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Many optimizations need information about points-to relationships to be effective. Pointer analysis

infers such information from program code. Unfortunately, some common programming language

features, such as dynamic linking, reflection, and foreign function interfaces, make pointer analyses
difficult. For example, prior pointer analyses for the Java language either ignore these features or

are overly conservative. To deal with dynamic linking, pointer analysis must run online, as the

program is executing. This paper presents the first non-trivial online pointer analysis.
This paper identifies all problems in performing Andersen’s pointer analysis for the full Java

language, presents solutions to those problems, and uses a full implementation of the solutions in
Jikes RVM for validation and performance evaluation. Our analysis is fast: on average over our

benchmark suite, if the analysis recomputes points-to results upon each program change, most

analysis pauses take under 0.1 seconds.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Pointer analysis, class loading, reflection, native interface

1. INTRODUCTION

The results of a pointer analysis can make many optimizations more effective.
Specifically, any optimization that depends on how heap objects are referenced,
such as inlining, load elimination, code movement, stack allocation, and paral-
lelization, can benefit from pointer analysis results.

However, modern programming languages, like Java, have features, like dynamic
class loading, that inhibit traditional pointer analysis. All Java programs use dy-
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namic class loading, and many depend on it for program extensibility at runtime.
For example, Eclipse [The Eclipse Project ] uses a plug-in architecture that uses
dynamic class loading to load features as needed. Dynamic class loading is a widely
used feature that can not be ignored.

All previous non-trivial pointer analyses are offline analyses. They are not appli-
cable to general Java applications, because they assume that the entire code base
is available ahead of time. Instead, they only handle a subset of Java, and are
unsound for some Java features. Unsoundness is acceptable in situations where the
advantages of the analyses outweigh the disadvantages of incorrect analysis results.
For example, many software engineering tools can benefit from pointer analysis re-
sults even when they are unsound. But unsound pointer analyses can not support
optimizations that rely on sound points-to information.

This paper presents the first non-trivial pointer analysis that works for all of
Java. It describes how to perform Andersen’s pointer analysis [1994] online in the
general setting of an executing Java virtual machine. Thus, the benefits of points-
to information become available to optimizations in the JIT compilers and other
components of the language runtime system. This paper

—identifies all problems of performing Andersen’s pointer analysis for the full Java
language,

—presents a solution for each of the problems,

—reports on a full implementation of the solutions in Jikes RVM, an open-source
research virtual machine from IBM [Alpern et al. 2000],

—discusses how to optimize the implementation to make it fast,

—validates, for our benchmark runs, that the analysis yields correct results, and

—evaluates the efficiency of the implementation.

In a previous paper on our analysis [Hirzel et al. 2004], we found that the im-
plementation was efficient enough for stable long-running applications, but too
inefficient for the general case. Because Jikes RVM, which is itself written in Java,
leads to a large code base even for small benchmarks, and because Andersen’s anal-
ysis has time complexity cubic in the code size, obtaining fast pointer analysis in
Jikes RVM is challenging. This paper improves analysis time by almost two orders
of magnitude compared to our previous paper. On average over our benchmark
suite, if the analysis recomputes points-to results upon each program change, most
analysis pauses take under 0.1 seconds.

The contributions from this work should be transferable to

—Other analyses: Andersen’s analysis is a whole-program analysis consisting of
two steps: modeling the code and computing a fixed-point on the model. Sev-
eral other algorithms follow the same pattern, such as VTA [Sundaresan et al.
2000], XTA [Tip and Palsberg 2000], or Das’s one level flow algorithm [2000].
Algorithms that do not require the second step, such as CHA [Fernández 1995;
Dean et al. 1995] or Steensgaard’s unification-based algorithm [1996], are eas-
ier to perform in an online setting. Andersen’s analysis is flow-insensitive and
context-insensitive. Although this paper should also be helpful for performing
flow-sensitive or context-sensitive analyses online, these analyses pose additional
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challenges that need to be addressed. For example, correctly dealing with ex-
ceptions is more difficult in a flow-sensitive analysis than in a flow-insensitive
analysis [Choi et al. 1999].

—Other languages: This paper shows how to deal with dynamic class loading,
reflection, and native code in Java. Dynamic class loading is a form of dynamic
linking, and we expect our solutions to be useful for other forms of dynamic
linking, such as DLLs. Reflection is becoming a commonplace language feature,
and we expect our solutions for Java reflection to be useful for reflection in other
languages. The Java native interface is a form of foreign function interface,
and we expect our solutions to be useful for foreign function interfaces of other
languages.

Section 2 motivates the need for online analysis. Section 3 introduces abstrac-
tions and terminology. Section 4 describes an offline version of Andersen’s analysis
that we use as the starting point for our online analysis. Section 5 explains how to
turn it into an online analysis, and Section 6 shows how to optimize its performance.
Section 7 discusses implementation issues, including how to validate that the anal-
ysis yields sound results, and how to use the analysis results. Section 8 evaluates
the performance of our analysis experimentally. Section 9 discusses related work,
and Section 10 concludes.

2. MOTIVATION

Dynamic linking prevents static interprocedural analysis. This section explains the
problem for the case of dynamic class loading in Java. An analysis running before
the program starts executing does not know where classes will be loaded from (2.1),
which classes will be loaded (2.2), when they will be loaded (2.3), or even whether
they will be loaded (2.4).

2.1 It is not known statically where a class will be loaded from

Java allows user-defined class loaders, which may have their own rules for where
to find the bytecode, or even generate it on-the-fly. A static analysis cannot
analyze those classes. User-defined class loaders are widely used in production-
strength commercial applications, such as Eclipse [The Eclipse Project ] and Tom-
cat [The Apache Tomcat Project ], to support flexible composition of software com-
ponents.

2.2 It is not known statically which class will be loaded

Even an analysis that restricts itself to the subset of Java without user-defined
class loaders cannot be fully static, because code may still load statically un-
known classes with the system class loader. This is done by the reflection call
Class.forName(String name), where name can be computed at runtime. For ex-
ample, a program may compute the localized calendar class name by reading an
environment variable. One approach to dealing with this issue would be to assume
that all calendar classes may be loaded. This would result in a less precise solution,
if, for example, at each customer’s site, only one calendar class is loaded. Even
worse, the relevant classes may be available only in the execution environment, and
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not in the development environment. Only an online analysis could analyze such a
program.

2.3 It is not known statically when a given class will be loaded

If the classes to be analyzed are available only in the execution environment, but
the application does not use Class.forName, one could imagine avoiding static anal-
ysis by attempting a whole-program analysis during VM start-up, long before the
analyzed classes will be needed. The Java specification says it should appear to
the user as if class loading is lazy (loading classes as they are needed), but a VM
could just pretend to be lazy by showing only the effects of lazy loading, while
actually being eager (loading classes before they are really needed). Therefore, one
could suggest a “link-time step” for analyzing a program written in the subset of
Java without user-defined class loaders or Class.forName. This is difficult to en-
gineer in practice, however [Serrano et al. 2000]. Because there is no single point
in time where linking happens, one would need a deferral mechanism for various
visible effects of class loading. An example for such a visible effect is a static field
initialization of the form

static final int companySize = SimulationWorld.company.size();

Suppose that SimulationWorld.company is null. The effect, a NullPointerEx-
ception that materializes as an ExceptionInInitializerError, should only become
visible when the class containing the static field is loaded. In fact, if Simulation-
World.company is itself a final static variable, then circular dependencies can lead
to a situation where the order of class loading determines whether the expression
SimulationWorld.company is or is not null. Loading classes eagerly and still pre-
serving the proper (lazy) class loading semantics is challenging.

2.4 It is not known statically whether a given class will be loaded

Even if one ignores the order of class loading, and handles only a subset of Java
without explicit class loading, implicit class loading still poses problems for static
analyses. A JVM implicitly loads a class the first time executing code refers to
it, for example, by creating an instance of the class. Whether a program will
load a given class is undecidable, as Fig. 1 illustrates: a run of “java Main” does
not load class C; a run of “java Main anArgument” loads class C, because Line 5
creates an instance of C. We can observe this by whether Line 10 in the static
initializer prints its message. In this example, a static analysis would have to
conservatively assume that class C will be loaded, and to analyze it. In general,
a static whole-program analysis would have to analyze many more classes than
necessary, making it inefficient (analyzing more classes wastes time and space) and
less precise (the code in those classes may exhibit behavior never encountered at
runtime). In situations like these, online analysis can be both more efficient and
more precise.

3. BACKGROUND

Section 3.1 describes ways in which pointer analyses abstract data flow and points-
to relationships in programs. Section 3.2 gives a concrete example for how pointer
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1: class Main {
2: public static void main(String[ ] argv) {

3: C v = null;

4: if (argv.length > 0)
5: v = new C();

6: }

7: }
8: class C {

9: static {

10: System.out.println("loaded class C");
11: }
12: }

Fig. 1. Class loading example.

analysis manipulates these abstractions. Section 3.3 defines what online and incre-
mental analyses are.

3.1 Abstractions

The goal of pointer analysis is to find all possible targets of all pointer variables and
fields. Because the number of pointer variables, fields, and pointer targets is un-
bounded during execution, a pointer analysis operates on a finite abstraction. This
section defines this abstraction. This section elaborates on what the analysis finds,
subsequent sections give details for how it works. While this section enumerates
several alternative abstractions, the lists are not intended to be exhaustive.

3.1.1 Variables. Variables are locals, parameters, or stack slots of methods, or
static fields of classes. A pointer analysis tracks the possible values of pointer
variables. The Java type system distinguishes which variables are of reference
(i.e. pointer) type: a pointer can not hide in a non-pointer variable or a union.
Multiple instances of the locals, parameters, and stack slots of a method can co-
exist at runtime, one per activation of the method. Pointer analysis abstracts this
unbounded number of concrete variables with a finite number of v-nodes. Alterna-
tives for variable abstraction include:

(a) For each type, represent all variables of all activations of all methods of that
type by one v-node (e.g., FTA and CTA in [Tip and Palsberg 2000]).

(b) For each method, represent all variables of all activations of that method by
one v-node (e.g., MTA and XTA in [Tip and Palsberg 2000]).

(c) For each variable, represent all instances of that variable in all activations of
its method by one v-node (this is one of the ingredients of a context-insensitive
analysis).

(d) Represent each variable by different v-nodes based on the context of the activa-
tion of its method (this is one of the ways to achieve context-sensitive analysis).

Most of this paper assumes context-insensitive analysis, using Option (c).

3.1.2 Pointer targets. Pointer targets are heap objects, in other words, instances
of classes or arrays. In Java, there are no pointers to other entities such as stack-
allocated objects, and there are no pointers to the interior of objects. Multiple
instances of objects of a given type or from a given allocation site can coexist
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at runtime. Pointer analysis abstracts this unbounded number of concrete heap
objects with a finite number of h-nodes. Alternatives for heap object abstraction
include:

(a) For each type, represent all instances of that type by one h-node (type-based
analysis).

(b) For each allocation site, represent all heap objects allocated at that allocation
site by one h-node (allocation-site based analysis).

(c) For each allocation site, represent the heap objects allocated there by different
h-nodes based on the context of the activation that executes the allocation site
(allocation-context based analysis).

Most of this paper assumes allocation-site based analysis, thus using Option (b).

3.1.3 Fields. Fields are instance variables or array elements. A field is like a
variable, but it is stored inside of a heap object. Just like the analysis is only con-
cerned with variables of reference type, it is only concerned with fields of reference
type, and ignores non-pointer fields. Multiple instances of a field can coexist at
runtime, because multiple instances of the object it resides in can coexist. Pointer
analysis abstracts this unbounded number of fields with a bounded number of nodes.
Ignoring arrays for the moment, alternatives for field abstraction for an h-node, h,
and a field, f , include:

(a) For a type T, represent all fields of all h-nodes of type T by one node (e.g.,
MTA and CTA in [Tip and Palsberg 2000]).

(b) Ignore the field f , and represent all fields of the h-node by the h-node itself
(field-independent analysis).

(c) Ignore the h-node h, and represent the field f for all h-nodes of the type that
declares the field by one f -node (field-based analysis, e.g., XTA and FTA in [Tip
and Palsberg 2000]).

(d) Use one h.f -node for each combination of h and f (field-sensitive analysis).

For array elements, the analysis ignores the index, and represents all elements of
an array by the same h.f -node h.felems. Most of this paper assumes field-sensitive
analysis, thus using Option (d).

3.1.4 PointsTo sets. PointsTo sets are sets of h-nodes, which abstract the may-
point-to relation. Alternatives for where to attach pointsTo sets include:

(a) Attach one pointsTo set to each v-node, and one pointsTo set to each h.f -node
(flow-insensitive analysis).

(b) Have separate pointsTo sets for the same node at different program points
(flow-sensitive analysis).

This paper assumes flow-insensitive analysis, thus using Option (a). When the
analysis finds that h ∈ pointsTo(v), then any of the variables represented by v may
point to any of the heap objects represented by h. Likewise, when the analysis finds
that h ∈ pointsTo(h′.f), then the field f of any of the heap objects represented by
h′ may point to any of the heap objects represented by h.
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3.2 Example

Consider a program with just three statements:

1 : x = new C(); 2 : y = new C(); 3 : x = y;

In the terminology of Section 3.1, there are two v-nodes vx and vy, and two
h-nodes h1 and h2. Node h1 represents all objects allocated by Statement 1, and
Node h2 represents all objects allocated by Statement 2. From Statements 1 and 2,
the analysis produces initial pointsTo sets:

pointsTo(vx) = {h1}, pointsTo(vy) = {h2}

But this is not the correct result yet. Statement 3 causes the value of variable y

to flow into variable x. To model this situation, the analysis also produces flowTo
sets:

flowTo(vx) = {}, flowTo(vy) = {vx}

Formally, these flowTo sets represent subset constraints:

vx ∈ flowTo(vy) represents pointsTo(vy) ⊆ pointsTo(vx)

In this example, the constraints mean that x points to all targets that y points
to (due to Statement 3), but possibly more.

An analysis component called “constraint propagator” propagates pointsTo sets
from the subset side to the superset side of constraints until it reaches a fixed-point
solution that satisfies the subset constraints. In the running example, it finds:

pointsTo(vx) = {h1, h2}, pointsTo(vy) = {h2}

Now, consider adding a fourth statement, resulting in the program:

1 : x = new C(); 2 : y = new C(); 3 : x = y; 4 : x.f = y;

Again, the analysis represents statements with flowTo sets:

flowTo(vx) = {}, flowTo(vy) = {vx, vx.f}

The node vx.f represents the contents of fields f of all objects that variable x

points to. Due to Statement 4, values flow from variable y to those fields. Therefore,
those fields can point to anything that variable y points to. In other words, there
are multiple subset constraints:

for each h ∈ pointsTo(vx) : pointsTo(vy) ⊆ pointsTo(h.f)

Since pointsTo(vx) = {h1, h2}, the for each expands to two new concrete con-
straints:

pointsTo(vy) ⊆ pointsTo(h1.f), pointsTo(vy) ⊆ pointsTo(h2.f)

For the full set of constraints, the constraint propagator finds the fixed point:

pointsTo(vx) = {h1, h2}, pointsTo(vy) = {h2},
pointsTo(h1.f) = {h2}, pointsTo(h2.f) = {h2}
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3.3 Kinds of interprocedural analysis

An incremental interprocedural analysis recomputes its results efficiently when the
program changes [Cooper et al. 1986; Burke and Torczon 1993; Hall et al. 1993;
Grove 1998]. By “efficiently”, we mean that computing new results based on previ-
ous results must be orders of magnitude cheaper than computing them from scratch.
Also, the computational complexity of recomputation must be no worse than the
computational complexity of analyzing from scratch. Because incrementality is de-
fined by this efficiency difference, it is not a binary property; rather, there is a
continuum of more or less incremental analyses. However, for each incremental
analysis, all analysis stages (constraint finding, call graph construction, etc.) must
deal with program changes. Prior work on incremental interprocedural analysis
focused on programmer modifications to the source code. This paper differs in that
it uses incrementality to deal with the dynamic semantics of the Java programming
language.

An online interprocedural analysis occurs during program execution. In the
presence of dynamic linking, incrementality is necessary, but not sufficient, for
online analysis. It is necessary because the inputs to the analysis only materialize
incrementally, as the program is running. It is not sufficient because online analysis
must also interact differently with the runtime system than offline analysis. For
example, for languages like Java, an online analysis must deal with reflection, with
foreign function interfaces, and with other runtime system issues.

A modular interprocedural analysis (e.g., [Chatterjee et al. 1999; Liang and Har-
rold 1999; Cheng and Hwu 2000]) performs most of its work in an intra-module
step, and less work in an inter-module step. By “most” and “less”, we mean that
the intra-module step must be orders of magnitude more expensive than the inter-
module step. Also, the computational complexity of the intra-module step must be
no better than the computational complexity of the inter-module step. Modularity
is neither necessary nor sufficient for online interprocedural analysis. A modular
analysis must also be incremental and interface correctly with the runtime system
to be used online.

A demand-driven interprocedural analysis (e.g., [Duesterwald et al. 1997; Heintze
and Tardieu 2001a; Vivien and Rinard 2001; Agrawal et al. 2002; Lattner and Adve
2003]) attempts to compute just the part of the solution that the client is interested
in, rather than the exhaustive solution. Being demand-driven is neither necessary
nor sufficient for online interprocedural analysis. A demand-driven analysis must
also be incremental and interface correctly with the runtime system to be used
online.

If the pointer analysis is to be used for optimizations, then its results must be
sound; otherwise the optimizations may change the semantics of the program. If the
pointer analysis is to be used for programmer productivity tools, then unsoundness
may be tolerable provided the user of the system is aware of it. Since we wish to
support both kinds of clients of pointer analysis, we will assume in this paper that
the analysis must be sound.
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4. OFFLINE ANALYSIS

This section describes the offline parts of our version of Andersen’s pointer analysis.
Due to dynamic class loading, offline analysis does not work for Java, hence subse-
quent sections describe how to perform it online, in the context of a Java virtual
machine.

4.1 Offline architecture

Fig. 2 shows the architecture for performing Andersen’s pointer analysis offline. In
an offline setting, all methods are compiled ahead of time. The call graph builder
uses the intermediate representation (IR) from method compilation as input, and
creates a call graph. The constraint finder uses the IR as input for creating intrapro-
cedural constraints, and uses the call graph as input for creating interprocedural
constraints. The output consists of constraints in the constraint graph that model
the code of the program. When the constraint finder is done, the constraint propa-
gator determines the least fixed point of the pointsTo sets of the constraint graph.
The propagator uses a worklist to keep track of its progress. The final pointsTo
sets in the constraint graph are the output of the analysis to clients.

Method compilation

Constraint finder

Call graph builder

Constraint propagator

Analysis

components

Analysis

data structures

Propagator worklist

Call graph

Constraint graph

Client optimizations

Fig. 2. Offline architecture

4.2 Analysis data structures

The call graph models possible method calls (Section 4.2.1). The propagator work-
list keeps track of possibly violated constraints (Section 4.2.2). The constraint
graph models the effect of program code on pointsTo sets (Section 4.2.3). Our
analysis represents pointsTo sets with Heintze’s shared bit sets (Section 4.2.4).

4.2.1 Call graph. The nodes of the call graph are call sites and callee methods.
Each edge of the call graph is a pair of a call site and a callee method that represents
a may-call relation. For example, for call site s and method m, the call edge (s,m)
means that s may call m. Due to virtual methods and interface methods, a given
call site may have edges to multiple potential callee methods.
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Table I. Constraint graph.
Node kind Represents concrete entities PointsTo sets Flow sets

h-node Set of heap objects, e.g., all objects allocated at

a particular allocation site

none none

v-node Set of program variables, e.g., a static variable,

or all occurrences of a local variable

pointsTo[h] flowTo[v],

flowTo[v.f ]

h.f -node Instance field f of all heap objects represented

by h

pointsTo[h] none

v.f -node Instance field f of all h-nodes pointed to by v none flowFrom[v],
flowTo[v]

4.2.2 Propagator worklist. The worklist is a list of v-nodes that may appear on
the left side of unresolved constraints. In other words, if v is in the worklist, then
there may be a constraint pointsTo(v) ⊆ pointsTo(v′) or a constraint pointsTo(v) ⊆
pointsTo(v′.f) that does not hold for the current pointsTo set solution. If that is
the case, the propagator has some more work to do to find a fixed point. The work
list is a priority queue, so elements are retrieved in topological order. For example,
if there is a constraint pointsTo(v) ⊆ pointsTo(v′), and no transitive constraints
cycle back from v′ to v, then the worklist returns v before v′.

4.2.3 Constraint graph. The constraint graph has four kinds of nodes, all of
which participate in constraints. The constraints are stored as sets at the nodes.
Table I describes the nodes. The reader is already familiar with h-nodes, v-nodes,
and h.f -nodes from Sections 3.1.1-3.1.3. A v.f -node represents the instance field f

accessed from variable v; the analysis uses v.f -nodes to model loads and stores.
Table I also shows sets stored at each node. The generic parameters in “[· · ·]”

are the kinds of nodes in the set. The reader is already familiar with pointsTo sets
(Column 3 of Table I) from Section 3.1.4.

FlowTo sets (Column 4 of Table I) represent a flow of values (assignments, pa-
rameter passing, etc.), and are stored with v-nodes and v.f -nodes. For example,
if v′ ∈ flowTo(v), then the pointer r-value of v may flow to v′. As discussed in
Section 3.2, this flow-to relation v′ ∈ flowTo(v) can also be viewed as a subset con-
straint pointsTo(v) ⊆ pointsTo(v′). FlowFrom sets are the inverse of flowTo sets.
For example, v′.f ∈ flowTo(v) implies v ∈ flowFrom(v′.f).

Each h-node has a map from fields f to h.f -nodes (i.e., the nodes that represent
the instance fields of the objects represented by the h-node). For each h-node
representing arrays of references, there is a special node h.felems that represents all
of their elements.

The constraint graph plays a dual role: it models the effect of code on pointers
with flow sets, and it models the pointers themselves with pointsTo sets. Clients
are interested in the pointsTo sets. The analysis only uses flow sets internally: the
constraint finder produces flow sets (also known as constraints), and the constraint
propagator iterates over them.

4.2.4 Heintze’s pointsTo set representation. Heintze’s shared bit sets compactly
represent pointsTo sets by exploiting the observation that many pointsTo sets are
similar or identical. Each set consists of a bit vector (“base bit vector”) and a list
(“overflow list”). Two sets that are nearly identical may share the same base bit
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vector; any elements in these sets that are not in the base bit vector go in their
respective overflow lists.

pointsTo sets

Overflow lists

Base bit vectors

Lookup map

v1 v2 v3 v4

{h1, h2} {h1, h3} {h1, h4, h5}

{h3} {h4} {h6}{}

2 3

Fig. 3. Example for Heintze’s pointsTo set representation

For example, imagine that pointsTo(v1) is {h1, h2, h3} and pointsTo(v2) is
{h1, h2}. Then the two pointsTo sets may share the base bit vector contain-
ing {h1, h2}. However, since pointsTo(v1) also includes h3, the overflow list for
pointsTo(v1) contains the single element h3; by similar reasoning pointsTo(v2)’s
overflow list is empty. Fig. 3 shows this pictorially.

1: if h 6∈ base and h 6∈ overflow
2: if |overflow| < overflowLimit

3: overflow.add(h)

4: else

5: desiredSet← base ∪ overflow ∪ {h}

6: for overflowSize← 0 to newOverflowThreshold
7: for each candidate ∈ lookupMap[|desiredSet| − overflowSize]

8: if candidate ⊆ desiredSet

9: base← candidate
10: overflow← desiredSet− candidate

11: return

12: // we get here only if there was no suitable candidate

13: base← desiredSet

14: overflow← {}

15: lookupMap[|base|].add(base)

Fig. 4. Adding a new element h to a pointsTo set in Heintze’s representation

Fig. 4 gives the algorithm for inserting a new element h into a pointsTo set
in Heintze’s representation. For example, consider the task of inserting h4 into
pointsTo(v1). The algorithm adds h4 to the overflow list of pointsTo(v1) if the
overflow list is smaller than overflowLimit (a configuration parameter). If the
overflow list is already of size overflowLimit, then instead of adding h4 to the
overflow list, the algorithm tries to find an existing base bit vector that will enable
the overflow list to be smaller than overflowLimit, and indeed as small as possible
(Lines 6-11). If no such base bit vector exists, then the algorithm creates a new
perfectly matching base bit vector and makes it available for subsequent sharing
(Lines 13-15).
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4.3 Offline call graph builder

We use CHA (Class Hierarchy Analysis [Fernández 1995; Dean et al. 1995]) to find
call edges. CHA finds call edges based on the subtyping relationship between the
receiver variable and the class that declares the callee method. In other words, it
only considers the class hierarchy, and ignores what values are assigned to the re-
ceiver variable. A more precise alternative than CHA is to construct the call graph
on-the-fly based on the results of the pointer analysis. We decided against that
approach because prior work indicated that the modest improvement in precision
does not justify the cost in efficiency [Lhoták and Hendren 2003]. In work con-
current with ours, Qian and Hendren developed an even more precise alternative
based on low-overhead exhaustive profiling [Qian and Hendren 2004].

4.4 Offline constraint finder

The constraint finder analyzes the data flow of the program, and models it in the
constraint graph.

4.4.1 Assignments. The intraprocedural part of the constraint finder analyzes
the code of a method and models it in the constraint graph. It is a flow-insensitive
pass of the just-in-time compiler. In our implementation, it operates on the high-
level register-based intermediate representation (HIR) of Jikes RVM [Alpern et al.
2000]. HIR decomposes access paths by introducing temporaries, so that no access
path contains more than one pointer dereference. Column “Actions” in Table II
gives the actions of the constraint finder when it encounters the statement in Col-
umn “Statement”. For example, the assignment v′ = v moves values from v to v′,
and the analysis models that by adding v′ to the set of variables to which v flows.
Column “Represent constraints” shows the constraints implicit in the actions of
the constraint finder using mathematical notation. For example, because pointer
values flow from v to v′, the possible targets pointsTo(v) of v are a subset of the
targets possible pointsTo(v′) of v′.

Table II. Finding constraints for assignments
Statement Actions Represent constraints

v′ = v (move v → v′) flowTo(v).add(v′) pointsTo(v)⊆ pointsTo(v′)

v′ = v.f (load v.f → v′) flowTo(v.f).add(v′) for each h ∈ pointsTo(v) :

pointsTo(h.f)⊆ pointsTo(v′)

v′.f = v (store v → v′.f) flowTo(v).add(v′.f), for each h ∈ pointsTo(v′) :
flowFrom(v′.f).add(v) pointsTo(v)⊆ pointsTo(h.f)

a: v = new . . . (alloc ha → v) pointsTo(v).add(ha) {ha} ⊆ pointsTo(v)

4.4.2 Parameters and return values. The interprocedural part of the constraint
finder analyzes call graph edges, and models the data flow through parameters and
return values as constraints. It models parameter passing as a move from actuals (at
the call site) to formals (of the callee). In other words, it treats parameter passing
just like an assignment between the v-nodes for actuals and formals (first row of
Table II). The interprocedural part of the constraint finder models each return
statement in a method m as a move to a special v-node vretval(m). It models the
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data flow of the return value to the call site as a move to the v-node that receives the
result of the call. Fig. 5 shows these flow-to relations as arrows. For example, the
arrow d→ retval(A::m) denotes the analysis action flowTo(vd).add(vretval(A::m)).

a = x.m(b);

A::m(this(A::m), c) {
return d;

}

caller

callee

retval(A::m)

Fig. 5. Finding constraints for parameters and return values

4.4.3 Exceptions. Exception handling leads to flow of values (the exception ob-
ject) between the site that throws an exception and the catch clause that catches
the exception. The throw and catch may happen in different methods. For sim-
plicity, our current prototype assumes that any throws can reach any catch clause
of matching type. One could easily imagine making this more precise, for example
by assuming that throws can only reach catch clauses in the current method or its
(transitive) callers.

4.5 Offline constraint propagator

The constraint propagator finds a least fixed point of the pointsTo sets in the
constraint graph, so they conservatively model the may-point-to relationship.

4.5.1 Lhoták-Hendren worklist propagator. Fig. 6 shows the worklist propagator
that Lhoták and Hendren present as Algorithm 2 for their offline implementation
of Andersen’s analysis for Java [2003]. We adopted it as the starting point for our
online version of Andersen’s analysis because it is efficient and the worklist makes it
amenable for incrementalization. The Lhoták-Hendren propagator has two parts:
Lines 2-17 are driven by a worklist of v-nodes, whereas Lines 18-22 iterate over
pointsTo sets of h.f -nodes.

The worklist-driven Lines 2-17 consider each v-node whose pointsTo set has
changed (Line 3). Lines 4-9 propagate the elements along all flow edges from v to
v′-nodes or v′.f -nodes. In addition, Lines 10-17 propagate along loads and stores,
where v is the base node of a field access v.f , because new pointer targets h of v

mean that v.f represents new heap locations h.f .
The iterative Lines 18-22 are necessary because processing a store v → v′.f in

Lines 7-9 can change pointsTo(h.f) for some h ∈ pointsTo(v′). When that occurs,
simply putting v′ on the worklist is insufficient, because the stored value can be
retrieved via an unrelated variable. For example, assume
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1: while worklist not empty

2: while worklist not empty
3: remove node v from worklist
4: for each v′ ∈ flowTo(v) // move v → v′

5: pointsTo(v′).add(pointsTo(v))
6: if pointsTo(v′) changed, add v′ to worklist
7: for each v′.f ∈ flowTo(v) // store v → v′.f
8: for each h ∈ pointsTo(v′)
9: pointsTo(h.f).add(pointsTo(v))

10: for each field f of v
11: for each v′ ∈ flowFrom(v.f) // store v′ → v.f
12: for each h ∈ pointsTo(v)
13: pointsTo(h.f).add(pointsTo(v′))
14: for each v′ ∈ flowTo(v.f) // load v.f → v′

15: for each h ∈ pointsTo(v)
16: pointsTo(v′).add(pointsTo(h.f))
17: if pointsTo(v′) changed, add v′ to worklist

18: for each v.f
19: for each v′ ∈ flowTo(v.f) // load v.f → v′

20: for each h ∈ pointsTo(v)
21: pointsTo(v′).add(pointsTo(h.f))
22: if pointsTo(v′) changed, add v′ to worklist

Fig. 6. Lhoták-Hendren worklist propagator

flowTo(v) = {v′.f}, flowTo(v3.f) = {v4},
pointsTo(v) = {h},
pointsTo(v′) = {h′}, pointsTo(v3) = {h′},
pointsTo(v4) = {}, pointsTo(h′.f) = {}

Assume v is on the worklist. Processing the store v → v′.f propa-
gates h from pointsTo(v) to pointsTo(h′.f). Because flowTo(v3.f) = {v4},
there is a constraint pointsTo(h′.f) ⊆ pointsTo(v4), but it is violated, since
pointsTo(h′.f) = {h} 6⊆ {} = pointsTo(v4). Processing the load v3.f → v4 would
repair this constraint by propagating h from pointsTo(h′.f) to pointsTo(v4). But
the algorithm does not know that it has to consider that load edge, since neither v3

nor v4 are on the worklist. Therefore, Lines 18-22 conservatively propagate along
all load edges.

4.5.2 Type filtering. Consider a subset constraint pointsTo(a) ⊆ pointsTo(b),
where a and b may be v-nodes or h.f -nodes. While the constraint is not yet sat-
isfied, the propagator propagates the left-hand side onto the right-hand side by
performing the operation pointsTo(b).add(pointsTo(a)). Now let A and B be the
declared Java types of a and b, respectively. When the constraint involves a type
cast that performs a narrowing conversion, A is not a subtype of B, and the set
pointsTo(a) may contain h-nodes of a type incompatible with B. Those should not
be propagated into pointsTo(b), because b can not possibly point to them. Instead,
each propagation step filters by the type of the right-hand side set: the operation
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pointsTo(b).add(pointsTo(a))

is really implemented as

for each h ∈ pointsTo(a)
if typeOf(h) is a subtype of typeOf(b)

pointsTo(b)← pointsTo(b) ∪ {h}

This technique is called on-the-fly type filtering. Lhoták and Hendren [Lhoták
and Hendren 2003] had demonstrated that it helps keep pointsTo sets small and
improves both performance and precision of the analysis. Our experiences confirm
this observation.

4.5.3 Propagator issues. The propagator creates h.f -nodes lazily the first time
it adds elements to their pointsTo sets, in lines 9 and 13. It only creates h.f -nodes
if instances of the type of h have the field f . This is not always the case, as the
following example illustrates. Let A,B,C be three classes such that C is a subclass
of B, and B is a subclass of A. Class B declares a field f . Let hA, hB , hC be
h-nodes of type A,B,C, respectively. Let v be a v-node of declared type A, and
let pointsTo(v) = {hA, hB , hC}. Now, data flow to v.f should add to the pointsTo
sets of nodes hB .f and hC .f , but there is no node hA.f .

We also experimented with the optimizations partial online cycle elimina-
tion [Fähndrich et al. 1998] and collapsing of single-entry subgraphs [Rountev and
Chandra 2000]. They yielded only modest performance improvements compared
to shared bit-vectors [Heintze 1999] and type filtering [Lhoták and Hendren 2003].
Part of the reason for the small payoff may be that our data structures do not put
h.f -nodes in flowTo sets (á la Bane [Fähndrich et al. 1998]).

5. ONLINE ANALYSIS

This section describes how to change the offline analysis from Section 4 to obtain
an online analysis. It is organized around the online architecture in Section 5.1.

5.1 Online architecture

Fig. 7 shows the architecture for performing Andersen’s pointer analysis online.
The online architecture subsumes the offline architecture from Fig. 2, and adds
additional functionality (shown shaded) for dealing with dynamically loaded code
and other dynamic program behavior that can not be analyzed prior to execution.

The left column shows the events during virtual machine execution that generate
inputs to the analysis. The dotted box contains the analysis: the middle column
shows analysis components, and the right column shows shared data structures
that the components operate on. At the bottom, there are clients that trigger the
constraint propagator component of the analysis, and consume the outputs (i.e., the
pointsTo sets). Arrows mean triggering an action and/or transmitting information.
We will discuss the online architecture in detail as we discuss its components in the
subsequent sections.
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Method compilation

Building and start-up

Native code execution

Reflection execution

Class loading

Type resolution

Events during

virtual machine execution

Resolution manager

Constraint finder

Call graph builder

Constraint propagator

Analysis

components

Analysis

data structures

Deferred call sites

Propagator worklist

Deferred constraints

Constraint graph

Client optimizations

Validation mechanism

Clients

Call graph

Fig. 7. Online architecture. Components absent from the offline architecture (Fig. 2) are shaded.

5.2 Online call graph builder

As described in Section 4.3, we use CHA (Class Hierarchy Analysis) to find call
edges. Compared to offline CHA, online CHA has to satisfy two additional require-
ments: it has to incorporate more call sites and potential callee methods as they
are encountered at runtime, and it has to work in the presence of unresolved types.

5.2.1 Incorporating call sites and callees as they are encountered. For each call
edge, either the call site is compiled first, or the callee is compiled first. The call
edge is added when the second of the two is compiled. More precisely,

—When the JIT compiler compiles a new method (Fig. 7, arrow from method
compilation to call graph builder), the call graph builder retrieves all call sites
of matching signature that it has seen in the past, and adds a call edge if the
types are compatible (Fig. 7, arrow from call graph builder to call graph). Then,
it stores the new callee method node in a map keyed by its signature, for future
retrieval when new call sites are encountered.

—Analogously, when the JIT compiler compiles a new call site (Fig. 7, arrow from
call graph builder to call graph), the call graph builder retrieves all callee methods
of matching signature that it has seen in the past, and adds a call edge if the
types are compatible (Fig. 7, arrow from call graph builder to call graph). Then,
it stores the new call site node in a map keyed by its signature, for future retrieval
when new callees are encountered.

5.2.2 Dealing with unresolved types. The JVM specification allows a Java
method to have references to unresolved entities [Lindholm and Yellin 1999]. For
example, the type of a local variable may be a class that has not been loaded yet.
Furthermore, Java semantics prohibit eager loading of classes to resolve unresolved
references: as discussed in Section 2.3, eager loading would require hiding any vis-
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ible effects until the class actually is used. Unfortunately, when a variable is of
an unresolved type, the subtyping relationships of that type are not yet known,
prohibiting CHA. When the call graph builder encounters a call site v.m() where
the type of the receiver variable v is unresolved, it refuses to deal with it at this
time, and sends it to the resolution manager instead (Fig. 7, arrow from call graph
builder to resolution manager).

5.3 Resolution manager

The resolution manager enables lazy analysis: it allows the analysis to defer dealing
with information that it can not yet handle precisely and that it does not yet
need for obtaining sound results. The arrows from the call graph builder and
the constraint finder to the resolution manager in Fig. 7 represent call sites and
constraints, respectively, that may refer to unresolved types. The arrows from the
resolution manager to the deferred call sites and deferred constraints data structures
in Fig. 7 represent “shelved” information: this information does indeed involve
unresolved types, so the analysis can and should be lazy about dealing with it.

When the VM resolves a type (arrow from type resolution to resolution manager
in Fig. 7), the resolution manager reconsiders the deferred information. For each call
site and constraint that now involves only resolved types, the resolution manager
removes it from the deferred data structure, and sends it back to the call graph
builder (in the case of a call site), or on to later analysis stages (in the case of a
constraint).

With this design, the analysis will shelve some information forever, if the in-
volved types never get resolved. This saves unnecessary analysis work. Qian and
Hendren [2004] developed a similar design independently. Before becoming aware
of the subtleties of the problems with unresolved references, we used an overly
conservative approach: we added analysis information eagerly even when we had
incomplete information. This imprecision led to large pointsTo sets, which, in turn,
led to a prohibitive slow-down of our analysis. In addition, it complicated the anal-
ysis, because it had to treat unresolved types as a special case throughout the code.
Using the resolution manager is simpler, more precise, and more efficient.

5.4 Online constraint finder

Compared to the offline constraint finder (Section 4.4), the online constraint finder
has to satisfy three additional requirements: it has to capture more input events, it
has to find interprocedural constraints whenever more call edges are encountered,
and it has to work in the presence of unresolved types.

5.4.1 Capturing more input events. In the offline architecture (Fig. 2), the only
input to the constraint finder is the compiler’s intermediate representation of meth-
ods. In the online architecture (Fig. 7) there are several inputs to the constraint
finder:

Method compilation. Offline pointer analysis assumes that code for all methods
is available simultaneously for analysis. Due to dynamic class loading, this is not
true in Java. Instead, code for each method becomes available for analysis when the
JIT compiler compiles it. This does not necessarily coincide with the time that the
class is loaded: the method may get compiled at any time after the enclosing class
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is loaded and before the method gets executed for the first time. (This assumes a
compile-only approach; we will discuss interpreters in Section 7.4.1.)

Building and start-up. A Java virtual machine often supports system libraries
with classes that interact directly with the runtime system. Support for these is
built into the VM, and initialized during VM start-up. This system behavior does
not consist of normal Java code, and the pointer analysis must treat it in a VM-
dependent way. We will discuss how we handle it for Jikes RVM in Section 7.4.5.

Class loading. Methods (including the class initializer method) are handled as
usual at method compilation time. The only action that does take place exactly at
class loading time is that the constraint finder models the ConstantValue bytecode
attribute of static fields with constraints [Lindholm and Yellin 1999, Section 4.5].
This attribute initializes fields, but it is not represented as code, but rather as
meta-data in the class file.

Reflection execution. Section 5.6 describes how the online setting allows the anal-
ysis to tackle reflection in a sound and usable way.

Native code execution. Section 5.7 describes how the online setting allows the
analysis to tackle native code in a robust and usable way.

5.4.2 Capturing call edges as they are encountered. Whenever the online call
graph builder (Section 5.2) adds a new call edge to the call graph (Fig. 7, arrow
from call graph builder to call graph), the constraint finder is notified (Fig. 7, arrow
from call graph to constraint finder), so it can model the data flow for parameter
passing and return values. This works as follows:

—When encountering a call site c : vretval(c) = m(vactual1(c), . . . , vactualn(c)), the
constraint finder creates a tuple Ic = 〈vretval(c), vactual1(c), . . . , vactualn(c)〉 for call-
site c, and stores it for future use.

—When encountering a method m(vformal1(m), . . . , vformaln(m)), the constraint
finder creates a tuple Im = 〈vretval(m), vformal1(m), . . . , vformaln(m)〉 for m as a
callee, and stores it for future use.

—When encountering a call edge c → m, the constraint finder retrieves the cor-
responding tuples Ic and Im, and adds constraints to model the moves between
the corresponding v-nodes in the tuples.

a = x.m(b);

A::m(this(A::m), c) {
return d;

}

B::m(this(B::m), g) {
return h;

}

caller

callee

retval(A::m) retval(B::m)

Fig. 8. Call constraints when adding a new callee.
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For the example in Fig. 5, the tuple for call site a = x.m(b) is
Ia=x.m(b) = 〈va, vx, vb〉. Suppose the analysis just encountered a new potential
callee B::m with the tuple IB::m = 〈vretval(B::m), vthis(B::m), vg〉. The call graph
builder uses CHA to decide whether the call-site and callee match, based on the
type of the receiver variable x and class B. If they are compatible, the constraint
finder models the moves x → this(B::m), b→ g, and retval(B::m)→ a, shown as
dashed arrows in Fig. 8.

5.4.3 Dealing with unresolved types. As discussed in Section 5.2.2, Java byte-
code can refer to unresolved types. This prohibits type filtering in the propagator
(Section 4.5.2), which relies on knowing the subtype relations between the declared
types of nodes involved in flow sets. Furthermore, the propagator also requires
resolved types for mapping between h-nodes and their corresponding h.f -nodes. In
this case, it needs to know the subtyping relationship between the type of objects
represented by the h-node, and the class in which the field f was declared.

To allow type filtering and field mapping, the propagator must not see con-
straints involving unresolved types. The online architecture supports dealing with
unresolved types by a layer of indirection: where the offline constraint finder di-
rectly sent its outputs to later analysis phases (Fig. 2), the online constraint finder
sends its outputs to the resolution manager first (Fig. 7), which only reveals them
to the propagator when they become resolved. This works as follows:

—When the constraint finder creates an unresolved node, it registers the node with
the resolution manager. A node is unresolved if it refers to an unresolved type.
An h-node refers to the type of its objects; a v-node refers to its declared type;
and a v.f -node refers to the type of v, the type of f , and the type in which f is
declared.

—When the constraint finder would usually add a node to a flow set or pointsTo set
of another node, but one or both of them are unresolved, it defers the information
for later instead. Table III shows the deferred sets stored at unresolved nodes.
For example, if the constraint finder finds that v should point to h, but v is
unresolved, it adds h to v’s deferred pointsTo set. Conversely, if h is unresolved,
it adds v to h’s deferred pointedToBy set. If both are unresolved, the points-to
information is stored twice.

Table III. Deferred constraints stored at unresolved nodes.
Node kind Flow PointsTo

h-node none pointedToBy[v]

v-node flowFrom[v], flowFrom[v.f ], flowTo[v], flowTo[v.f ] pointsTo[h]

h.f -node there are no unresolved h.f -nodes

v.f -node flowFrom[v], flowTo[v] none

—When a type is resolved, the resolution manager notifies all unresolved nodes
that have registered for it. When an unresolved node is resolved, it iterates over
all deferred sets stored at it, and attempts to add the information to the real
model that is visible to the propagator. If a node stored in a deferred set is not
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resolved yet itself, the information will be added in the future when that node
gets resolved.

5.5 Online constraint propagator

Method compilation and other constraint-generating events happen throughout pro-
gram execution. Where an offline analysis can propagate once after all constraints
have been found, the online analysis has to propagate whenever a client needs
points-to information, if new constraints have been created since the last propaga-
tion. After constraint propagation, the pointsTo sets conservatively describe the
pointers in the program until one of the events in the left column if Fig. 7 causes
the analysis to add new constraints to the constraint graph.

The propagator propagates pointsTo sets following the constraints represented
in the flow sets until the pointsTo sets reach the least fixed point. This problem is
monotonous: newly added constraints may not hold initially, but a repropagation
starting from the previous fixed point suffices to find the least fixed point of the
new constraint set. To accommodate this, the propagator starts with its previous
solution and a worklist (Section 4.2.2) of changed parts in the constraint graph to
avoid incurring the full propagation cost every time.

Our online constraint propagator thus required a fundamental change in the
architecture. Whereas in the offline architecture (Fig. 7), the worklist is private
to the constraint propagator, in the online architecture (Fig. 7), the worklist is
exposed to the resolution manager, and thus indirectly to the constraint finder.

Exposing the worklist was the only “external” change to the propagator to sup-
port online analysis. In addition, we found that “internal” changes that make the
constraint propagator more incremental are invaluable for achieving good overall
analysis performance. We will describe those incrementalizations in Section 6.1.

5.6 Reflection

Java allows code to access methods, fields, and types by name based on strings
computed at runtime. For example, in Fig. 9, method m may be any method of class
Vector that takes one argument of type Object, such as Vector.add, Vector.contains,
or Vector.equals. A static analysis can not determine what actions reflection will
perform. This reduces analysis precision; in the example, the analysis would have
to conservatively assume that any of the Vector methods with a matching signature
can get called. If the command line argument argv [0] is "add", then Line 7 calls add,
adding the vector v into itself. Hence, the analysis would have to model a points-to
relation from the vector to itself, even if the program only calls method contains
or equals, which do not install such a pointer. In practice, the issue is usually even
more complicated: the analysis can not always determine the signature of the callee
method statically (in the example, this relies on knowing the exact contents of the
array paramTypes), and often does not know the involved types (in the example,
Vector.class might be obtained from a class loader instead).

One solution would be to use an approach such as String analysis [Christensen
et al. 2003] to predict which entities reflection manipulates. However, String anal-
ysis is an offline analysis, and while it can solve the problem in special cases, this
problem is undecidable in the general case. Another solution would be to assume
the worst case. We felt that this was too conservative and would introduce signifi-
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1: class Main {
2: public static void main(String[ ] argv) throws Exception {

3: Class[ ] paramTypes = new Class[ ] { Object.class };

4: Method m = Vector.class.getMethod(argv [0], paramTypes);
5: Vector v = new Vector();

6: Object[ ] params = new Object[ ] { v };

7: Object result = m.invoke(v, params);

9: }

10: }

Fig. 9. Reflection example.

cant imprecision into the analysis for the sake of a few operations that were rarely
executed. Other pointer analyses for Java side-step this problem by requiring users
of the analysis to provide hand-coded models describing the effect of the reflective
actions [Whaley and Lam 2002; Lhoták and Hendren 2003].

Our solution is to handle reflection when the code is actually executed. We
instrument the virtual machine service that handles reflection with code that adds
constraints dynamically. For example, if reflection stores into a field, the constraint
finder observes the actual source and target of the store and generates a constraint
that captures the semantics of the store at that time.

This strategy for handling reflection introduces new constraints when the reflec-
tive code does something new. Fortunately, that does not happen very often. When
reflection has introduced new constraints and a client needs up-to-date points-to
results, it must trigger a re-propagation.

5.7 Native code

The Java Native Interface (JNI) allows Java code to interact with dynamically
loaded native code. Usually, a JVM cannot analyze that code.

When Java code calls a JNI method, and that method returns a value, a static
analysis can not determine what that return value might be.

When a JNI method manipulates Java data structures or calls a Java method, it
does so by using an API similar to that for reflection, but from native code. This is
conceptually analogous to Fig. 9 in that JNI may obtain a method m and invoke it
on an object v. However, the case is harder than for reflection, because an analysis
for Java can not even analyze the code surrounding the reflective call, since it is
compiled architecture-specific machine code.

Offline pointer analyses for Java usually require the user to specify a model for
the effect of native code on pointers. This approach is error-prone and does not
scale well.

Our approach is to be imprecise, but conservative, for return values from JNI
methods, while being precise for data manipulation by JNI methods. If a JNI
method returns a heap allocated object, the constraint finder assumes that it could
return an object from any allocation site. This is imprecise, but easy to implement.
Type filtering (Section 4.5.2) alleviates this problem by reducing the set of h-nodes
returned by a JNI method based on its declared return type. If a JNI method
manipulates data structures of the program, the manipulations must go through
the JNI API, which is equivalent to Java reflection (in fact, Jikes RVM implements
it by calling Java methods that use reflection). Therefore, our analysis handles JNI
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methods that make calls or manipulate object fields by the same mechanism as
reflection.

6. OPTIMIZATIONS

The first implementation of our online pointer analysis was slow [Hirzel et al. 2004].
Thus, we empirically evaluated where the analysis was spending its time. Besides
timing various tasks performed by the analysis, we visualized the constraint graphs
to discover bottlenecks. Based on our findings, we decided to further incrementalize
the propagator (Section 6.1) and to manually fine-tune the precision of the analysis
along various dimensions (Section 6.2).

6.1 Incrementalizing the propagator

As discussed in Section 3.3, incrementality is necessary, but not sufficient, for online
program analysis. Section 5 described those interactions, and Section 5.5 described
some steps towards making the propagator incremental. However, incrementality is
not an absolute property; rather, there is a continuum of more and more incremental
algorithms. Sections 6.1.1 to 6.1.4 describe several such algorithms, each more
incremental than the previous one. None of these algorithms affect precision: they
all compute the same fixed point on the constraint set.

6.1.1 Lhoták-Hendren propagator, and propagating from new constraints only.
This section briefly reviews the starting point of our propagator incrementalization.
Section 4.5 describes the propagator that Lhoták and Hendren presented in their
initial paper about the Spark offline pointer analysis framework for Java [2003].
Fig. 6 gives the pseudo-code, which has two parts: Lines 2-17 are driven by a
worklist of v-nodes, whereas Lines 18-22 iterate over pointsTo sets of h.f -nodes.
Section 4.2.2 describes the worklist data structure: it is a list of v-nodes that may
appear on the left side of unresolved constraints. Section 5.5 describes how to use
the worklist for incrementalization: essentially, the constraint finder produces work
on the worklist, and the constraint propagator consumes that work. When the
constraint propagator starts, the worklist tells it exactly which constraints require
propagation, making Lines 2-17 of Fig. 6 efficient.

6.1.2 IsCharged bit for h.f -nodes. We found that after some iterations of the
outer loop (Line 1) of the Lhoták-Hendren propagator in Fig. 6, the iterative part
(Lines 18-22) dominates runtime. Because the algorithm still has to consider all
load edges even when the constraint graph changes only locally, it does not yet work
well incrementally. One remedy we investigated is making flowTo sets of h.f -nodes
explicit, similar to Bane [Fähndrich et al. 1998], as that would allow maintaining
a worklist for h.f -nodes. We found the space overhead for this redundant flowTo
information prohibitive. Therefore, we took a different approach to further incre-
mentalize the algorithm.

Fig. 10 shows the algorithm that we presented as Fig. 3 in our previous paper
about this analysis [2004], which maintains isCharged bits on h.f -nodes to speed
up the iterative part of Fig. 6 (Lines 18-22). The purpose of the iterative part is
to propagate new elements from pointsTo sets of h.f -nodes. This is only necessary
for those h.f -nodes whose pointsTo sets changed in Lines 2-17 of Fig. 6. We say an
h.f -node is charged if processing a load might propagate new pointsTo set elements
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1: while worklist not empty, or isCharged(h.f) for any h.f -node // c.f. Fig. 6 L. 1

2: while worklist not empty
3: remove node v from worklist
4: for each v′ ∈ flowTo(v) // move v → v′

5: pointsTo(v′).add(pointsTo(v))
6: if pointsTo(v′) changed, add v′ to worklist
7: for each v′.f ∈ flowTo(v) // store v → v′.f
8: for each h ∈ pointsTo(v′)
9: pointsTo(h.f).add(pointsTo(v))

10: if pointsTo(h.f) changed, isCharged(h.f)← true // new in Fig. 10
11: for each field f of v
12: for each v′ ∈ flowFrom(v.f) // store v′ → v.f
13: for each h ∈ pointsTo(v)
14: pointsTo(h.f).add(pointsTo(v′))
15: if pointsTo(h.f) changed, isCharged(h.f)← true // new in Fig. 10
16: for each v′ ∈ flowTo(v.f) // load v.f → v′

17: for each h ∈ pointsTo(v)
18: pointsTo(v′).add(pointsTo(h.f))
19: if pointsTo(v′) changed, add v′ to worklist

20: for each v.f
21: for each v′ ∈ flowTo(v.f) // load v.f → v′

22: for each h ∈ pointsTo(v), if isCharged(h.f) // c.f. Fig. 6 L. 20
23: pointsTo(v′).add(pointsTo(h.f))
24: if pointsTo(v′) changed, add v′ to worklist
25: for each h.f , isCharged(h.f)← false // new in Fig. 10

Fig. 10. IsCharged bit for h.f -nodes. Changes compared to Fig. 6 are annotated with comments.

1-19: identical with Lines 1-19 in Fig. 10

20: for each v.f
21: for each v′ ∈ flowTo(v.f) // load v.f → v′

22: if (pointsTo(v), f) ∈ chargedHFCache
23: chargedHF← chargedHFCache[pointsTo(v), f ]
24: else

25: chargedHF← {h.f for h ∈ pointsTo(v), if isCharged(h.f)}
26: chargedHFCache[pointsTo(v), f ]← chargedHF
27: for each h.f ∈ chargedHF
28: pointsTo(v′).add(pointsTo(h.f))
29: if pointsTo(v′) changed, add v′ to worklist
30: for each h.f , isCharged(h.f)← false

Fig. 11. Caching charged h.f -node sets

from h.f . In Fig. 10, when pointsTo(h.f) changes, Lines 10 and 15 set its isCharged
bit. This enables Line 22 to perform the inner loop body for only the few h.f -nodes
that need discharging. Line 25 resets the isCharged bits for the next iteration.

6.1.3 Caching charged h.f -node sets. Lines 20-22 of Fig. 10 still iterate over all
h.f -nodes, even if they can often skip the body of Lines 23-24. Profiling found
that much time is spent determining the subset of nodes h ∈ pointsTo(v) for which
h.f is charged. In Line 22, when pointsTo(v) is almost the same as pointsTo(v′)
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for some other variable v′, it is wasteful to compute the subset twice. Instead, the
propagator in Fig. 11 caches the set of charged h.f -nodes, keyed by the set of base
h-nodes and the field f .

In a naive implementation, a cache lookup would have to compare pointsTo sets
for equality. This would take time linear in the size of the sets, which would
be no better than performing the iteration in Line 22 of Fig. 10. Instead, our
implementation exploits the fact that the pointsTo sets are already shared (see
Heintze’s representation, Section 4.2.4). Each cache entry is a triple (b, f, c) of a
shared bit vector b, a field f , and a cached set c. The set c ⊆ b is the set of h-nodes
in b for which h.f is charged. Given a pointsTo set, the lookup in Line 23 works as
follows:

—Given (pointsTo(v), f), find a cache entry (b, f ′, c) such that the base bit vector
of pointsTo(v) is b, and the fields are the same (f = f ′).

—For each h ∈ c, put the node h.f in the resulting set chargedHF.

—In addition, iterate over the elements h of the overflow list of pointsTo(v), and
determine for each of them whether h.f is charged.

This lookup is faster than iterating over the elements of the base bit vector
individually.

6.1.4 Caching the charged h-node set. The iterative part of the Algorithm in
Fig. 11 still loops over all load edges v.f → v′ in Lines 20+21. Therefore, its
best-case execution time is proportional to the number of assignments of the form
v′ = v.f . This bottleneck limited peak responsiveness of our online pointer analysis.
Therefore, we used a final optimization to reduce the time of the iterative part to be
proportional to the number of v.f -nodes, instead of v.f → v′-edges. The Algorithm
in Fig. 12 uses a set of charged h-nodes: an h-node is charged if there is at least
one field f , such that isCharged(h.f) = true.

Lines 12 and 19 in Fig. 12 remember h-nodes for which at least one h.f -node
became charged. Line 26 uses these h-nodes to decide whether to consider loads
from a given v.f -node: Lines 27-36 are necessary only if at least one of the corre-
sponding h.f -nodes is charged. The check in Line 26 is a fast bit vector operation.
After Line 37 clears all isCharged bits, Line 38 resets chargedH.

The chargedH set is not only useful for reducing the number of outer loop itera-
tions in the iterative part. It also speeds up the computation of charged h.f -nodes
in Line 25 of Fig. 11 (c.f. Lines 31-32 in Fig. 12). Again, the set intersection is a
fast bit-set operation. These optimizations for handling loads in the iterative part
(Lines 25-36) also apply to loads in the worklist part (Lines 20-24).

6.2 Varying analysis precision

Section 3.1 states that our analysis is context insensitive, allocation-site based, and
field sensitive. These choices yield a reasonable overall precision/speed tradeoff.
But in fact, it helps to manually revise them in a few places. Section 8.3 will
evaluate the effects of these optimizations.

6.2.1 Selectively use context sensitivity. Our context-insensitive analysis (Sec-
tion 3.1.1(c)) gives imprecise results particularly for methods that are called from
many places and modify or return their argument objects. In such situations, a
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1: while worklist not empty, or isCharged(h.f) for any h.f -node

2: while worklist not empty
3: remove node v from worklist
4: for each v′ ∈ flowTo(v) // move v → v′

5: pointsTo(v′).add(pointsTo(v))
6: if pointsTo(v′) changed, add v′ to worklist
7: for each v′.f ∈ flowTo(v) // store v → v′.f
8: for each h ∈ pointsTo(v′)
9: pointsTo(h.f).add(pointsTo(v))

10: if pointsTo(h.f) changed
11: isCharged(h.f)← true

12: chargedH.add(h)
13: for each field f of v
14: for each v′ ∈ flowFrom(v.f) // store v′ → v.f
15: for each h ∈ pointsTo(v)
16: pointsTo(h.f).add(pointsTo(v′))
17: if pointsTo(h.f) changed
18: isCharged(h.f)← true

19: chargedH.add(h)
20: if pointsTo(v) ∩ chargedH 6= {}
21: for each v′ ∈ flowTo(v.f) // load v.f → v′

22: for each h ∈ (pointsTo(v) ∩ chargedH)
23: pointsTo(v′).add(pointsTo(h.f))
24: if pointsTo(v′) changed, add v′ to worklist

25: for each v.f
26: if pointsTo(v) ∩ chargedH 6= {}
27: for each v′ ∈ flowTo(v.f) // load v.f → v′

28: if (pointsTo(v), h) ∈ chargedHFCache
29: chargedHF← chargedHFCache[pointsTo(v), f ]
30: else

31: ch← pointsTo(v) ∩ chargedH
32: chargedHF← {h.f for h ∈ ch, if isCharged(h.f)}
33: chargedHFCache[pointsTo(v), f]← chargedHF
34: for each h.f ∈ chargedHF
35: pointsTo(v′).add(pointsTo(h.f))
36: if pointsTo(v′) changed, add v′ to worklist
37: for each h.f , isCharged(h.f)← false

38: chargedH← {}

Fig. 12. Caching the charged h-node set

context-insensitive analysis will propagate information from all call sites into the
method and then back out to all the call sites (via the modification or return value).
When context sensitivity (Section 3.1.1(d)) improves precision, it can also improve
performance, since the analysis has to propagate smaller pointsTo sets with context
sensitivity.

We found enabling context sensitivity for all methods prohibitively expen-
sive, and thus we extended our analysis with selective context sensitivity. It
is context sensitive only in those cases where the efficiency gain from smaller
pointsTo sets outweighs the efficiency loss from more pointsTo sets. We man-

26 · M. Hirzel, D. von Dincklage, A. Diwan, M. Hind

ually picked the following methods to analyze context-sensitively wherever they
are called: StringBuffer.append(. . .) (where . . . is String, StringBuffer, or char),
StringBuffer.toString(), and VM Assembler.setMachineCodes(). Both append()
and toString() are Java standard library methods, and setMachineCodes() is a
Jikes RVM method. Plevyak and Chien [1994] and Guyer and Lin [2003] describe
mechanisms for automatically selecting methods for context sensitivity. While those
mechanisms happen in an offline, whole-world analysis and thus do not immediately
apply to online analysis, we believe they can inspire approaches to automate online
context sensitivity selection.

6.2.2 Selectively relax allocation site sensitivity. Creating a new h-node for each
allocation site is more precise than creating an h-node for each type. (In the words
of Section 3.1.2, allocation-site based treatment of pointer targets (d) is more pre-
cise than type-based treatment of pointer targets (c).) However, the precision is
useful only if the instances created at two sites are actually stored in separate lo-
cations. For example, if a program creates instances of a type T at 100 allocation
sites but puts references to them all only in one variable then there is no benefit
in distinguishing between the different allocation sites. Thus, rather than creat-
ing 100 h-nodes, which all need to be propagated, the pointer analysis can create
just a single h-node that represents all the allocation sites of that type. Using a
single h-node not only saves memory (fewer h-nodes and thus h.f -nodes) but also
propagation effort (since the pointsTo sets are smaller).

We extended our analysis to selectively merge h and v-nodes. We used manual
investigation to determine three types whose nodes should be selectively merged:
classes OPT Operand, OPT Operator, and OPT Instruction, which are all part of
the Jikes RVM optimizing compiler. We believe that deciding which nodes to merge
on the fly is good idea; we will explore possible approaches in future work.

6.2.3 Selectively relax field sensitivity. If there are many stores into a field ac-
cessed via different v-nodes, but they all store similar pointsTo sets, then field-
sensitivity (Section 3.1.3(d)) is harmful: it degrades performance without improv-
ing precision. Context sensitivity creates such situations. For example, when we
analyze StringBuffer.append() context-sensitively, we effectively create many copies
of its body and thus many copies of references to the StringBuffer.value instance
variable. Since StringBuffer.value is initialized with arrays allocated at one of a
few sites in the StringBuffer class, there is no point in treating StringBuffer.value
field sensitively: all h.fStringBuffer.value point to the same few instances.

We have extended our analysis to selectively fall back to being field-based
(Section 3.1.3(c)). In our runs we apply field sensitivity everywhere except for
fields affected as described above by context sensitivity, namely StringBuffer.value,
String.value, and VM Assembler.machineCodes. We believe that deciding on
whether or not to use field sensitivity on the fly is a good idea; we will investi-
gate possible approaches in future work.

7. IMPLEMENTATION ISSUES

Section 7.1 describes how we convinced ourselves that our analysis implementation
is sound. Section 7.2 discusses how clients can use the analysis results. Section 7.3
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mentions some performance bugs that we found and fixed. Finally, Section 7.4
shows how our implementation tackles the challenges of a concrete VM.

7.1 Validation

Implementing a pointer analysis for a complicated language and environment such
as Java and Jikes RVM is a difficult task: the pointer analysis has to handle numer-
ous corner cases, and missing any of the cases results in incorrect pointsTo sets. To
help us debug our pointer analysis (to a high confidence level) we built a validation
mechanism.

7.1.1 Validation mechanism. We validate the pointer analysis results at GC
(garbage collection) time (Fig. 7, arrow from constraint graph to validation mech-
anism). As GC traverses each pointer, it checks whether the pointsTo set captures
the pointer: (i) When GC finds a static variable p holding a pointer to an object o,
our validation code finds the nodes v for p and h for o. Then, it checks whether the
pointsTo set of v includes h. (ii) When GC finds a field f of an object o holding
a pointer to an object o′, our validation code finds the nodes h for o and h′ for o′.
Then, it checks whether the pointsTo set of h.f includes h′. If either check fails, it
prints a warning message.

Since it checks the correctness of pointsTo sets during GC, the validation mech-
anisms triggers constraint propagation just before GC starts (Fig. 7, arrow from
validation mechanism to constraint propagator). As there is no memory available
to grow pointsTo sets at that time, we modified Jikes RVM’s garbage collector to
set aside some extra space for this purpose.

Our validation methodology relies on the ability to map concrete heap objects to
h-nodes in the constraint graph. To facilitate this, we add an extra header word to
each heap object that maps it to its corresponding h-node in the constraint graph.
For h-nodes representing allocation sites, we install this header word at allocation
time. This extra word is only used for validation runs; the pointer analysis does
not require any change to the object header, and the extra header word is absent
in production runs.

7.1.2 Validation anecdotes. Our validation methodology helped us find many
bugs, some of which were quite subtle. Below are two examples. In both cases, there
was more than one way in which bytecode could represent a Java-level construct.
Both times, our analysis dealt correctly with the more common case, and the other
case was obscure, yet legal. Our validation methodology showed us where we missed
something; without it, we might not even have suspected that something was wrong.

Field reference class. In Java bytecode, a field reference consists of the name and
type of the field, as well as a class reference to the class or interface “in which the
field is to be found” ([Lindholm and Yellin 1999, Section 5.1]). Even for a static
field, this may not be the class that declared the field, but a subclass of that class.
Originally, we had assumed that it must be the exact class that declared the static
field, and had written our analysis accordingly to maintain separate v-nodes for
static fields with distinct declaring classes. When the bytecode wrote to a field
using a field reference that mentions the subclass, the v-node for the field that
mentions the superclass was missing some pointsTo set elements. That resulted in
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warnings from our validation methodology. Upon investigating those warnings, we
became aware of the incorrect assumption and fixed it.

Field initializer attribute. In Java source code, a static field declaration has an
optional initialization, for example, “final static String s = "abc";”. In Java byte-
code, this usually translates into initialization code in the class initializer method
<clinit>() of the class that declares the field. But sometimes, it translates into
a ConstantValue attribute of the field instead ([Lindholm and Yellin 1999, Sec-
tion 4.5]). Originally, we had assumed that class initializers are the only mech-
anism for initializing static fields, and that we would find these constraints when
running the constraint finder on the <clinit>() method. But our validation method-
ology warned us about v-nodes for static fields whose pointsTo sets were too small.
Knowing exactly for which fields that happened, we looked at the bytecode, and
were surprised to see that the <clinit>() methods did not initialize the fields. Thus,
we found out about the ConstantValue bytecode attribute, and added constraints
when class loading parses and executes that attribute (Section 5.4.1).

7.2 Clients

This section investigates example clients of our analysis, and how they can deal
with the dynamic nature of our analysis. In general, each client triggers constraint
propagation when it requires sound analysis results (Fig. 7, arrow from client opti-
mizations to constraint propagator), and then consumes the resulting pointsTo sets
(Fig. 7, arrow from constraint graph to client optimizations).

7.2.1 Method inlining. The method inlining optimization can benefit from
pointer analysis: if the pointsTo set elements of v all have the same implementation
of a method m, the call v.m() has only one possible target. Modern JVMs [Cierniak
et al. 2000; Arnold et al. 2000; Paleczny et al. 2001; Suganuma et al. 2001] typically
use a dual execution strategy, where each method is initially either interpreted or
compiled without optimizations. No inlining is performed for such methods. Later,
an optimizing compiler that may perform inlining recompiles the minority of fre-
quently executing methods. Because inlining is not performed during the initial
execution, our analysis does not need to propagate constraints until the optimizing
compiler needs to make an inlining decision.

Since the results of our pointer analysis may be invalidated by any of the events
in the left column of Fig. 7, an inlining client must be prepared to invalidate inlining
decisions. Techniques such as code patching [Cierniak et al. 2000] and on-stack re-
placement [Hölzle et al. 1992; Fink and Qian 2003] support invalidation. If instant
invalidation is needed, our analysis must repropagate every time it finds new con-
straints. There are also techniques for deferring or avoiding invalidation of inlining
decisions (pre-existence based inlining [Detlefs and Agesen 1999] and guards [Hölzle
and Ungar 1994; Arnold and Ryder 2002], respectively) that would allow our anal-
ysis to be lazy about repropagating after it finds new constraints. Qian and Hen-
dren [Qian and Hendren 2005] study the usefulness of pointer analysis for inlining
in a VM, and survey invalidation techniques.

7.2.2 Side-effect analysis. Side-effect analysis enables various JIT compiler op-
timizations. Le et al. [2005] show how pointer analysis enables side-effect infor-
mation, and that that in turn could help optimizations in a JVM achieve higher
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speed-ups if pointer analysis information were available in the JVM. Invalidation
would proceed similarly to that for method inlining.

7.2.3 Connectivity-based garbage collection. CBGC (connectivity-based garbage
collection) is a new garbage collection technique that requires pointer analy-
sis [Hirzel et al. 2003]. CBGC uses pointer analysis results to partition heap objects
such that connected objects are in the same partition, and the pointer analysis can
guarantee the absence of certain cross-partition pointers. CBGC exploits the obser-
vation that connected objects tend to die together [Hirzel et al. 2003], and certain
subsets of partitions can be collected while completely ignoring the rest of the heap.

CBGC must know the partition of an object at allocation time. However, CBGC
can easily combine partitions later if the pointer analysis finds that they are strongly
connected by pointers. Thus, there is no need to perform a full propagation at object
allocation time. However, CBGC does need full conservative points-to information
when performing a garbage collection; thus, CBGC needs to request a full prop-
agation before collecting. Between collections, CBGC does not need conservative
points-to information.

7.2.4 Other clients. Pointer analysis could help make many optimizations in
a virtual machine more aggressive. This includes compiler optimizations that in-
volve pointers, as well as optimizations related to heap memory management or to
parallelization. The concrete examples above show that Java’s dynamic class load-
ing forces clients to be speculative, and we presented mechanisms for invalidating
optimistic assumptions in a variety of clients.

7.3 Fixing performance bugs

We took a “correctness first, performance later” approach in demonstrating the first
pointer analysis that works for all of Java [2004]. This led to various performance
bugs: situations where the analysis is still sound, but takes excessive time and
space. Mentioning them here may help readers avoid pit-falls in implementing
similar analyses.

7.3.1 Use a bit mask for type filtering. Section 4.5.2 describes type filtering:
when propagating from pointsTo(a) into pointsTo(b), where b is a v-node or an
h.f -node, the analysis filters the propagated h-nodes, only adding h-nodes of a
subtype of the declared type of b to pointsTo(b). Type filtering keeps pointsTo sets
smaller, improving both the precision and the efficiency of the analysis. However,
in our implementation in [Hirzel et al. 2004], it was surprisingly expensive. Our
implementation iterated over all the h-nodes in pointsTo(a) one at a time and
added them to pointsTo(b) if the type check succeeded. To avoid the cost of that
inner loop, we changed our implementation to filter by doing a logical “and” of bit-
vectors. This operation is much faster than our original implementation at the cost
of minimal space overhead. As it turns out, Lhoták and Hendren’s implementation
of type filtering for bit sets also uses the bit mask approach, but they do not describe
it in their paper [Lhoták and Hendren 2003].

One subtlety with using a bit mask for type filtering is that Heintze’s pointsTo set
representation uses a base bit vector and an overflow list (Section 4.2.4). Therefore,
the operation
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pointsTo(b).add(pointsTo(a))

still involves a loop over the bounded-size overflow list:

pointsTo(b)← pointsTo(b) ∪
(

pointsTo(a).base ∩ typeMask(typeOf(b))
)

for each h ∈ pointsTo(a).overflow
if h ∈ typeMask(typeOf(b))

pointsTo(b)← pointsTo(b) ∪ {h}

7.3.2 Use information on private/final/constructor methods for call graph con-
struction. Class hierarchy analysis (CHA) constructs a call graph based on the
canonical definition of virtual method dispatch. But implementing plain CHA was
needlessly imprecise. In Java, there is often more information available to disam-
biguate calls. Private methods are invisible to subclasses; final methods can not
be overridden; and constructor calls have a known exact receiver type. We im-
proved both precision and efficiency of the analysis by pruning call edges using this
additional information.

7.3.3 Restrict the base variable type for field accesses. In Java source code, each
local variable v has a declared type T . A field access v.f is only legal if T or one
of its superclasses declares f . However, in Java bytecode, a local variable can have
different, conflicting types at different program points. A field access v.f may be
legal even if at other points, the variable has a type that is incompatible with the
field. The constraint finder represents such a variable with a v-node of a type
that is general enough to be legal at all program points. But this means that the
constraint propagator has to check to which h-nodes in pointsTo(v) the field applies
whenever it processes a load or a store. This check is costly, doing it naively was
too slow. We fixed it by introducing helper variables of more precise types in some
cases where it helps performance.

7.4 VM interactions

So far, the description of our pointer analysis was general with respect to the virtual
machine in which it is implemented. The following sections describe how to deal
with VM-specific features. We use Jikes RVM as a case study, but the approaches
generalize to other VMs with similar features.

7.4.1 Interpreters and unoptimized code. The intraprocedural constraint finder
is implemented as a pass of the Jikes RVM optimizing compiler. However,
Jikes RVM compiles some methods only with a baseline compiler, which does not
use a representation that is amenable to constraint finding. We handle such meth-
ods by running the constraint finder as part of a truncated optimizing compilation.
Other virtual machines, where some code is not compiled at all, but interpreted, can
take a similar approach. Alternatively, they can take the more dynamic approach
of finding constraints at interpretation time.

7.4.2 Recompilation. Many VMs, including Jikes RVM, may recompile a
method (at a higher optimization level) if it executes frequently. Optimizations
such as inlining may introduce new variables or code into the recompiled methods.
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Since the analysis models each inlining context of an allocation site by a separate
h-node, it generates new constraints for the recompiled methods and integrates
them with the constraints for any previously compiled versions of the method.

7.4.3 Type descriptor pointers. In addition to language-level fields, each h-node
has a special node h.ftd that represents the field containing the reference to the
type descriptor for the object. A type descriptor contains support for runtime
system mechanisms such as virtual method dispatch, casts, reflection, and type-
accurate garbage collection. Jikes RVM implements type descriptors as ordinary
Java objects, and thus, our analysis must model them as such.

7.4.4 Magic. Jikes RVM has some internal “magic” operations, for example,
to allow direct manipulation of pointers. The compilers expand magic in special
ways directly into low-level code. The analysis treats uses of magic on a case-
by-case basis: for example, when magic stores a type descriptor from a variable
v to an object header, the analysis adds the appropriate v′.ftd to flowTo(v). As
another example, when magic manipulates raw memory in the garbage collector,
the analysis ignores those operations.

7.4.5 Building and start-up. Jikes RVM itself is written in Java, and begins
execution by loading a boot image (a file-based image of a fully initialized VM) of
pre-allocated Java objects and pre-compiled methods for the JIT compilers, GC,
and other runtime services. These objects live in the same heap as application
objects, so our analysis must model them.

Our analysis models all the code in the boot image as usual, with the constraint
finder from Sections 4.4 and 5.4. Our analysis models the data snapshot of the
boot image with special boot image h-nodes, and with pointsTo sets of global v-
nodes and boot image h.f -nodes. The program that creates the boot image does
not maintain a mapping from objects in the boot image to their actual allocation
site, and thus, the boot image h-nodes are not allocation sites, instead they are
synthesized at boot image writing time. Finally, the analysis propagates on the
combined constraint system. This models how the snapshot of the data in the boot
image may be manipulated by future execution of the code in the boot image.

Our techniques for correctly handling the boot image can be extended to form a
general hybrid offline/online approach, where parts of the application are analyzed
offline (as the VM is now) and the rest of the application is handled by the online
analysis presented in this work. Such an approach could be useful for applications
where the programmer asserts no use of the dynamic language features in parts of
the application.

8. RESULTS

Section 8.1 introduces the environment in which our pointer analysis operates,
Section 8.2 evaluates the performance of the analysis with all optimizations, and
Section 8.3 evaluates the effects of optimizations individually and in groups. We
conducted all experiments for this paper using Jikes RVM 2.2.1 running on a 2.4GHz
Pentium 4 with 2GB of memory running Linux, kernel version 2.4.
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8.1 Environment

Section 8.1.1 introduces the benchmarks. Pointer analysis for Java must happen
online, dealing with new code as new methods get compiled; Section 8.1.2 charac-
terizes this behavior over time. Finally, Section 8.1.3 describes the infrastructure
underlying the rest of the results section.

8.1.1 Benchmarks. Table IV describes the benchmark suite. Each row shows a
benchmark; null is the empty main method, and average is the arithmetic mean
of all benchmarks except for null. The suite includes all SPECjvm98 benchmarks
and several other Java programs. Column “Workload” shows the command line
arguments passed to the main method. For pseudojbb, the workload consists of
1 warehouse and 70,000 transactions.

Table IV. Benchmarks.
Program Workload [command Compiled Loaded Alloc. Time

line arguments] methods classes [MB] [s]

null 15,298 1,263 9.5 0

mtrt -m1 -M1 -s100 15,858 (+560) 1,404 (+141) 152.8 13

mpegaudio -m1 -M1 -s100 15,899 (+601) 1,429 (+166) 15.0 26

javalex qb1.lex 16,058 (+760) 1,289 (+26) 48.5 23

compress -m1 -M1 -s100 16,059 (+761) 1,290 (+27) 116.8 30

db -m1 -M1 -s100 16,082 (+784) 1,284 (+21) 86.5 25

ipsixql 3 2 16,275 (+977) 1,348 (+85) 193.9 6

jack -m1 -M1 -s100 16,293 (+995) 1,324 (+61) 245.9 8

richards 16,293 (+995) 1,336 (+73) 12.0 2

hsql -clients 1 -tpc 50000 16,323 (+1,025) 1,316 (+53) 2,944.3 153

pseudojbb 16,453 (+1,155) 1,318 (+55) 283.7 27

jess -m1 -M1 -s100 16,489 (+1,191) 1,420 (+157) 278.4 13

javac -m1 -M1 -s100 16,795 (+1,497) 1,418 (+155) 238.2 15

soot | -W --app -t -d Hello --jimple 17,023 (+1,725) 1,486 (+223) 70.9 3

xalan 1 1 17,342 (+2,044) 1,504 (+241) 344.2 31

average 16,374 (+1,076) 1,369 (+106) 359.4 27

Columns “Compiled methods” and “Loaded classes” of Table IV characterize the
code size. The numbers in parentheses show how much code each benchmark adds
beyond null. Jikes RVM compiles a method if it belongs to the boot image, or when
the program executes it for the first time. The loaded classes also include classes in
the boot image. Our pointer analysis has to deal with all these methods and classes,
which includes the benchmark’s own code, library code used by the benchmark,
and code belonging to Jikes RVM, including code of the pointer analysis itself.
Benchmark null provides a baseline: it represents approximately the amount that
Jikes RVM adds to the size of the application. This is an approximation because,
for example, some of the methods called by the optimizing compiler may also be
used by the application (e.g., methods on container classes).

Analysis in Jikes RVM has to deal with many more methods and classes than it
would have to in a JVM that is not written in Java. On the other hand, writing
the analysis itself in Java had significant software engineering benefits, such as
relying on garbage collection for memory management. Furthermore, the absence
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of artificial boundaries between the analysis, other parts of the runtime system,
and the application exposes more opportunities for optimizations. For example,
the analysis can speed up garbage collection (by providing information on where
pointers may point to), and garbage collection in turn can speed up the analysis (by
efficiently reclaiming garbage produced by the analysis). Current trends show that
the benefits of writing system code in a high-level, managed, language are gaining
wider recognition. For example, Microsoft is pushing towards implementing more
of Windows in managed code.

Columns “Alloc.” and “Time” of Table IV characterize the workload, using
Jikes RVM without our pointer analysis. Column “Alloc.” is the number of MB
allocated during the run, excluding the boot image, but including allocation on
behalf of Jikes RVM runtime system components such as the JIT compilers. Col-
umn “Time” is the runtime in seconds, using generous heap sizes (not shown). Our
choice of workloads turns hsql into an extreme point with a comparatively long
running time (2 minutes 33 seconds), and turns soot into an extreme point with a
short running time (3 seconds) despite a large code base.
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Fig. 13. Method compilation over time, for mpegaudio. The first shown data point is the main()

method.

8.1.2 Method compilation over time. Fig. 13 shows how the number of analyzed
methods increases over a run of mpegaudio. The experiment used Jikes RVM with-
out our pointer analysis. The x-axis shows time in milli-seconds. The y-axis shows
compiled methods, for which an online analysis would have to find constraints. The
first data point is the main() method; all methods analyzed before that are either
part of the boot image, or compiled during virtual machine start-up. The graphs
for other benchmarks have a similar shape, and therefore we omit them.
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Fig. 13 shows that after an initial warm-up period of around 0.3s, mpegaudio
executes only methods that it has encountered before. For an online analysis, this
means that behavior stabilizes quickly, at which point the analysis time overhead
drops to zero. At the end of the run, there is a phase shift that requires new code.
For an online analysis, this means that even after behavior appears to have stabi-
lized, the analysis must be ready and able to incorporate new facts, and possibly
even invalidate results used by clients. In general, the analysis needs to keep some
data structures around for this, so its space overhead stays positive even when the
time overhead asymptotically approaches zero.

8.1.3 Infrastructure. We implemented our pointer analysis in Jikes RVM 2.2.1.
To evaluate our analysis in the context of a client of the analysis, we also imple-
mented CBGC (connectivity-based garbage collection) in our version of Jikes RVM.
CBGC [Hirzel et al. 2003] is a novel garbage collector that depends on pointer anal-
ysis for its effectiveness and efficiency. We use the partitioner component of CBGC
to evaluate the precision of the analysis.

Since Andersen’s analysis has cubic time complexity, optimizations that increase
code size can dramatically increase analysis overhead. In our experience, too ag-
gressive inlining can increase constraint propagation time by up to a factor of 5 for
our benchmarks. We used Jikes RVM with its default adaptive optimization system,
which performs inlining (and optimizations) only inside the hot application meth-
ods, but is more aggressive about methods in the boot image (see Section 7.4.5).
We force Jikes RVM to be more cautious about inlining inside boot image methods
by disabling inlining at build time. However, the adaptive system still recompiles
some hot boot image methods if an inlining opportunity is discovered [Arnold et al.
2000].

8.2 Performance with all optimizations

This section evaluates the performance of our online analysis when all optimizations
from Section 6 are enabled, and all performance bug fixes from Section 7.3 have been
applied. Section 8.2.1 introduces terminology, Section 8.2.2 evaluates the memory
usage, Section 8.2.3 evaluates the time for constraint finding, and Section 8.2.4
evaluates the time for constraint propagation.

8.2.1 Terminology for propagator eagerness. Performing Andersen’s analysis
offline requires O(n2) memory for representing pointsTo sets and other abstractions
(Section 3.1), O(n2) time for constraint finding including call graph construction,
and O(n3) time for constraint propagation (Fig. 2), where n is the code size (indi-
cated by the number of methods and classes in Table IV). Certain Java features
prohibit offline pointer analysis (Section 2).

Performing Andersen’s analysis online also requires O(n2) memory and O(n2)
time for constraint finding including call graph construction. In the worst case,
it requires O(e · i) time for constraint propagation, where e (eagerness) is how
often a client requests up-to-date analysis results, and i (incrementality) is how
long each repropagation takes (Fig. 7). In general, i = O(n3), but thanks to
our worklist-driven architecture, it is much faster than propagating from scratch.
Another change compared to offline analysis is that n itself, the code size, differs. As
discussed in Section 8.1.1, on the one hand n is smaller in an online context, because
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not all methods in the code base end up being compiled in a particular execution;
and on the other hand, the code size n is larger in a homogeneous-language system
like Jikes RVM, because it includes the code for the runtime system itself.

Constraint propagation happens once offline after building the boot image 7.4.5,
and then at runtime whenever a client of the pointer analysis needs points-to infor-
mation and there are unresolved constraints. This paper investigates three kinds
of propagation: eager, lazy, and at gc. Eager propagation occurs whenever an
event from the left column of Fig. 7 generated new constraints. Lazy propagation
occurs just once at the end of the program execution. At gc propagation occurs at
the start of every garbage collection, and is an example for supporting a concrete
client: connectivity-based garbage collection (CBGC) requires up-to-date points-to
information at gc time [Hirzel et al. 2003].
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Fig. 14. Memory usage. Total allocation of the analysis, normalized to allocation without analysis.

8.2.2 Memory usage. Fig. 14 gives the amount allocated by our pointer analysis
on top of what the application and run-time system allocate. These numbers are
normalized to the total allocation without the analysis. For example, Column “Al-
loc.” in Table IV shows that the average benchmark allocates a total of 359.4MB,
and Fig. 8 shows that with propagation at gc, our analysis allocates another 109%,
or 391.7MB, on top of that for the average benchmark.
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The bottom part of each set of bars in Fig. 14 gives the space overhead of con-
straint finding. The difference between this number and the height of the bars gives
the space overhead of constraint propagation. With lazy propagation or propaga-
tion at gc, most of the space overhead of the pointer analysis comes from the con-
straints. In other words, the shared bit-set representation for pointsTo sets from
CLA [Heintze 1999] is reasonably compact for none-too-eager clients. We have not
yet optimized the representation of other analysis data structures, such as flowTo
sets, deferred unresolved constraints, and the call graph. Those data structures are
allocated by the constraint finder, not the constraint propagator.

As the frequency of propagation increases, the space overhead also rises. Some
data structures, such as deferred constraints or shared bit sets, become garbage
and get recycled throughout the run. The seemingly high numbers for richards and
mpegaudio are caused by normalizing to their low total allocation of 12MB and
15MB, respectively. For soot, normalized total allocation with eager propagation
is high because soot ’s base total allocation is relatively low (71MB), yet it has
a large number of methods (17,023), and furthermore, it wraps many allocations
in factory methods, which hurts analysis precision. Clients content with lower
propagation frequency, such as CBGC, are rewarded with lower space overhead,
but space overhead remains a challenge.

Finally, since the boot image needs to include constraints for the code and data in
the boot image, our analysis inflates the boot image size from 31.5MB to 69.4MB.

Table V. Time for constraint finding, normalized to time without analysis.
Program Analyzing methods Resolving classes and arrays

null 195% 24%

mtrt 10% 1%

mpegaudio 6% 1%

javalex 5% 1%

compress 3% 0%

db 4% 0%

ipsixql 28% 7%

jack 33% 8%

richards 54% 17%

hsql 1% 0%

pseudojbb 8% 1%

jess 23% 4%

javac 19% 3%

soot 312% 37%

xalan 19% 5%

average 38% 6%

8.2.3 Time for constraint finding. Table V gives the time overhead of generat-
ing constraints from methods (Column “Analyzing methods”) and from resolution
events (Column “Resolving classes and arrays”), on top of running time without
either constraint generation or constraint propagation. Table V shows that gener-
ating constraints for methods is the dominant part of constraint generation. Also,
as the benchmark runtime increases, the percentage of time spent in constraint
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generation decreases. For example, the time spent in constraint finding is a neg-
ligible percentage of the runtime for our longest running benchmark, hsql, but is
large for our shortest running benchmarks (e.g., null). Soot is a worst case for this
experiment: it has a large code base but a short runtime (only 3 seconds).

Table VI. Time for constraint propagation, in seconds.
Eager At GC Lazy

Program k× (Avg±Std) = Total k× (Avg± Std) = Total 1×Total

null 2 × ( 2.3±3.2 ) = 4.6 1 × ( 4.7± 0.0 ) = 4.7 1 × 4.8

mtrt 315× ( 0.1± 0.3) = 16.1 4× ( 2.3± 2.0) = 9.0 1× 6.8

mpegaudio 383× ( 0.0± 0.3) = 17.2 4× ( 2.3± 2.1) = 9.2 1× 7.6

javalex 208× ( 0.1± 0.4) = 26.6 2× ( 4.6± 0.2) = 9.2 1× 6.2

compress 162× ( 0.1± 0.4) = 13.8 4× ( 2.2± 2.0) = 8.7 1× 6.6

db 181× ( 0.1± 0.4) = 17.2 4× ( 2.2± 2.0) = 9.0 1× 6.1

ipsixql 485× ( 0.1± 0.3) = 37.3 2× ( 4.2± 0.9) = 8.4 1× 6.2

jack 482× ( 0.1± 0.3) = 39.5 4× ( 3.1± 2.8) = 12.5 1× 9.6

richards 438× ( 0.0± 0.2) = 8.8 2× ( 2.8± 2.8) = 5.5 1× 5.6

hsql 482× ( 0.1± 0.3) = 43.9 4× ( 3.5± 4.2) = 14.1 1× 12.0

pseudojbb 726× ( 0.1± 0.2) = 44.3 2× ( 6.2± 1.8) = 12.5 1× 9.3

jess 833× ( 0.1± 0.3) = 100.0 4× ( 3.1± 2.8) = 12.3 1× 8.7

javac 1,275× ( 0.1± 0.3) = 182.3 6× ( 3.7± 5.4) = 22.0 1× 16.4

soot 1,588× ( 0.1± 0.3) = 206.4 2× (11.9±10.1) = 23.7 1× 20.8

xalan 2,018× ( 0.1± 0.2) = 149.3 2× ( 8.3± 5.0) = 16.6 1× 13.7

average 684 × ( 0.1±0.3 ) = 64.5 3 × ( 4.3± 3.2 ) = 12.3 1 × 9.7

8.2.4 Time for constraint propagation. Table VI shows the cost of constraint
propagation. For example, with eager propagation on javac, the propagator runs
1,275 times, taking 0.1s on average with a standard deviation of 0.3s. All of the
eager propagation pauses add up to 182.3s. The lazy propagation data gives an
approximate sense for how long propagation would take if one were to wait for
exactly the right moment to propagate just once, after all methods are compiled,
but before the application does the bulk of its computation. For example, lazy
propagation on javac would take 16.4s. Recall, however, that finding exactly the
right moment to propagate is usually not possible (Section 2.3).

We see that for our algorithm with all the optimizations, an eager propaga-
tion takes on average 0.1 seconds. Table VI shows that if we propagate more
frequently, individual propagations become faster. Thus, our incremental pointer
analysis algorithm is effective in avoiding work on parts of the program that have
not changed since the last propagation. That said, the total propagation times show
that frequent propagations incur a non-trivial aggregate cost. Overall, individual
propagations are fast and probably adequate for many clients of pointer analysis.

Fig. 15 presents the spread of propagation times for javac. A point (x,y) in this
graph says that propagation “x” took “y” milliseconds. Out of 1,275 propagations
in javac, 996 propagations take one-tenth of a second or less. This figure omits the
offline propagation that happens at VM build time, and only shows propagations
at application runtime. The most expensive run-time propagation is the first one
(at x= 0 and y = 4.7 seconds, on the y-axis), because it finds a fixed-point for all
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Fig. 15. Time for constraint propagation, for javac with eager propagation.

constraints that arise during VM startup, before Jikes RVM loads the application
itself. The omitted graphs for other benchmarks have a similar shape. Fig. 15
considers eager propagation times; as discussed in Table VI, at gc propagations are
slower individually, but there are fewer of them.

8.3 Effect of optimizations

The results presented so far enabled all of the techniques in Sections 6 and 7.3. This
section explores how they affect propagation time individually and in combinations.

8.3.1 Performance when incrementalizing. Table VII shows the effect of indi-
vidual optimizations from Section 6.1. For these experiments, all of the optimiza-
tions from Section 6.2 and all of the performance bug fixes from Section 7.3 are
active. Comparing the average propagation cost of the first incremental propagator
from Section 5.5 with the average propagation cost of the final algorithm from Sec-
tion 6.1.4 shows that the incrementalizations are effective: the average propagation
time drops from 1.2s to 0.1s. On average, the total propagation time drops from
750.7s to 64.5s, a factor of 12 speedup.

8.3.2 Performance when varying sensitivity. This section evaluates the three
selective precision changes from Section 6.2, along with the performance bug fix of
using a bit set for type filtering from Section 7.3.1. The other performance bug
fixes had a smaller impact, and exploring bug fixes is less interesting, because one
would want to include them in an implementation anyway. Therefore, for these
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Table VII. Constraint propagation time for different propagators, in seconds. These numbers are

slightly different from the “Eager” column in Table VI due to instrumentation artifacts.
Prop. from IsCharged Caching Caching

Num. new constraints for h.f charged h.f charged h
of (Section 5.5) (Section 6.1.2) (Section 6.1.3) (Section 6.1.4)

Program Props Avg±Std Total Avg±Std Total Avg±Std Total Avg±Std Total

null 2 4.9±5.7 9.9 4.8±6.8 9.6 4.0±5.7 8.0 2.3±3.2 4.6

mtrt 314 1.3± 0.9 401.9 0.4± 0.9 122.6 0.3± 0.7 83.3 0.1± 0.3 16.1
mpegaudio 382 1.2± 1.0 464.4 0.4± 0.8 149.3 0.3± 0.6 96.4 0.0± 0.3 17.2
javalex 209 1.8± 1.2 366.1 0.8± 1.2 160.6 0.6± 1.0 122.7 0.1± 0.4 26.6
compress 161 1.4± 1.1 231.8 0.5± 1.1 85.8 0.7± 1.6 105.5 0.1± 0.4 13.8
db 180 1.6± 1.6 286.1 0.6± 1.2 106.8 0.4± 0.9 69.5 0.1± 0.4 17.2
ipsixql 485 1.4± 1.1 699.0 0.6± 1.4 309.3 0.4± 0.9 211.7 0.1± 0.3 37.3
jack 481 1.7± 1.3 813.0 0.7± 1.5 341.6 0.4± 0.8 197.4 0.1± 0.3 39.5
richards 438 1.0± 0.4 441.4 0.2± 0.5 74.8 0.1± 0.4 54.7 0.0± 0.2 8.8
hsql 484 1.6± 1.4 778.4 0.7± 1.4 320.5 0.4± 0.8 199.9 0.1± 0.3 43.9
pseudojbb 726 1.5± 1.3 1,109.9 0.5± 1.3 336.9 0.3± 0.8 233.4 0.1± 0.2 44.3
jess 832 1.9± 1.6 1,591.4 1.0± 1.6 807.7 0.6± 1.0 523.0 0.1± 0.3 100.0
javac 1,274 2.3± 2.1 2,902.5 1.1± 1.8 1,366.3 0.7± 1.2 908.1 0.1± 0.3 182.3
soot 1,587 1.8± 1.4 2,805.4 0.8± 1.4 1,242.0 0.5± 1.0 856.7 0.1± 0.3 206.4
xalan 2,017 1.7± 1.2 3,394.4 0.6± 1.0 1,199.0 0.4± 0.8 899.9 0.1± 0.2 149.3

average 684 1.2±1.0 740.7 0.6±1.0 301.0 0.4±0.9 207.7 0.1±0.3 64.5

experiments, all optimizations from Sections 6.2, 7.3.2, and 7.3.3 are always active.
Section 8.3.2.1 shows the impact of individual optimizations, Section 8.3.2.2 ex-

plores interactions of multiple optimizations, and Section 8.3.3 evaluates how the
optimizations affect precision.
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Fig. 16. Individual optimizations: cost in time compared to the unoptimized algorithm.
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8.3.2.1 Individual optimizations. Fig. 16 gives the total propagation time when
using the techniques from Sections 6.2 and 7.3.1 individually as a percentage of
total propagation time without any of these techniques. The “All optimizations”
bars show that the techniques collectively have a dramatic effect on performance;
on average, they reduce propagation time to 6% of the propagation when all of
them are inactive, a factor of 16 speedup. Taken individually, using a bit mask
for type filtering is the most effective and relaxing allocation site sensitivity is also
beneficial. The other two optimizations, taken alone, slightly degrade performance.

8.3.2.2 Pairs of optimizations. The optimizations have obvious interactions. For
example, the optimization “selectively relax field sensitivity” is designed to alleviate
the negative effects of context sensitivity; taken alone there is little opportunity for
applying this optimization.

Table VIII. Interactions of pairs of optimizations: min(TO1, TO2) − TO1,O2, how much better is

it to perform both optimizations than to perform only the better single optimization. The bars,

left to right, are for mtrt, mpegaudio, javalex, compress, db, ipsixql, jack, richards, hsql, pseudojbb,
jess, javac, soot, and xalan.
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Table VIII explores how pairs of optimizations interact. Each bar shows
min(TO1, TO2) − TO1,O2 for the pair (O1, O2) of optimizations given by the ta-
ble cell, and for the benchmark given by the order of bars specified in the caption.
The value TO is the total propagation time when using optimization O alone, as
given in Fig. 16. The value TO1,O2 is the total propagation time when applying both
O1 and O2 in the same run. When min(TO1, TO2) > TO1,O2, the bar is positive,
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meaning that the combined optimizations sped up propagation more than each one
individually.

Using a bit mask for type filtering interacts well with selectively relaxing
allocation-site or field sensitivity. This is not surprising: all three optimizations
reduce analysis data structures. Selectively adding context sensitivity, on the other
hand, increases analysis data structures. When using just a pair of optimizations,
selective context sensitivity sometimes interacts positively with bit masks or selec-
tive field sensitivity, but always interacts negatively with selective allocation site
sensitivity.

8.3.2.3 Triples of optimizations. Table IX explores how triples of optimizations
interact. Each bar shows min(TO1,O2, TO3) − TO1,O2,O3, where the row gives the
pair of optimizations (O1, O2), the column gives the third optimization O3, and
the caption tells which bar corresponds to which benchmark. This table is similar
to Table VIII: when min(TO1,O2, TO3) > TO1,O2,O3, the bar is positive, meaning
that the triple (O1, O2, O3) led to better propagation time than either (O1, O2) or
O3. Each row has empty cells for the two columns that are already involved in the
pair of optimizations.

Table IX, Row “Context and allocation-site”, Column “Selectively relax field
sensitivity” shows the strongest positive interaction. The row itself corresponds to
the worst pair-wise interaction from Table VIII. This motivates why we introduced
the optimization “Selectively relax field sensitivity”: in our experiments, it it nec-
essary for reaping the full benefit from the optimization “Selectively add context
sensitivity”. Of course, we relax field sensitivity for exactly those fields for which
context sensitivity behaves badly otherwise.

8.3.3 Precision. While we designed all the optimizations in Section 6 to im-
prove performance, the three optimizations in Section 6.2 also affect precision.
We evaluate their effect on the precision of our pointer analysis with respect to a
client of the pointer analysis: the partitioner in CBGC (connectivity-based garbage
collection [Hirzel et al. 2003]). Since these optimizations change precision in incom-
parable ways (they use a different heap model), it is not appropriate to compare
their relative effects using pointsTo sets or alias sets [Diwan et al. 2001].

The CBGC partitioner works by placing each allocation site in its own partition
and then collapsing strongly-connected components in the partition graph. Since
a less precise pointer analysis has (potentially) more points-to edges than a more
precise analysis, it also has fewer, larger strongly-connected components than the
more precise analysis. Thus, a less precise analysis will have fewer partitions than a
more precise analysis. Fig. 17 gives the change in the number of partitions relative
to using none of these optimizations.

Fig. 17 shows that context sensitivity slightly improves precision, while the other
optimizations have a negligible impact on precision. In other words, collectively
these optimizations improve both precision and performance of our pointer-analysis
client.

9. RELATED WORK

Section 9.1 discusses work related to the offline analysis from Section 4, Section 9.2
discusses work related to the online analysis from Section 5, Section 9.3 discusses
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Table IX. Interactions of triples of optimizations: min(TO1,O2, TO3)−TO1,O2,O3, how much better

is it to add a third optimization than just performing a pair or the third one alone. The bars, left
to right, are for mtrt, mpegaudio, javalex, compress, db, ipsixql, jack, richards, hsql, pseudojbb,

jess, javac, soot, and xalan.
Selectively add Selectively relax Selectively relax Use a

context allocation-site field bit mask
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work related to the analysis optimizations from Section 6, and Section 9.4 discusses
work related to our validation technique from Section 7.1.

9.1 Offline analysis

Section 9.1.1 puts our analysis on the map, Section 9.1.2 discusses related offline
analyses, and Section 9.1.3 describes related work on how to represent analysis data
structures.
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Fig. 17. Precision. How the optimizations change the number of CBGC partitions.

9.1.1 Where does Andersen fit in. The body of literature on pointer analyses is
vast [Hind 2001]. At one extreme, exemplified by Steensgaard [1996] and type-based
analyses [Harris 1999; Tip and Palsberg 2000; Diwan et al. 2001], the analyses are
fast, but imprecise. At the other extreme, exemplified by shape analyses [Hendren
1990; Sagiv et al. 1999], the analyses are slow, but precise enough to discover the
shapes of many data structures. In between these two extremes there are many
pointer analyses, offering different cost-precision tradeoffs.

The goal of our research was to choose a well-known analysis and to extend it
to handle all features of Java. This goal was motivated by our need to build a
pointer analysis to support CBGC (connectivity-based garbage collection, [Hirzel
et al. 2003]). On the one hand, our experiments found that type-based analyses
are too imprecise for CBGC. On the other hand, we felt that much more precise
shape analysis or context-sensitive analysis would probably be too expensive in an
online context. This left us with a choice between Steensgaard’s [1996] and Ander-
sen’s [1994] analysis. Andersen’s analysis is less efficient, but more precise [Shapiro
and Horwitz 1997; Hind and Pioli 2000]. We decided to use Andersen’s analysis,
because it poses a superset of the Java-specific challenges posed by Steensgaard’s
analysis, leaving the latter (or points in between) as a fall-back option.

9.1.2 Andersen for “static Java”. A number of papers describe how to use An-
dersen’s analysis for a subset of Java without features such as dynamic class loading,
reflection, or native code [Liang et al. 2001; Rountev et al. 2001; Whaley and Lam
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2002; Lhoták and Hendren 2003]. We will refer to this subset language as “static
Java”. The above papers present solutions for static Java features that make pointer
analyses difficult, such as object fields, virtual method invocations, etc.

Rountev, Milanova, and Ryder [2001] formalize Andersen’s analysis for static
Java using set constraints, which enables them to solve it with Bane (Berkeley
ANalysis Engine) [Fähndrich et al. 1998]. Liang, Pennings, and Harrold [2001]
compare both Steensgaard’s and Andersen’s analysis for static Java, and eval-
uate trade-offs for handling fields and the call graph. Whaley and Lam [2002]
improve the efficiency of Andersen’s analysis by using implementation techniques
from CLA [Heintze and Tardieu 2001b], and improve the precision by adding
flow-sensitivity for local variables. Lhoták and Hendren [2003] present Spark

(Soot Pointer Analysis Research Kit), an implementation of Andersen’s analysis
in Soot [Vallée-Rai et al. 2000], which provides precision and efficiency tradeoffs for
various components.

9.1.3 Representation. There are many alternatives for storing the flow and
pointsTo sets. For example, we represent the data flow between v-nodes and h.f -
nodes implicitly, whereas Bane represents it explicitly [Foster et al. 1997; Rountev
et al. 2001]. Thus, our analysis saves space compared to Bane, but may have to
perform more work at propagation time. As another example, CLA [Heintze and
Tardieu 2001b] stores reverse pointsTo sets at h-nodes, instead of storing forward
pointsTo sets at v-nodes and h.f -nodes. The forward pointsTo sets are implicit in
CLA and must therefore be computed after propagation to obtain the final analysis
results. These choices affect both the time and space complexity of the propagator.
As long as it can infer the needed sets during propagation, an implementation can
decide which sets to represent explicitly. In fact, a representation may even store
some sets redundantly: for example, to obtain efficient propagation, our represen-
tation uses redundant flowFrom sets.

Finally, there are many choices for how to implement the sets. The Spark paper
evaluates various data structures for representing pointsTo sets [Lhoták and Hen-
dren 2003], finding that hybrid sets (using lists for small sets, and bit-vectors for
large sets) yield the best results. We found the shared bit-vector implementation
from CLA [Heintze 1999] to be even more efficient than the hybrid sets used by
Spark. Another shared set representation is BDDs, which have recently become
popular for representing sets in pointer analysis [Berndl et al. 2003]. In our expe-
rience, Heintze’s shared bit vectors are highly efficient; in fact, we speculate that
they are a main reason for the good performance of CLA [Heintze and Tardieu
2001b].

9.2 Online interprocedural analysis

Section 9.2.1 describes extant analysis, an offline analysis that can yield some of
the benefits of online analysis. Section 9.2.2 discusses how clients can deal with
the fact that results from online analysis change over time. Section 9.2.3 describes
online analyses that deal with Java’s dynamic class loading feature.

9.2.1 Extant analysis. Sreedhar, Burke, and Choi [2000] describe extant anal-
ysis, which finds parts of the static whole program that can be safely optimized
ahead of time, even when new classes may be loaded later. It is not an online
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analysis, but reduces the need for one in settings where much of the program is
available statically.

9.2.2 Invalidation. Pechtchanski and Sarkar [2001] present a framework for in-
terprocedural whole-program analysis and optimistic optimization. They discuss
how the analysis is triggered (when newly loaded methods are compiled), and how
to keep track of what to de-optimize (when optimistic assumptions are invalidated).
They also present an example online interprocedural type analysis. Their analysis
does not model value flow through parameters, which makes it less precise, as well
as easier to implement, than Andersen’s analysis.

9.2.3 Analyses that deal with dynamic class loading. Below, we discuss some
analyses that deal with dynamic class loading. None of these analyses deals with
reflection or JNI, or validates its results. Furthermore, all are less precise than
Andersen’s analysis.

Bogda and Singh [2001] and King [2003] adapt Ruf’s escape analysis [2000] to
deal with dynamic class loading. Ruf’s analysis is unification-based, and thus,
less precise than Andersen’s analysis. Escape analysis is a simpler problem than
pointer analysis because the impact of a method is independent of its parameters
and the problem doesn’t require a unique representation for each heap object [Choi
et al. 1999]. Bogda and Singh discuss tradeoffs of when to trigger the analysis,
and whether to make optimistic or pessimistic assumptions for optimization. King
focuses on a specific client, a garbage collector with thread-local heaps, where local
collections require no synchronization. Whereas Bogda and Singh use a call graph
based on capturing call edges at their first dynamic execution, King uses a call
graph based on rapid type analysis [Bacon and Sweeney 1996].

Qian and Hendren [2004] adapt Tip and Palsberg’s XTA [2000] to deal with
dynamic class loading. The main contribution of their paper is a low-overhead
call edge profiler, which yields a precise call graph on which to base XTA. Even
though XTA is weaker than Andersen’s analysis, both have separate constraint
generation and constraint propagation steps, and thus, pose similar problems. Qian
and Hendren solve the problems posed by dynamic class loading similarly to the way
we solve them; for example, their approach to unresolved references is analogous to
our approach in Section 5.3.

9.3 Varying analysis precision

There has also been significant prior work in varying analysis precision to improve
performance. Ryder [Ryder 2003] describes precision choices for modeling program
entities in a reference analysis (pointer analysis, or weaker type-based variants).
Plevyak and Chien [Plevyak and Chien 1994] and Guyer and Lin [Guyer and Lin
2003] describe mechanisms for automatically varying flow and context sensitivity
during the analysis. Although those mechanisms happen in an offline, whole-world
analysis, and thus, do not immediately apply to online analysis, we believe they
can inspire approaches to automate online precision choices.

9.4 Validation

Our validation methodology compares pointsTo sets computed by our analysis to
actual pointers at runtime. This is similar to limit studies that other researchers
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have used to evaluate and debug various compiler analyses [Larus and Chandra
1993; Diwan et al. 2001; Liang et al. 2002].

10. CONCLUSIONS

We describe and evaluate the first non-trivial pointer analysis that handles all of
Java. Java features such as dynamic class loading, reflection, and native methods
introduce many challenges for pointer analyses. Some of these prohibit the use
of static pointer analyses. We validate the output of our analysis against concrete
pointers created during program runs. We evaluate our analysis by measuring many
aspects of its performance, including the amount of work our analysis must do at
runtime. Because any inefficiencies in online analysis directly degrade application
performance, this paper discusses and evaluates various implementation issues that
affect analysis performance. This paper presents several optimizations that improve
the performance of online pointer analysis by almost two orders of magnitude com-
pared to our previous paper. On average over our benchmark suite, if the analysis
recomputes points-to results upon each program change, most analysis pauses take
under 0.1 seconds.
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