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Abstract - We present a qualitative analysis of the
transition energy and latency associated with dynamically
exploiting the two most efficient low power states in
advanced System-On-a-Chip (SOC) processors. In
particular we present an equation for calculation of the
transition energy and latency of the PowerDown (PD) low
power state. We show that the average power consumption
in the PD state is significantly influenced by the transition
energy, and that the transition energy may be so large that
it becomes more efficient to exploit the "lesser"
ClockSuspend state in systems which use an operating
system that employ a periodic timer interrupt mechanism.
In particularly this is true for small form factor mobile
devices. In this respect the SOC should remain powered off
during OSC stabilization to save the potentially large
energy contribution from SOC leakage power. Fiinally, we
argue that operating systems that employ a work
dependent timing (WDT) scheme can effectively eliminate
the transition periods and extend the time spent in the PD
state. In turn this can significantly reduce the average
power consumption in the PD state in well designed
systems. We expect the PowerDown state to be of most use
in small form factor WDT based mobile systems that have
very low idling power levels.

1.  Introduction

Power management has risen to become a very
important design aspect in mobile devices. Many mobile
devices are operated predominantly in the idling mode. In
this mode, users are not using the device but they still
expect the device to provide full functionality and to have
instant-on response. In mostly idling devices, the low
power states of the hardware components are of particular
importance. This is due to the extended time these device
spend idling and during which, in an accumulated sense,
overall more energy may be dissipated than during active
periods, i.e., while executing code. Thus reducing the
power consumption of the low power states is crucial to
extending battery life.

The main cause of power consumption in the
low-power states of System-On-a-Chip (SOC) processors
is the CMOS leakage current which keeps increasing in

every new technology release. The reasons for this is the
constantly shrinking feature size and the lowering of
threshold voltage to accommodate smaller supply voltages
[1,2]. Additionally, the increasing complexity of SOCs
causes the device count to increase which further adds to
the leakage current. In particular, mobile processors
fabricated in the most recent 0.13 um process are
anticipated to have leakage powers that can no longer be
disregarded in view of the total system power budget. The
overall effect of this is that the power consumption is
increasing to an unacceptable level in processor idle
periods. Even though there are means for controlling the
leakage current in the inactive parts of the processor (see
[2] for a brief overview), these methods are mostly in the
experimental stage. 

In more recently announced SOCs, a new
low-power state has been introduced, namely the
PowerDown (PD) state [3,4,6,8].  In this state the power to
most of the SOC is removed, thus eliminating the leakage
power experienced in the less efficient low-power states,
such as the ClockSuspend (CS) state, where the SOC clock
is globally stopped but the SOC is still powered.  However,
since it takes additional energy and time to transition into
and out of the PD state as compared to the CS state, it is not
always economical to exploit the PD state.

This paper presents a qualitative analysis of how
much energy and latency is associated with dynamically
exploiting the PD state (whenever the system is idling
between system timer interrupts) and determines when it
becomes economical to exploit the PD state over the CS
state. From a systems usage perspective, the analysis
represents a mostly idling system where most external
devices to the SOC are shut down, or disabled. These
devices only need to be woken up and restored when the
user or the system explicitly needs them. So if a LAN
interface is down and needs to be reinitialized, this will take
extra time, and is not included in our analysis. However,
this will be a rare event in the overall scheme of things (for
an idling system), and the same can be said about the audio
device and the display.

The paper uses power values from processors
fabricated in 0.13 um process technology.  In a previous
paper [19], we presented a similar analysis, except for
processors manufactured in 0.18 um process technology.
This paper also reflects an improvement in the power
consumption of DRAM technology that has taken place
since our previous paper.

The paper is organized as follows. In Chapter 2 we
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will shed some more light on the low-power states of
advanced SOCs. Then, in Chapter 3, we present the analysis
of the energy and latency associated with exploiting the PD
state. Chapter 4 shows the results of the analysis, and
finally, in Chapter 5, we discuss when it becomes more
economical to exploit the PD state over the CS state.

2.  Low Power States In Advanced
System-On-a-Chip Processors

Advanced mobile System-On-a-Chip (SOC)
processors [3-13] have multiple Power Management states.
For a brief survey of some of these processors see [14]. The
high-level configuration of advanced SOCs is shown in
Figure 1.

CPU

APM

OSC

PLL

Caches

SDRAM
 CTRL.

 LCD
CTRL.

Figure 1.  Typical high-level architecture of advanced SOC
processors.  The lines branching out from the PLL represents the
clock tree.  Buses not shown. Colored areas show some of the
more important cores, while grayed areas represent other cores
(UART, USB, touchscreen, etc.)  APM is the advanced power
management core; which is always powered. Every component in
this figure has only illustrative and qualitative meaning.

An SOC is composed of several cores which each
carries out a specific function. Some of the key cores we
shall reference in the following are the Advanced Power
Management (APM) core, the on-chip system oscillator
(OSC) core, the Phase-Locked Loop (PLL) core, and the
CPU core. The remaining cores are collectively referred to
as "peripheral" cores. We shall also refer to the D- and
I-caches (denoted as Caches in the figure) and which are
part of the CPU core. Finally, we will refer to various parts
of the clock distribution tree (also shown in the figure).
The main issue with the clock tree is that the clock
frequency may be different from core to core, as illustrated
in Figure 1.  Most importantly, the CPU usually runs at a
faster clock frequency than any of the peripheral cores. The
PLL generates all of the high-speed clocks to the CPU core,
to the peripheral cores and to the local SOC bus. The APM
employs its own low-speed high-precision oscillator and
typically runs at 32 kHz. The oscillator is used for

maintaining the real-time clock (RTC), the local RTC timer
and to keep the Interrupt Controller Unit operational. The
latter enables devices such as the RTC timer and external
devices to wake-up the SOC.

Advanced SOCs may have all or some of the
power states listed in Table 1. The way these low power
states are implemented, and what they actually do when
they are toggled, differs somewhat from processor to
processor.

In the Idle state the clock to the CPU core is
stopped, but other peripheral cores remain clocked.
Basically all processors have this state, which is also
sometimes referred to as the halt state. Most advanced
SOCs also have a global ClockSuspend (CS) state in which
the clock is globally stopped to all cores. The only core that
remains active is the APM unit. The logical state in the
cores is preserved. Some processors optionally allow the
programmer to keep the OSC running. The benefit of this is
that only the PLL lock-in time delay is experienced upon
exiting this state (which may range from 50-200 us.) If the
OSC is stopped, it takes significantly longer to exit this
state, since it takes somewhere between 1-10 ms for today's
high-speed OSC to stabilize, assuming the OSC uses a
crystal for reference. An older processor such as EP7312
[13] may take up to 250 ms to exit out of the CS state.

>2, >400.05-0.2Off/OffPowerDown
>0.1, >10.25-5Off/OffClockSuspend
0, 0>5Off/OnIdle
[ms], [uJ][mW]Power State

Transition time
& energy

PowerClock
CPU/Periph

Table 1.  Definition of processor low power states and
characteristics associated with each state. The "Clock" column
indicates whether the clock is On or Off in the CPU core and in
the Peripheral cores. The "Power" column indicates minimum
SOC power level in the low power state. The "Transition" column
indicates minimum (time,energy) required to enter and exit the
low power state. The values are representative of advanced 32-bit
SOC mobile processors and assumes the system crystal oscillator
is turned off in the PD state (but is on in the CS state.)  Data from
[3-14] were used to populate this table.

Finally, some processors [3,4,6,8] have a
PowerDown (PD) state in which power is removed from all
the cores, including the OSC and PLL. Only the APM unit
remains active which is achieved by putting this core on a
so-called voltage-island on the SOC and powering it off a
separate voltage supply (see for example [3]). One of the
drawbacks with exploiting this state is that all SOC logical
state and processor cache are lost. Therefore SOC state and
D-cache would have to be saved before entering, and SOC
state restored upon exiting, the PD state. Saving and
restoring this SOC state requires additional energy and
latency. In addition, as it was the case for the CS state, the
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OSC stabilization time will add to the exit latency out of
the PD state. An older processor like SA1110 [6] may take
up to 160 ms to exit this state.

3.  Analysis of Exploiting the PowerDown
State: A Qualitative System Perspective

In the following we shall assume that the global
SOC logical state is saved before entering the PowerDown
(PD) state, and then restored on exiting the PD state. This
will enable the system to be fully responsive in a matter of
milliseconds upon detection of a wake-up event. The
procedure for transitioning into and out of the PD state is
as follows:

Transitioning into PD state:
1. Set CPU frequency, , to maximum frequency atfcpu

minimum supply voltage, , or to maximumVdd,min
SDRAM clock, , whichever is the smallest. fmem

2. Save SOC peripheral state to memory.
3. Stop unnecessary peripheral clocks.
4. Save CPU state to memory.
5. Write out D-cache.
6. Enter PD state.

Transitioning out of PD state:
7. Wait for OSC to stabilize.
8. Enable PLL.
9. Restore CPU and SDRAM clocks as above.
10. Do not restore D-cache.
11.Restore CPU and peripherals states.

Secondly, the following will be assumed:

It takes  CPU clock cycles to read each stateNCstate
register and save it in cache. Equally it takes NCstate
cycles to restore each state register.

 is the time ittstate<−>mem,soc =NCstate * Sstate/4/fcpu
takes to save the state to memory, or to restore the state
from memory, and during which time we assume the
SOC is running all the time, i.e., it doesn't exploit any
low power states, not even the CPU halt state.  isSstate
the size of the processor state register set (in bytes).
SDRAM modules are clock gated when there's no
pending requests. Unused modules are in self-refresh
state. This will significantly reduce memory power
consumption during the transition. 
DRAM controller can manage 4 memory modules
individually.
In step 2 and 11, DRAM is accessed at a rate of 1 while

loading the power management code used for the saving
and restoring steps, and which is independent of the size
of the SOC state, , to be saved and restored andSstate
which is further independent of the SOC state addresses. 

  is the time it takes to loadtpmcode<−mem = Spmcode/4/fmem
the power management code. This time also represents the
time during which SOC is in active mode, and it
represents the accumulated time the memory is accessed.
In steps 2, 4 and 11, we shall assume that it takes three
memory accesses to save, or restore, each state register,
i.e., two accesses to retrieve address locations and one
access to save, or retrieve, the state register data. 

  is the accumulatedtstate<−>mem,mem = 3 * Sstate/4/fmem
time the memory is accessed in order to either save the
state to memory, or to restore the state from memory.
In step 5, DRAM is accessed at a rate of 1 while writing
out the D-cache and TLB.  istcache−>mem =Scache/4/fmem
the time it takes to write out the D-cache to memory and
where  is the size of the D-cache (in bytes).  ThisScache
time also represents the time during which SOC is in
active mode, and it represents the accumulated time the
memory is accessed.
DRAM is accessed predominantly in burst mode due to
cache line fills and flushes. Cache lines are typically 8 or
16 32-bit words long.
We shall ignore the time it takes to enter and exit the
DRAM clock gate state.
Transition power levels are the same in the both the entry
and exit transition periods.
32-bit architecture with separate data and addresses buses.
A bulk decoupling capacitor of 10 uF is positioned in
close proximity to the SOC chip to filter out any
high-frequency noise on the power supply. A total of 

uF  5 uJ is stored in this capacitorEcap = 1
2 * 10 *Vdd

2 =
assuming  1 V.Vdd =

Using the above assumptions and procedures, the
total PD transition energy may be expressed as shown in
Equation 1 and the total transition time may be expressed as
shown in Equation 2. In Equation 1,  is the totalPsoc,active
SOC power @  in the active state, including APM,fcpu
OSC, PLL, leakage and I/O powers.  is thePmem,burst
memory power at the burst frequency  and whichfmem
includes the power required to drive the memory bus.  

 is the SOC power consumption in thePsoc,pm,CS
ClockSuspend (CS) state (including leakage power and I/O
power but excluding OSC and PLL active powers). 

 is the memory power consumption duringPmem,CG
non-accesses when memory is clock gated by the DRAM
controller.  is a boolean variable which equals zero ifbosc
the OSC is off while in the PD state, and which equals one
if the OSC keeps running.  is a boolean variable whichbsoc
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equals zero if the SOC is powered off during OSC
stabilization (i.e., OSC either sits on its own voltage-island
or it is part of the APM core).  equals one if SOC andbsoc
OSC are powered up simultaneously. In the case of  = 0bsoc
(SOC off), we should really instead include the power
consumption in the PD state, . But we ignore itPsoc,pm,PD
since it will be very small as shown in Table 1.

Explanation of Equations 1 and 2

The eight lines of expressions in Equation 1
account for the following energies and actions.  Note that
the terms "processor" and "SOC" are equivalent.

Line 1: Energy associated with loading the transition code
and saving all processor state to memory. Both processor
and memory are in their active states.
Line 2: Energy associated with saving all processor state
but accounting for the idling memory energy, i.e., the target
memory module is clock gated while the processor is
retrieving individual state registers since it takes many more
CPU cycles to fetch a state register than it does saving it to
memory.
Line 3: Energy associated with writing out the D-cache to
memory. Both processor and memory are in their active
states.
Line 4:  Energy associated with the discharging of the 10
uF SOC decoupling capacitor every time the PD state is
exploited.
Line 5: Energy associated with stabilizing OSC and PLL on
transitioning out of the PD state. During the OSC
stabilization period the relevant processor power is the sum
of the OSC power and the leakage+I/O power (which is the
power in the CS state.) The PLL is not turned on until after
the OSC has stabilized which is why the PLL power only
appears in the second term which accounts for the power
consumption during PLL stabilization. Note that in the case
where  = 0 (OSC off), we ignore the SOC powerbosc

consumption in the PD state since it is an insignificant
contribution. Memory power is dominated by the
self-refresh power.
Line 6: Energy associated with restoring all processor state
from memory. Both processor and memory are in their
active states.
Line 7: Energy associated with restoring all processor state
but accounting for the idling memory energy, i.e., the target
memory module is clock gated while the processor is
restoring individual state registers since it takes many more
CPU cycles to restore a state register than it does fetching it
from memory.
Line 8: Energy associated with all other system energy
contributions during the saving and restoring process which
are not related to the processor and memory. More
specifically, the background "offset" power consumption, 

, includes display power, audio power, the powerPsys,offset
loss in the power supply, power loss in board bias circuits,
and other system components.

In Equation 2, the first line in the last expression
accounts for the time it takes to enter the state while the
second line accounts for the time it takes to exit the state.

4.  Results

For calculation of   and   weEtrans,PD ttrans,PD
picked the following system parameter values:

Minimum SOC voltage:  = 1.0 V.Vdd,min
Processor process technology: 0.13 um.
Temperature: 25C.
Max CPU frequency at : .Vdd,min fcpu = 100 MHz
Processor power: @ .Psoc,active = 25 mW fcpu
Size of transition code: .Spmcode = 2 KB
Size of data cache: .Scache = 16 KB
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  Etrans,PD = Psoc,active * (tpmcode<−mem + tstate<−>mem,soc) + Pmem,burst * (tpmcode<−mem + tstate<−>mem,mem) +
  Pmem,CG * (tstate<−>mem,soc − tpmcode<−mem − tstate<−>mem,mem) +
  Psoc,active * tcache−>mem +Pmem,burst * tcache−>mem +
  Ecap +
  (1 − bosc) * (Posc + bsoc * Psoc,pm,CS + Pmem,SR) * tosc + (Posc + Ppll + Psoc,pm,CS + Pmem,SR) * tpll +
  Psoc,active * (tpmcode<−mem + tstate<−>mem,soc) + Pmem,burst * (tpmcode<−mem + tstate<−>mem,mem) +
  Pmem,CG * (tstate<−>mem,soc − tpmcode<−mem − tstate<−>mem,mem) +
  . (Eq. 1)(Psys,offset + 3 * Pmem,SR) * ttrans,PD

     ttrans,PD = ttrans,PD,enter + ttrans,PD,exit
  = tpmcode<−mem + tstate<−>mem,soc + tcache−>mem +
  . (Eq. 2)(1 − bosc) * tosc + tpll + tpmcode<−mem + tstate<−>mem,soc



Size of state: .Sstate c [0; 4000] Bytes
Number of CPU cycles per state: .NCstate c [5; 25]
Memory configuration: Four 16MB modules, 1.8V,
32-bit, 100MHz SDRAM [16].
Memory bus frequency: .fmem = 100 MHz
Memory power per module in burst mode: 

 @ .Pmem,burst = 162 mW fmem
Memory power per module when clock gated: 

 (includes 100 ns auto-refreshPmem,CG = 0.6 mW
every 15.6 us.) Note, that the clock gated state is
denoted PowerDown in the data sheet (though the
DRAM is not powered down.)
Memory power per module in self-refresh: 

.Pmem,SR = 0.3 mW
OSC power and stabilization time:  andPosc = 0.5 mW

 @. .tosc = 3.0 ms fosc = 12 MHz
PLL power and lock-in time:  and Ppll = 4.0 mW

.tpll = 100 us
.Psoc,pm,CS = 3.0 mW

System offset power: .Psys,offset = 5.0 mW

Figure 2 shows the transition time, , asttrans,PD
function of the size of the processor state, , and with Sstate

 as parameter. The figure excludes the contributionNCstate
from the OSC stabilization. For small state sizes, the main
contributor to the total transition time is the PLL lock-in
time of 100 us. The saving of the 16 KB D-cache adds
another constant contribution of 41 us. The loading of the
power management code takes 10 us. At very large state
sizes and very large number of cycles per state sizes, the
saving and restoring of the state registers become the main
transition time contributors.
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Figure 2.  Transition time, , as function of the size of thettrans,PD
SOC state register set, , and with the number of cycles perSstate
state register, , as parameter. The OSC is assumed to beNCstate
running ( ) while in the PD state. If the OSC is turnedbosc = 1
off, the OSC stabilization time would add a latency of 3,000 us.

Figure 3 shows the transition energy, , asEtrans,PD
function of the size of the processor state, , and with Sstate

 as parameter. Three cases are shown. The bottomNCstate
set of curves (case 1) account for OSC running while in the
PD state. For small state sizes, the main contributor to the
total transition energy is the memory energy associated with
saving the 16 KB cache into memory. As the state size
grows and/or the number of cycles per state grows, so does
the energy; which is true for the other two cases as well. At
very large state sizes and very large number of cycles per
state, the saving and restoring of the state registers become
a very significant energy contributor and which is roughly
equally split between processor and memory contributions.
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Figure 3.  Transition energy, , as function of the size ofEtrans,PD
the SOC state register set, , and with the number of cycles perSstate
state register, , as parameter. The OSC is assumed to beNCstate
running ( ) while in the PD state. If the OSC is turned off,bosc = 1
an additional 34.5 uJ is incurred while waiting for  OSC to stabilize.

The top set of curves (case 2) account for the more
realistic case where OSC is turned off and power is applied
immediately to the SOC on exiting out of the PD state. The
exit transition delay, however, is now increased by the 3.0
ms OSC stabilization time. And as a result the transition
energy increases by 29 uJ with respect to OSC running due
to the energy consumed by background power, SOC
leakage and memory self-refresh during the stabilization
period. If possible, by delaying applying power to the SOC
core until OSC has stabilized, we can at least eliminate the
energy contribution from the leakage current during
stabilization. This case is shown in the middle set of curves
(case 3) where we gain about 9 uJ. Note that at higher
temperatures and next generation SOCs, where the leakage
will be much larger, the gain will be even more pronounced.
For example, at 55C the SOC leakage power will increase
to 12 mW and cause the curves in case 2 (immediate SOC
power) to increase by about 28 uJ while the other two cases
only experience a 1 uJ increase. Obviously, it would be
desirable if power is applied to the SOC after the OSC has
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stabilized, which would eliminate the 3ms 12mW = 36 uJ*
contribution from the leakage current (at 55C.)

It should be noted that the case with the lowest
transition energy (i.e. case 1, OSC running) does not
represent the best configuration for saving power, as one
have to consider the energy consumption "inside" the PD
state as well. In fact, the most efficient configuration is case
3 since this is the case where the OSC is turned off for the
longest possible time. All other power contributions remain
the same. The main reason for the discrepancy between case
1 and 3 is due to the contribution from the background
power during stabilization. However, the background power
is always present, so in case 1 we experience the
background for a correpondingly longer time "inside" the
PD state.

The transition energy is smaller than 71 uJ for the
range of parameters shown in the figure. Even if we assume
a system equipped with a CPU that is twice as inefficient
(50 mW), and which has OSC and PLL powers that were
twice as big (1 mW and 8 mW), and a twice as big
background system offset power (10 mW), the worst case
transition energy would remain smaller than 100 uJ in all
considered cases. Further,  @  wouldEtrans,PD Sstate = 0
only grow by 3 uJ. Transition times are unaffected by any
of these changes.

Going back to case 1 (OSC running), other less
significant contributions to the transition energy stem from
the "constant" power consumers OSC, PLL and SOC
leakage and which amount to 0.1-0.3 nJ, 0.6-2.6 uJ and
0.5-2.0 uJ, respectively, across the range of the parameters
shown in Figure 3.  Furthermore, the background system
offset energy range is 0.8-3.3 uJ and the memory
self-refresh energy range is 0.1-0.6 uJ. All these energies,
however, would increase significantly if the CPU and
memory were operated at for example 10 MHz instead of
100 MHz. Using Equation A.1 from Appendix A for
calculating  at 10 MHz, we find that the transitionPsoc,active
energy increases to 51 uJ @  = 0, to 77 uJ @ ( , Sstate Sstate

) = (4000, 5) and to 140 uJ @ ( , ) =NCstate Sstate NCstate
(4000, 25) while transition times increase to 612 ns, 1612
ns and 5612 ns, respectively (see Figure 2 for comparison.)
The only reason for the increase in the transition energy is
due to the accumulated power consumption from the
"constant" power consumers mentioned above since these
consumers are now burning power over a considerably
longer period. So the optimal CPU frequency should be as
high as possible at , but not greater than theVdd,min
maximum memory clock, while the memory clock should
equal the CPU clock.

So how big is the transition energy compared to
the energy consumed in the PD state? To determine this we
will assume that the PD state is toggled between system
timer interrupts, that the timer interrupt interval is 10 ms,
and that the duration of the timer interrupt service routine
can be ignored. Further, consider the case where the OSC is

stopped,  = 15,  = 2000 and that NCstate Sstate Psoc,pm,PD
can be ignored. From Figure 2 we get  = 3.3 ms andttrans,PD
from Figure 3 we get  = 55 uJ. The later meansEtrans,PD
that only 6.7 ms is spent in the PD state wherefore Epm,PD
=    6.7ms = 60 uJ. Thus, the(4 *Pmem,SR + Psys,offset) *
transition energy accounts for 48% of the total energy spent
by toggling the PD state. For even more efficient systems,
such as small form factor systems with less memory and 

 < 5 mW, the transition energy will dominate thePsys,offset
average power consumption even more. As we shall see in
the next section, the sheer size of the transition energy can
actually render the CS state are more efficient state to use.

5.  ClockSuspend versus PowerDown

From a system perspective, whenever the system is
idling, i.e., when there is no computational work to be done,
the OS has to decide which of the two low power states, CS
or PD, to exploit. In this section we shall discuss how this
decision may be made by the OS.

Given the choice of the two low power states, PD
should be exploited over CS if the total energy consumption
associated with exploiting PD is smaller than the total
energy consumption associated with exploiting CS. This
condition may be expressed as

            (Eq. 3)Etrans,PD + Epm,PD < Etrans,CS + Epm,CS

where

Etrans,CS = (Posc + Psoc,pm,CS + 4 * Pmem,SR + Psys,offset) *
                   (Eq. 4)ttrans,CS + Ppll * tpll

is the system transition energy associated with transitioning
out of the CS state. Transitioning into CS only takes a few
clock cycles, and may be ignored. As in the PD case, we
again take into consideration the OSC stabilization time. To
carry over the notation from the previous chapter, we shall
refer to the total memory power in self-refresh mode as 

.  and  are the energies4 * Pmem,SR Epm,PD Epm,CS
consumed while in the PD and CS low power states,
respectively, i.e., in between the entry and exit transition
periods. These values may be calculated as follows

Epm,PD = (Psoc,pm,PD + bosc * Posc + 4 * Pmem,SR +
                (Eq. 5)Psys,offset) * (tidle − ttrans,PD)

Epm,CS = (Psoc,pm,CS + Posc + 4 * Pmem,SR +
               (Eq. 6)Psys,offset) * (tidle − ttrans,CS)

where  is the time the processor will spend idling andtidle
thus can be put into a low power state. Basically, this period
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will equal the system timer interrupt interval. Equation 5
can represent the case where the OSC keeps running all the
time ( ) as well as the case where OSC is turnedbosc = 1
off ( ) while in the PD state. This is to account forbosc = 0
the fact that in some processors there may be no other
choice but to turn off the OSC, while in other processors it
may be an option. In Equation 6 we have assumed that the
OSC is always running while in the CS state. We make this
assumption for two reasons. Firstly, the OSC would not
add significantly to the overall system power consumption
in this state. Secondly, the transition time is significantly
reduced if the system doesn't have to wait for the OSC to
stabilize. Thus, the CS transition time is simply equal to the
PLL lock-in time, i.e.,  . Note that both of thettrans,CS = tpll
above reasons may hold true for the PD state as well,
though the first reason is less likely to be true due to the
much lower power consumption in the PD state than in the
CS state.

Combining now Equations 3-6, we can calculate
the idle times which satisfy Equation 3 as

tidle > (Etrans,PD −Etrans,CS −
           (4 * Pmem,SR + Psys,offset) * (ttrans,PD − ttrans,CS) −
           (Psoc,pm,PD + bosc * Posc) * ttrans,PD +
           (Psoc,pm,CS + Posc) * ttrans,CS)/
           (Psoc,pm,CS − Psoc,pm,PD + (1 − bosc) * Posc)

            (Eq. 7)

Figure 4 shows the idle time contours versus the
SOC CS power. The contours represent the minimum idle
time at which it become more economical to exploit the
PD state than the CS state. The figure shows that the
smaller the CS power level is, the longer a time must be
spend in the PD state to offset the PD transition energy.
The figure also shows that the most efficient operating
point is to turn the OSC off and to apply power to the SOC
after the OSC has stabilized ( ). This is because thebsoc = 0
energy consumed in the PD state will more than
compensate for the increase in the PD transition energy as
compared to keeping the OSC running. In systems that
have small CS power level, it is particularly beneficial to
be able to turn the OSC off.

In operating systems such as Windows and Linux,
the system timer interrupt frequency is 100 Hz, or 10 ms.
In such systems, it will only be economical to exploit the
PD state if the CS power level is greater than about 4 mW.
This is a very interesting result as it shows how significant
the PD transition energy really is, namely that it may be
significant enough to make the PD state useless from the
perspective of toggling the PD state between timer ticks. It
should be noted that even if taking into consideration other
values of  (e.g., =5 and =25), that this only slightlyNCstate
changes the intersection point with the 10 ms idle time.
The value of  has a somewhat stronger effect on theSstate

intersection point, as one would also expect from Figure 3
due to the stronger influence on the transition energy from 

. Also notice that the intersection point with the 10 msSstate
idle time is not significantly dependent on whether OSC
keeps running, or whether OSC is shut down and power is
applied simultaneously to OSC and SOC ( ) onbsoc = 1
exiting the PD state or SOC power is applied after OSC
stabilization ( ).bsoc = 0
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Figure 4.  Minimum idle time at which it is equally efficient to
exploit the PD state or CS state as a function of the power level in
the CS state. The values from Chapter 4 are used, and 

 = {5,15,25},  = {500,4000} and  =NCstate Sstate Psoc,pm,PD
100 uW. Case shown for OSC off while in the PD state and
simultaneous power applied to OSC and SOC during stabilization
(i.e.,   = 0 and  = 1).bosc bsoc

6.  Summary and Discussion

We have presented a qualitative analysis of the
transition energy and latency associated with dynamically
exploiting low power states between OS timer interrupts.
Specifically, the analysis has centered around exploiting the
two most power efficient low power states of advanced
SOCs, namely the PD and the CS low power states. The
analysis assumes that the whole system is already in a
optimized low power state (e.g., display is off, audio device
is off, etc) so that only the SOC state needs to be saved and
restored in order to exploit the PD state.

One of most important results of the analysis is
that the average power consumption associated with the PD
state is significantly influenced by the PD transition energy,
and may even dominate the power consumption This is
particularly true for small form factor systems with small
amounts of memory (< 64 MB) and which have small
background power offsets, i.e.,  < 5 mW. In fact, itPsys,offset
was found that the transition energy may be so large that it
could render it more efficient to use the CS state than to use
the PD state.
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Eliminating transition energy by skipping OS timer
ticks.

Another important result of the analysis is that
which one of the low power states, PD or CS, that is the
most energy efficient mainly depends on the SOC power
consumption in the CS state, , and on the OSPsoc,pm,CS
timer interrupt interval. For a given system,  is aPsoc,pm,CS
constant. But the timer interrupt interval is not necessarily
fixed in the sense that it can be configured to a longer
interval at boot time. Though at the expense of reduced
responsiveness with respect to handling multiple tasks.
Figure 4 shows that the interval between OS timer
interrupts may indeed render it inefficient to use the PD
state between timer interrupts as compared to the CS state.
This is because the interrupt interval limits how much time
can be spent in the PD state. In other words, the energy in
the PD state is not sufficiently smaller than the energy in
the CS state to compensate for the PD transition energy. In
an OS that only generates timer interrupts when there is real
work to be done, such as in the Windows CE OS [17] and
in the IBM Linux watch [18], the interval between adjacent
timer interrupts will generally be much larger than the
regular periodic timer interrupt interval of 10 ms. We
denote the timing scheme in these systems as a Work
Dependent Timing (WDT) scheme. WDT systems
eliminate, or skip, workless timer interrupts. Thus, since the
PD transition energy only adds a contribution to the total
energy consumption every time a timer interrupt occurs, the
overall energy contribution from the PD transition energy
can be almost eliminated. So not only does a WDT based
system make it obvious to exploit the PD state over the CS
state, it also turns the PD state into an even more efficient
low power state where the average power consumption is
dominated by the power consumption in the PD state, 

. This is in contrast to the conventional periodicPpm,PD
timing mechanism where the transition energy may
dominate the average power consumption. 

It should also be noted that a WDT scheme would
also enable turning off other system components between
timer interrupts, such as the power supply, as the extended
period between work related timer interrupts can probably
absorb the larger latency associated with turning on these
other system components. Of course, there may be other
negative side effects of large turn on latencies, such as
impact on user experience. Also, certain hardware inputs,
such as a quick tap on a touchscreen, may be shorter than
the wake-up time. Thus, the tap may wake up the system,
but the system won't have a chance to determine the (x,y)
coordinates (assuming edge-triggered interrupt detection
and integrated touchscreen controller.)

Power supply decoupling capacitor.
In the analysis above we made the assumption of a

10 uF decoupling capacitor positioned next to the SOC.
Generally, the total size of the power supply decoupling

capacitor is much larger, perhaps 100 uF or more, to filter
out a broader frequency band. However, we believe it's
possible to split the capacitor into two components, namely,
a 90 uF or more, main capacitor positioned at the output of
the power supply, and a 10 uF capacitor positioned as close
to the SOC as possible to filter out any additional
high-frequency noise coupling into the power supply line
between the two capacitors. The advantage of such a design
is that the the main capacitor, in principle, can be gated off,
at the board level, with a good low-resistance power FET
(this would be done upon entering the PD state). In this
fashion, only the energy stored in the 10 uF capacitor is lost
while in the PD state. If a single (and ungated) 100 uF
capacitor is used instead, a total of 50 uJ would be lost
every time the PD state is exploited (assuming enough time
is spent in the state to fully discharge the capacitor, e.g.,
about 33 ms for a leakage current of 3 mA.). As may be
seen from Figure 3, a 50 uJ discharge energy would
dominate the total PD transition energy.  The drawbacks to
this approach is additional wiring to enable the SOC to
control the FET, additional board space to hold the FET and
an extra capacitor, and additional cost of the FET. A more
radical solution to this power loss is to design the SOC for
total on-chip power gating in the PD state.

To keep OSC running or not.
It may be possible to separately control the state of

the OSC, for example by incorporating it into the APM core
as in [8], or by putting it on a voltage-island. In either case,
it becomes possible to either keep it running while in the
PD state to enable extra fast transition out the state, and it
becomes possible to delay applying power to the SOC core
until OSC has stabilized to eliminate the potentially very
large leakage power contribution. As long as the OSC
power consumption remains small, this may not be an
unreasonable thing to do especially in view of the benefits
of eliminating the OSC stabilization time. The same
argument can not be made for the PLL, since keeping the
PLL running while powered down would probably increase
the power consumption in the PD state by too much.
Besides, the PLL lock-in time is nearly insignificant. So
there is no incentive in keeping the PLL running while
powered down.

Appendix: Calculating SOC Power at
Other Frequencies.

What if we want to calculate the transition energy
at some other frequency, , but we only know how muchfcpu
power the SOC consumes at some reference frequency, 

? Here's how to calculate the active SOC power atfcpu,ref
other frequencies (but at the same voltage). First note that 

 in Equation 1 is the total SOC power at somePsoc,active
frequency  in the active state. Aside from accountingfcpu
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for the digital switching power,  also includesPsoc,active
power contributions from OSC, PLL, APM, leakage and
I/O bias powers. Let's assume APM, leakage and I/O bias
powers can be included into the power consumption of the
CS state. We can now express the total active SOC power
as 

 Psoc,active(fcpu) = Posc + Ppll + Psoc,pm,CS +
fcpu

fcpu,ref
*

  (Psoc,active(fcpu,ref) − Posc − Ppll − Psoc,pm,CS)
        Eq. (A.1)

Using this formula and the values from section 4, the SOC
would consume 9.3 mW @ 10 MHz assuming 25 mW
SOC power @ 100 MHz. As seen from Equation A.1, the
SOC will always consume at least 7.5 mW due to OSC,
PLL and leakage powers.
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