
RC23639 (W0506-095) June 24, 2005
Mathematics

IBM Research Report

A Survey on Minimizing Makespan for the Preemptive Job
Shop with Two Machines

Tracy Kimbrel
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A SURVEY ON MINIMIZING MAKESPAN FOR THE
PREEMPTIVE JOB SHOP WITH TWO MACHINES

Tracy Kimbrel

IBM T.J. Watson Research Center
kimbrel@us.ibm.com

We survey results for the job shop scheduling problem J2 |pmtn |Cmax for the case of two ma-
chines with preemption. With respect to polynomial time approximation algorithms, the problem
is essentially equivalent to the case in which there are two machines and each operation has unit
length. This assumption can be achieved in polynomial time with only ε loss by scaling and round-
ing the inputs to give polynomial-valued operation lengths. Then since preemption is allowed we
may take an operation to be composed of multiple unit-length operations (on the same machine).
(The assumption can be removed with no loss for all but the last algorithm presented but will be
used throughout to simplify descriptions.)

The problem then reduces to a constrained matching problem as follows. We consider each job
to be a directed chain of precedence arcs between unit length operations. We seek a matching (set
of undirected arcs) such that that there are no directed cycles in the mixed graph containing both
the precedence and matching arcs. Each matching arc is between an operation on machine M1 and
an operation on machine M2 which will be performed concurrently. It is straightforward to derive
a valid schedule from this graph.

1 Hefetz and Adiri give a polynomial-time exact solution in the case that each job contains
a sequence of unit-time operations that always alternate between M1 and M2. [Hefetz and
Adiri, 1982]

2 Jansen, Solis-Oba, and Sviridenko give a polynomial-time approximation scheme (PTAS)
in case there are a constant number of operations per job (without any transformation to
unit-time operations) both for the preemptive and nonpreemptive problems. This algorithm
applies to the case of any constant number of machines, not just two. [Jansen et al., 2003]

3 Sevastianov and Woeginger give a linear-time 3
2 -approximation algorithm for minimizing the

makespan. The algorithm divides the jobs into two sets S and U . It matches operations as
follows. Work from S on M1 is matched as much as possible to work from U on M2. No
attempt is made to match operations in S on M2 to operations in U on M1. Because of this,
it is quite simple to find a matching that does not induce any cycles. The authors show that
for some instances, an appropriate choice of S and U will yield makespan at most 3L/2 where
L is the maximum of the loads on machines M1 and M2. For other instances, the jobs must
be divided into three sets, and two iterations of the matching process are needed. Again, for
an appropriate partitioning, the makespan is shown to be at most 3L/2. [Sevastianov and
Woeginger, 1998]

4 Kimbrel and Saia match the approximation ratio of 3/2 in the randomized online setting.
The algorithm requires only a single random bit and thus is trivially derandomized to also
give a linear-time offline algorithm. [Kimbrel and Saia, 2000]

This algorithm starts with an arbitrary permutation π of the n jobs. It chooses randomly
between two priority schemes. Under one scheme, priority for machine M1 is given to jobs
according to π and priority for machine M2 is given according to πr. Under the second
scheme, these priority orderings are reversed.

A schedule is constructed by placing each job in one of two queues, corresponding to the
machine required by its first operation, ordered by priority. The online algorithm repeatedly
matches the first operations of the jobs at the heads of the two queues and removes those
operations from the jobs. Each of these two jobs is reinserted into the opposite queue at the
proper position according to the priority ordering if needed (i.e., the next operation is on the
other machine). If the operation removed was the last, the job is simply removed from the
queue. If all jobs are in the same queue, no match is possible and the first operation in the
job at the head is simply removed. The sum of lengths of the schedules given by the two
priority schemes is at most 3 times the optimum.

5 Anderson et al. give an algorithm with a tighter approximation guarantee of L+ �/2 in terms
of the maximum machine load L and the maximum job length �, but this is still 3/2 in the
worst case. The algorithm matches work on both machines from each job (except two), and
interleaves the work from different jobs in a careful way. [Anderson et al., 2001]

Without loss of generality assume that the load on machine M1 is L. The algorithm chooses
any permutation π such that all jobs with more operations on M1 than on M2 precede all
other jobs. It considers only matching arcs between operations o1 and o2 in jobs j1 and j2

such that o1 is on M1, o2 is on M2, and j1 < j2. Operations on machine M2 are ordered
as follows: the decreasing priority order consists of the operations in j1 in precedence order,
followed by operations in j2, and so on. Similarly, operations on machine M1 are ordered
as follows: the decreasing priority order consists of the operations in jn in precedence order
where n is the number of jobs, followed by operations in jn−1, and so on.

The operations on machine M2 are processed in decreasing priority order. When looking for
matches for operations in job j, all operations on M1 in jobs up to and including job j − 1
have been released into a pool of operations available for matching. These operations are
consumed in decreasing priority order.

Note that this algorithm provides an approximation ratio better than 3/2 except in extreme
instances in which a single job contains about half the total work or more.

6 The approximation results above for this problem use as a lower bound the maximum of L and
�. Sevastianov and Woeginger note than any approximation algorithm with ratio better than
3/2 for the two machine case would require a new, non-trivial lower bound on the optimal
makespan. Bansal et al. give such a result. Their algorithm has an approximation ratio of
less than 1.45. [Bansal et al., 2005]

In case the largest job has significantly less than half the total work, the algorithm of Anderson
et al. can be used. If the largest job has significantly more than half the work, the length
� of this job gives a good enough lower bound on the optimal schedule length so that any
reasonable schedule (that does not simultaneously idle both machines) has makespan less
than 3/2 times the optimal.

If there is a “big” job B containing about half the total work, the algorithm of Bansal et
al. attempts to maximize the number of operations of other (“small”) jobs that are matched
to operations of B. No attempt is made to match any two operations both belonging to
jobs other than B. This special case of the matching problem is solved via linear program-
ming relaxation of an integer programming formulation and rounding so that the number
of operations performed concurrently with those in B is at least a (1 − 1/e) fraction of the

most possible. Even if the optimal schedule matches all these and all remaining operations
among jobs other than B, the lower bound so obtained is shown to be enough to guarantee
an approximation ratio less than 3/2.

The LP can be informally described as follows: Consider an operation i of a small job j and
imagine traversing the operations k of B in precedence order. At step k match a fraction
xi,j,k of i to k, and then discard (i.e., leave unmatched) a fraction yi,j,k of i before moving on
to stage k + 1. These matchings must obey precedence constraints in a fractional sense; that
is,

k−1∑

t=0

(xi−1,j,t + yi−1,j,t) −
k−1∑

t=0

(xi,j,t + yi,j,t) − xi,j,k ≥ 0.

The solution is rounded as follows:

Let 0 ≤ si,j,k ≤ 1 denote the extent to which operation i of job j has been matched to
operations 1, . . . , k − 1 of job B or discarded during the first k − 1 steps, i.e., si,j,k =∑k−1

t=1 (xi,j,t + yi,j,t). Let vi,j,k = si,j,k + xi,j,k; thus vi,j,k − si,j,k is exactly the extent to
which i is matched to k. Also note that yi,j,k = si,j,k+1 − vi,j,k. Note that the fractional
precedence constraints imply that si−1,j,k ≥ vi,j,k.

(a) For each job j choose uj ∈ [0, 1] uniformly at random.

(b) For each operation i in job j assign i to operation k of B if and only if si,j,k ≤ uj < vi,j,k.

(c) Let N(k) denote the number of operations assigned to k. N(k) is a random variable.
If N(k) = 0, k is not matched to any operation. If N(k) = 1, match k to the unique i
assigned to it. If N(k) ≥ 2, arbitrarily match k to one of the operations assigned to it,
and discard the remaining N(k) − 1 operations (never to be matched again).

Combining these different cases gives a worst case approximation ratio of about 1.442 for the
general case.

References
Anderson, E., Jayram, T., and Kimbrel, T. (2001). Tighter bounds on preemptive job shop scheduling with two

machines. Computing, 67:83–90.

Bansal, N., Kimbrel, T., and Sviridenko, M. (2005). Job shop scheduling with unit processing times. In Proceedings
of the ACM/SIAM Symposium on Discrete Algorithms, Vancouver, British Columbia, Canada.

Hefetz, N. and Adiri, I. (1982). An efficient optimal algorithm for the two-machine, unit-time job-shop schedule-length
problem. Mathematics of Operations Research, 7:354–360.

Jansen, K., Solis-Oba, R., and Sviridenko, M. (2003). Makespan minimization in job shops: a linear time approxima-
tion scheme. SIAM J. Discrete Math., 16:288–300.

Kimbrel, T. and Saia, J. (2000). On-line and off-line preemptive two-machine job shop scheduling. Journal of Schedul-
ing, 3:355–364.

Sevastianov, S. and Woeginger, G. (1998). Makespan minimization in preemptive two machine job shops. Computing,
60:73–79.

