G1

z consists of an even path.(11)

Proof. If |δ+(r)| = 2, then there are two node-disjoint paths to some pendent nodes. If
|δ+(v)| ≥ 2 for a node v in any of these paths, then there are two node-disjoint paths P1

and P2 from v to some pendent nodes. Lemma 4 implies that P1 and P2 have different
parity. This implies that there are two node-disjoint paths of the same parity from r to
some pendent nodes, a contradiction.

If |δ+(r)| = 1, then there is a directed path from r to a pendent node. If |δ+(v)| ≥ 2
for a node v in this path, then there are two node-disjoint paths P1 and P2 from v to
some pendent nodes. Lemma 4 implies that P1 and P2 have different parity. In this case
z(r) > 0, thus Lemma 3 yields a contradiction.

Let S be the set of nodes in V 1
z that does not belong to any path from r to a pendent

node. Since G1
z is connected, there must exist a node s ∈ S incident to one of the nodes

in a path from r to a pendent node. Since G is Y -free, we must have an arc (s, w) and w
is a pendent node. Since s is not a root, there must exist an arc directed into s, repeating
this process we must end up with the root r, which is a contradiction since s does not
belong to any path from r to a pendent node, or we must have a directed cycle, which is
impossible.

We have exactly one root and |δ+
G1

z
(v)| = 1 for all non-pendent nodes v ∈ V 1

z \ {r}. It

follows that, if |δ+
G1

z
(r)| = 2, then G1

z consists of two node-disjoint paths from r to two

pendent nodes or to the same pendent node. From Lemma 4, these two paths must be of
different parity. If |δ+

G1
z
(r)| = 1, G1

z is a path from r to a pendent node. Since z(r) > 0,

it follows from Lemma 3 that this path is even.

Let k1 = 2l1 + 1 and k2 = 2l2. Remark that if |δ+
G1

z
(r)| = 2 then z(r) = 0, otherwise

this will contradict Lemma 3. Suppose z(vl, vl+1) < z(vl+1), for l ∈ {1, . . . , k1 − 1}. So
vl+1 ∈ V <

z . It follows from Lemma 3 that the path P l+1
w1

has to be even. Since k1 is odd
then, both l and k2 are even, which contradicts Lemma 4. In the same manner it may
be shown that all the arcs, different from (vk1

, w1) and (uk2
, w2), are saturated by z.

Now, let us verify (10). From above we have,

z(r, v1) = z(v1),(12)

z(r, u1) = z(u1),(13)

z(vi, vi+1) = z(vi+1) for i = 1, . . . , k1 − 1,(14)

z(ui, ui+1) = z(ui+1) for i = 1, . . . , k2 − 1,(15)

and equalities (2) with respect to r, vi, i = 1, . . . , k1 − 1, and ui, i = 1, . . . , k2 − 1, give

z(r, v1) + z(r, u1) = 1 − z(r),(16)

z(vi, vi+1) = 1 − z(vi) for i = 1, . . . , k1 − 1,(17)

z(ui, ui+1) = 1 − z(ui) for i = 1, . . . , k2 − 1.(18)
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The combination of equations (14) with (17) and (15) with (18) gives,

z(vi+1) = 1 − z(vi) for i = 1, . . . , k1 − 1,(19)

z(ui+1) = 1 − z(ui) for i = 1, . . . , k2 − 1.(20)

The sum of equations (12)-(15) is equal to the sum of equations (16)-(18), hence

k1
∑

i=1

z(vi) +

k2
∑

i=1

z(ui) = k1 + k2 − 1 − z(r) −
k1−1
∑

i=1

z(vi) −
k2−1
∑

i=1

z(ui).(21)

Recall that k1 = 2l1 + 1 and k2 = 2l2. Now by considering (19) and (20), equation (21)
may be rewritten as follows

k1
∑

i=1

z(vi) +

k2
∑

i=1

z(ui) + z(r) = 2l1 + 2l2 − l1 − l2 + z(uk2
),

hence
k1
∑

i=1

z(vi) +

k2
∑

i=1

z(ui) + z(r) = l1 + l2 + z(uk2
).

Equation (11) can be obtained in a similar way. �

Case 2. G1
z contains a directed cycle C = {(vi, vi+1) | i = 1, . . . , k − 1} ∪ {(vk, v1)}.

If k = 2l consider the vector z̄ defined below. The same constraints that are tight for
z are also tight for z̄.

z̄vi
= z(vi) + (−1)iε for i = 1, . . . , k,

z̄(vi, vi+1) = z(vi, vi+1) + (−1)i+1ε for i = 1, . . . , k − 1,
z̄(vk, v1) = z(vk, v1) − ε,

and z̄(u, v) = z(u, v), z̄(u) = z(u) for all other nodes and arcs not in C.

So we can assume that C is odd. Let k = 2l + 1 and V (C) = {v1, . . . , v2l+1}. From
Lemma 6, we have to consider two sub cases:

Case 2.1. C contains exactly one non saturated arc.

vj

v1

2v l v3

v22v l+ 1

Figure 5. Odd cycle C, δ+(V (C)) = ∅. A dashed arc means a non
saturated arc.
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Proposition 11. We should have that δ+
G1

z
(V (C)) = ∅, and if (v1, v2) is the non saturated

arc then
2l+1
∑

i=1

z(vi) = l + z(v2).(22)

Proof. Note that v2 ∈ V <
z . Let vm a node of V (C) such that |δ+

G1
z
(vm)| ≥ 2, vm may

coincide with v1 or v2. Since G is Y -free, there is a path P vm
w having all its nodes not in

V (C) with w a pendent node. We have four cases to consider, P vm
w is odd or even, and

m is odd or even. Suppose that P vm
w is odd, either m is odd, and in this case the paths

P vm
v2

and P vm
w are both odd, which contradicts Lemma 4, or m is even and in this case

the path defined by the junction of P v2
vm

and P vm
w is odd, which contradicts Lemma 3.

The same arguments hold when P vm
w is even. So we have proved that δ+(V (C)) = ∅.

From equations (1),

z(vi, vi+1) = 1 − z(vi) for i = 2, . . . , 2l
z(v2l+1, v1) = 1 − z(v2l+1)

Also, z(vi, vi+1) = z(vi+1) for each arc of C different from (v1, v2). The combination
of these equations gives

2l+1
∑

i=2

(1 − z(vi)) =
2l+1
∑

i=1,i6=2

z(vi)(23)

we also have,
z(vi+1) = 1 − z(vi) for i = 2, . . . , 2l
z(v1) = 1 − z(v2l+1),

these imply that (1 − z(vi)) + (1 − z(vi+1)) = 1, for i = 1, . . . , 2l. Hence the equation
(23) is equivalent to

2l+1
∑

i=1,i6=2

z(vi) = l.

�

Case 2.2 All the arcs of C are saturated.

Note that in this case, if one of the node-variables or arc-variables of C has a value
1/2, then all the other node-variables and arc-variables have the same value and that G1

z

consists of only the cycle C. In general, the structure of G1
z is described by the following

proposition, see the figure below.

Proposition 12. We have that |δ+
G1

z
(V (C))| ≤ 1. And if |δ+

G1
z
(V (C))| = 1, then G1

z

consists of the odd cycle C and a path P vm
w = vm, u1, . . . , uk, w, going from a node

vm ∈ V (C) to a pendent node w, m ∈ {1, . . . , 2l + 1}. Moreover, all the arcs different
from (uk, w) are saturated and

2l+1
∑

i=1

z(vi) +

k
∑

i=1

z(ui) = l + l1 + z(vm) if k = 2l1,(24)

2l+1
∑

i=1

z(vi) +

k
∑

i=1

z(ui) = l + l1 + 1 − z(vm, vm+1) if k = 2l + 1.(25)
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v3

v2

v1

2v l+ 1

2v l

vj

uk

1u

w

Figure 6. Odd cycle C, |δ+(V (C))| = 1, all arcs are saturated except
the dashed arc .

Proof. Suppose that |δ+
G1

z
(V (C))| ≥ 2. Let (vi1 , u) and (vi2 , u

′) be two arcs in δ+
G1

z
(V (C)).

We must have two node-disjoint paths: P1 from vi1 to a pendent node w1, containing
(vi1 , u), and P2 from vi2 to a pendent node w2, containing (vi2 , u

′). If i1 6= i2, then one
may define two node-disjoint paths having the same parity, going from vi1 (or vi2), to
w1 and w2, which contradicts Lemma 4. If i1 = i2, then by Lemma 4, P1 and P2 are of
different parity. For simplicity let i1 = i2 = 1. Let P ′

1 and P ′
2 be the portions of P1 and

P2, from u to w1 and from u′ to w2, respectively. Define z1 = z[P ′
1]

+ε, z2 = z1[P
′
2]

+ε, and
z̄ to be

z̄(v1, u) = z2(v1, u) − ε,
z̄(v1, u

′) = z2(v1, u
′) − ε,

z̄(v1) = z2(v1) + ε,
z̄(v1, v2) = z2(v1, v2) + ε,
z̄(vi) = z2(vi) + (−1)iε for i = 2, . . . , 2l + 1,
z̄(vi, vi+1) = z2(vi, vi+1) + (−1)i+1ε for i = 2, . . . , 2l,
z̄(v2l+1, v1) = z2(v2l+1, v1) + ε,

and z̄(u) = z2(u) (resp. z̄(u, v) = z2(u, v)) for all other nodes (resp. arcs).

Since P1 and P2 are of different parity, z̄ also satisfies (3). We have that the constraints
that are tight for z are also tight for z̄, which contradicts the fact that z is an extreme
point of Pp(G).

Thus it may be assumed that |δ+
G1

z
(V (C))| = 1. Let (vm, u1) be the unique arc of

δ+
G1

z
(V (C)). For simplicity, take m = 1. There must exist a path from v1 to a pendent

node, call it P v1
w = v1, u1, . . . , uk, w. Suppose there exists a node ur, 1 ≤ r ≤ k, with

|δ+
G1

z
(ur)| ≥ 2, then there are two node-disjoint paths P1 and P2 from ur to some pendent

nodes. Lemma 4 implies that P1 and P2 have different parity. Suppose r odd. Define
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z1 = z[P u1
ur

]−2ε, z2 = z1[P1]
−ε, z3 = z2[P2]

−ε and let . Define z̄ to be

z̄(v1, u1) = z3(v1, u1) + 2ε,
z̄(v1) = z3(v1) − ε,
z̄(v1, v2) = z3(v1, v2) − ε,
z̄(vi) = z3(vi) + (−1)i+1ε for i = 2, . . . , 2l + 1,
z̄(vi, vi+1) = z3(vi, vi+1) + (−1)iε for i = 2, . . . , 2l,
z̄(v2l+1, v1) = z3(v2l+1, v1) − ε,

and z̄(u) = z3(u) (resp. z̄(u, v) = z3(u, v)), for all other nodes (resp. arcs). Thus z̄ and
z satisfy the same constraints as equations, this contradicts again the fact that z is an
extreme point. Using the same ideas, one obtain the same contradiction when r is even.

Thus, it may be assumed that G1
z consists of only the cycle C and the path P v1

w .
Suppose (ur, ur+1) is non saturated by z, for 0 ≤ r ≤ k − 1, where u0 = v1. It follows
from Lemma 3 that P

ur+1

w is even.

Define z1 = z[P u1
ur+1

]−2ε, z2 = z1[P
ur+1
w ]+ε if P u1

ur+1
is odd, otherwise z2 = z1[P

ur+1
w ]−ε

and let z̄ to be

z̄(v1, u1) = z2(v1, u1) + 2ε,
z̄(v1) = z2(v1) − ε,
z̄(v1, v2) = z2(v1, v2) − ε,
z̄(vi) = z2(vi) + (−1)i+1ε for i = 2, . . . , 2l + 1,
z̄(vi, vi+1) = z2(vi, vi+1) + (−1)iε for i = 2, . . . , 2l,
z̄(v2l+1, v1) = z2(v2l+1, v1) − ε,

and z̄(u) = z2(u) (resp. z̄(u, v) = z2(u, v)), for all other nodes (resp. arcs). We have
that constraints (2)-(6) that are tight for z are also tight for z̄, which contradicts the
fact that z is an extreme point.

Thus every arc, different from (uk, w), is saturated, so

z(v1, u1) = z(u1),(26)

z(ui−1, ui) = z(ui) for i = 2, . . . , k,(27)

z(vi, vi+1) = z(vi+1) for i = 1, . . . , 2l,(28)

z(v2l+1, v1) = z(v1).(29)

Now we have to see that (24) and (25) hold. Equations (2) with respect to ui, i =
1, . . . , k − 1, and vi, i = 1, . . . , 2l + 1, give

z(v1, u1) + z(v1, v2) = 1 − z(v1),(30)

z(vi, vi+1) = 1 − z(vi) for i = 2, . . . , 2l,(31)

z(v2l+1, v1) = 1 − z(v2l+1),(32)

z(ui, ui+1) = 1 − z(ui) for i = 1, . . . , k − 1.(33)

The combination of equations (26)-(29) with (30)-(33) gives,

z(u1) + z(v2) = 1 − z(v1),(34)

z(vi+1) = 1 − z(vi) for i = 1, . . . , 2l,(35)

z(ui+1) = 1 − z(ui) for i = 1, . . . , k − 1.(36)
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The sum of equations (26)-(29) is equal to the sum of equations (30)-(33), hence

2l+1
∑

i=1

z(vi) +

k
∑

i=1

z(ui) = (2l + 1) −
2l

∑

i=1

z(vi) − z(v2l+1) + (k − 1) −
k−1
∑

i=1

z(ui).(37)

By considering (34)-(36), equation (37) may be rewritten as follows.

If k = 2l1:

2l+1
∑

i=1

z(vi) +

k
∑

i=1

z(ui) = (2l + 1) − (1 − z(u1)) − (l − 1) − z(v2l+1)

+ (k − 1) − z(u1) − (l1 − 1),

= l + l1 + 1 − z(v2l+1),

= l + l1 + z(v1).

If k = 2l1 + 1:

2l+1
∑

i=1

z(vi) +

k
∑

i=1

z(ui) = (2l + 1) − (1 − z(u1)) − (l − 1) − z(v2l+1)

+ 2l1 − l1,

= l + l1 + 1 + z(u1) − z(v2l+1),

= l + l1 + z(u1) + z(v1),

= l + l1 + 1 − z(v1, v2).

�

Theorem 13. Let G be a Y -free graph. Let z = (x, y) be a fractional extreme point of
Pp(G). Then the following hold:

(i) Gz contains q connected components, G1
z, . . . , G

q
z, with q ≥ 2,

(ii) Gz contains at most one component that corresponds to one of the graphs of
Figures 4, 5. The others components are all odd cycles where each arc is saturated
by z.

(iii) The values of z are 0, 1 or 1/2.

Proof. (i) If Gz is connected. Then from Propositions 10, 11 and 12, Gz is one of the
graphs of Figures 4, 5 and 6 or an odd cycle where each node and arc is associated with
the value 1/2. These propositions also show that

∑

v∈Vz
z(v) is fractional, since z(v) = 0

or 1 for every v /∈ Vz, we have that
∑

v∈V z(v) is fractional, which is impossible.

(ii) Let G1
z and G2

z be two connected components of Gz. Consider the case where G1
z

and G2
z are the graphs of Figures 4 and 5, respectively, the other cases may be treated

similarly. Recall that G1
z consists of two node-disjoint paths P r

w1
and P r

w2
having different

parity and G2
z consists of an odd cycle C = {(vi, vi+1) | i = 1, . . . , 2l}∪{(v2l+1, v1)} where

(v1, v2) is non saturated by z. Define recursively a new vector z̄ as follows. z1 = z[P r
w1

]−ε,
z2 = z1[P

r
w2

]+ε, z̄ = z2[P
v2
v2

]−ε. Any arc saturated by z remains saturated by z̄. Moreover,
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equation 3 holds. In fact,
∑

v∈V

z̄(v) =
∑

v∈V 1
z

z̄(v) +
∑

v∈V 2
z

z̄(v) +
∑

v∈V \(V 1
z ∪V 2

z )

z̄(v)

=
∑

v∈V 1
z

z(v) − ε +
∑

v∈V 2
z

z(v) + ε +
∑

v∈V \(V 1
z ∪V 2

z )

z(v)

=
∑

v∈V

z(v) = p.

We conclude that every constraint that is tight for z is also tight for z̄, which contra-
dicts the fact that z is an extreme point.

Suppose that G1
z is the graph of Figure 6, that is G1

z is an odd cycle C = {(vi, vi+1) | i =
1, . . . , 2l} ∪ {(v2l+1, v1)} and a path P vm

w = vm, u1, . . . , uk, w for vm ∈ V (C). If G2
z is one

of the graphs of Figures 4, 5 or 6, then as above we can define a solution z̄ such that
the same constraints that are tight for z are also tight for z̄. Thus all other connected
components, G2

z, . . . , G
q
z of Gz consist of an odd cycle where each arc is saturated and

that z(v) = 1/2 for all v ∈ (Vz \ V 1
z ). By Proposition 12

∑

v∈V 1
z

z(v) must be fractional.

Hence q − 1 must be odd, and since
∑

v∈Vz
z(v) is integer, by Proposition 12 we have

z(vm) = 1/2 if k is even, otherwise z(vm, vm+1) = 1/2. In both cases, since all the arcs
of C are saturated, we must have z(vm, u1) = 0. Thus G1

z is also an odd cycle where
each arc is saturated.

(iii) By the definition of Gz, z takes the values 0 or 1 for any arc or node not in Gz.
Now (iii) is a straightforward consequence of (ii) and Propositions 10, 11, 12. �

Corollary 14. If G is a Y -free graph without odd cycles, then pMP (G) is completely
described by constraints (2)-(6). That is, Pp(G) is integral.

4. Description of pMP (G), when G is a Y -free graph

We show that the addition of the odd cycle inequalities (7) to (2)-(6), completely
describes pMP (G) when G is a Y -free graph.

Call PCp(G) the polytope described by constraints (2)-(6) and inequalities (7).

Theorem 15. If G is a Y -free graph then, pMP (G) = PCp(G).

Proof. The proof is by induction on the number of arcs. Obviously, the theorem is true
for small graphs, with no more than 2 arcs. Suppose it is true for any Y -free graph with
no more than m arcs and let G contain exactly m+1 arcs. Suppose pMP (G) 6= PCp(G),
and let z = (x, y) be a fractional extreme point of PCp(G).

Claim 1. 0 < z(u, v) < 1 for all (u, v) ∈ E.

Proof.

i) Let (u, v) ∈ E with z(u, v) = 0. Let G′ =
(

V,E \ (u, v)
)

, and z′ the restriction
of z to G′. It is clear that z′ ∈ PCp(G

′). Suppose that z′ = 1/2z1 + 1/2z2 where
z1, z2 ∈ PCp(G

′), z1 6= z2. Let z̄1 (resp. z̄2) be the vector obtained by adding a zero
component to z1 (resp. z2). We have that z = 1/2z̄1 + 1/2z̄2.

Now let us see that z̄1 and z̄2 are in PCp(G). Clearly they satisfy (2)-(6), so we just
have to see that constraints (7) are satisfied. Consider the odd cycle

C = {(wi, wi+1) | i = 1, . . . , 2l} ∪ {(u, v)},
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where u = w2l+1 and v = w1. We have that

z1(w2i−1, w2i) + z1(w2i, w2i+1) ≤ 1, for i = 1, . . . , l.

This implies z̄1(C) ≤ l. The same is true for z̄2. Therefore z̄1 and z̄2 are in PCp(G).

We have then a contradiction because z is an extreme point. So z ′ must be an extreme
point of PCp(G

′) and because of the induction hypothesis, it must be integral.

ii) Let (u, v) ∈ E with z(u, v) = 1. This implies z(u) = 0. From i) we have that u is
incident only to (u, v). Let G′ =

(

V \ {u}, E \ (u, v)
)

, and z′ the restriction of z to G′.
It is clear that z′ ∈ PCp(G

′). Suppose that z′ = 1/2z1 + 1/2z2 where z1, z2 ∈ PCp(G
′),

z1 6= z2. Let z̄1 (resp. z̄2) be the vector obtained by adding a zero and a one component
to z1 (resp. z2). We have that z = 1/2z̄1 + 1/2z̄2.

First we should see that z̄1 and z̄2 are in PCp(G). Clearly they satisfy (2)-(6), and
since (u, v) does not belong to any cycle, constraints (7) are satisfied.

We have then a contradiction because z is an extreme point. So z ′ must be an extreme
point of PCp(G

′), and because of the induction hypothesis it must be integral. �

In what follows, we will show that G contains no odd cycle. Let us assume the contrary,
and let C = {(vi, vi+1) | i = 1, . . . , 2l} ∪ {(v2l+1, v1)} be an odd cycle.

Remark 16. 0 < z(vi) < 1, for i = 1, . . . , 2l + 1 .

This remark follows from Claim 1.

Remark 17. Since G is Y -free, if C1 and C2 are two directed cycles in G, then C1 ∩ C2 = ∅.

Claim 2. At most one arc of C is non saturated by z.

Proof. Suppose that we have two arcs (vi, vi+1) and (vj , vj+1) that are not saturated by
z, that is,

z(vi, vi+1) < z(vi+1), and

z(vj , vj+1) < z(vj+1).

Since C is odd, then either P
vi+1
vj+1

or P
vj+1

vi+1
is odd. Suppose P

vi+1
vj+1

. By Claim 1,

0 < z(u, v) < 1 for every arc (u, v) in P
vi+1

vj+1
and by Remark 16, 0 < z(v) < 1 for every

node v in V (C). Also by Remark 17, the nodes in P
vi+1

vj+1
do not belong to another cycle.

It follows that z[P
vi+1
vj+1

]+ε tight the same tight constraints by z, which contradicts the
fact that z is an extreme point of PCp(G). �

Claim 3. If P1 and P2 are two paths going from V (C) to some pendent nodes, where
all the inner nodes of both P1 and P2 are not in V (C), then P1 and P2 cannot have the
same parity.

Proof. Let P vk
ul1

= vk, u1, . . . , ul1 , P vm

u′

l2

= vm, u′
1, . . . , u

′
l2
, be two paths having the same

parity, with z(ul1) = z(u′
l2
) = 1, k ≤ m. Notice that (vk, u1) and (vm, u′

1) are in

δ+(V (C)). Where l1 and l2 may be equal to 1, and ul1 , u′
l2

may coincide. Remark that
from Claim 1, we have 0 < z(v) < 1 for any node v in P1 and P2 (v is not a pendent
node).
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Let P vk

u′

l2

be the path obtained by joining the path in C from vk to vm and P vm

u′

l2

and

let P vm
ul1

be obtained by joining the path in C from vm to vk and P vk
ul1

. Since C is odd,

then either P vk

u′

l2

and P vk
ul1

or P vm
ul1

and P vm

u′

l2

, are of the same parity.

Suppose that P vk

u′

l2

and P vk
ul1

have the same parity. Consider z1 = z[P vk

u′

l2

]ε and z2 =

z1[P
vk
ul1

]−ε, then z2 and z satisfy the same constraints with equality. Notice that since G

is Y -free, the nodes and arcs in C, P vk

u′

l2

and P vk
ul1

cannot appear in any other cycle. A

similar proof can be used if P vm
ul1

and P vm

u′

l2

have the same parity. �

From Claim 2, we distinguish two cases:

(a). All arcs of C are saturated by z. By Claim 3 we have that |δ+(V (C))| ≤ 2.
Suppose that |δ+(V (C))| = 2. We can assume that δ+(V (C)) = {(v1, u), (v2k+1, w)}.
We have

x(v2i−1, v2i) + x(v2i, v2i+1) = 1,

for i = 1, . . . , l. which implies x(C) = l + x(v2l+1, v1). Thus one of inequalities (7) is
violated. If |δ+(V (C))| ≤ 1 a similar proof can be used.

(b). There is exactly one arc in C that is not saturated by z. First we are going to
prove that any path from V (C) to a pendent node is even.

Let (v2l+1, v1) be the non saturated arc in C. Let P v2k
w be an odd path from v2k to a

pendent node w. Let z1 = z[P v2k
w ]ε, and z2 = z1[P

v2k
v1

]−ε. Here P v2k
v1

denotes the path in
C from v2k to v1. Since G is Y -free, the nodes and arcs in C and P v2k

w cannot appear
in any other cycle. We have that z and z2 satisfy the same constraints as equation, a
contradiction.

Now let P
v2k+1
w be an odd path from v2k+1 to a pendent node w. Let P be the path

obtained by joining the path in C from v1 to v2k+1 and P
v2k+1
w . Let z1 = z[P ]ε, the

vectors z and z1 satisfy the same constraints as equation.

This shows that any path from V (C) to a pendent node is even, and by Claim 3 we
have that |δ+(V (C))| ≤ 1.

If δ+(V (C)) = {(v2k+1, w)}, we have that

x(v2i−1, v2i) + x(v2i, v2i+1) = 1,

for i = 1, . . . , l, which implies x(C) = l + x(v2l+1, v1). Thus one of inequalities (7) is
violated.

If δ+(V (C)) = {(v2k, w)}, we have that

x(v2i−1, v2i) + x(v2i, v2i+1) = 1, for i = 1, . . . , k − 1,

x(v2i, v2i+1) + x(v2i+1, v2i+2) = 1, for i = k, . . . , l − 1,

x(v2l, v2l+1) + x(v2l+1, v1) = 1.

Therefore x(C) = l + x(v2k−1, v2k). Thus one of inequalities (7) is violated.

Finally if δ+(V (C)) = ∅, in a similar way we obtain x(C) = l + x(v2l+1, v1).

Thus G contains no odd cycle. From Corollary 14, z is integer. A contradiction. �
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5. The Uncapacitated Facility Location polytope

Now we study the case when equation (3) is removed from the definition of PCp(G).
Let G = (V,E) be a graph, and let G′ be the graph obtained by adding to G a new
component consisting of the nodes u and v and the arc (u, v). For a vector z associated
with G′ let zG be the restriction of z to G. Let Π(G) be the polytope defined by (2),
(4), (5), (6) and (7). Let Φp(G

′) be the polytope defined by

zG ∈ Π(G)(38)

z(V ∪ {u, v}) = p(39)

z(u, v) = 1 − z(u)(40)

0 ≤ z(u, v) ≤ z(v) = 1.(41)

Lemma 18. If z∗ is an extreme point of Π(G), then z̄ is is an extreme point of Φq(G
′),

where

q = dz∗(V )e + 1

z̄(w) = z∗(w) for w ∈ V,

z̄(w, t) = z∗(w, t) for (w, t) ∈ E,

z̄(u) = q − z∗(V ) − 1

z̄(u, v) = 1 − z̄(u)

z̄(v) = 1.

Proof. Clearly z̄ ∈ Φq(G
′). Suppose that z̄ = 1/2z1 + 1/2z2, with z1, z2 ∈ Φq(G

′). Then
z∗ = 1/2zG

1 +1/2zG
2 , and zG

1 = zG
2 since z∗ is an extreme point. We have z1(v) = z2(v) =

1. Equation (39) implies z1(u) = z2(u) and z1(u, v) = z2(u, v). Thus z̄ is an extreme
point. �

The lemma above shows that any fractional extreme point of Π(G) can be completed
to a fractional extreme point of Φq(G

′). If G is Y -free then G′ is also Y -free and Φq(G
′)

is integral. This shows the following.

Theorem 19. If G is Y -free then the polytope Π(G) is integral.

Theorem 20. The pMP and the UFLP are polynomially solvable for the class of Y -free
graphs.
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