
RC23642 (W0506-109) June 28, 2005
Computer Science

IBM Research Report

Leveraging IPSec for Mandatory Access Control of Linux
Network Communications

Trent R. Jaeger
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Serge Hallyn, Joy Latten
IBM Systems and Technology Group

11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Leveraging IPSec for Mandatory Access Control of Linux Network
Communications

Abstract

We present an implementation of mandatory access con-
trol for Linux network communications that restricts
socket access to labelled IPSec security associations.
The Linux Security Modules (LSM) framework defines a
reference monitor interface that enables security modules
(e.g., SELinux) to enforce comprehensive mandatory ac-
cess control (MAC) for Linux version 2.6. The cur-
rent LSM control over network communication is lim-
ited, however. The LSM interface enables control of
process access to sockets, but socket communications
can only be restricted by network interfaces and IP ad-
dresses. We cannot use LSMs to control access to par-
ticular applications on remote machines or reliably as-
sociate request processing with the appropriate remote
principals. The original proposal based on IP Security
Options (IPSO) was found to be too expensive for unla-
belled communications, so an alternative mechanism is
necessary. Prior work on the Flask security architecture
showed that IPSec can be used to enable MAC control on
network communication. In this paper, we translate this
approach into the Linux system, version 2.6.12. We de-
scribe our design for enforcement, which is based on the
Linux 2.6 IPSec implementation called the XFRM sub-
system (pronounced “transform”). We detail the modifi-
cations necessary to the kernel and user-level ipsec-tools
to support IPSec policy specification and negotiation. Fi-
nally, we show how security function can be enabled us-
ing these LSM hooks with the SELinux LSM.

1 Introduction

We present an extension of the Linux Security Mod-
ules (LSM) framework available in Linux version
2.6 that leverages IPSec to enable mandatory ac-
cess control (MAC) on network packets. The LSM
framework defines a comprehensive reference mon-

itor interface for Linux that enable loadable ker-
nel modules to enforce MAC policies. A vari-
ety of modules (called LSMs) have been written
to this interface that implement different forms of
MAC [9, 10, 16]. Further, significant effort to
enable LSMs for security is being undertaken by
Linux vendors. For example, RedHat includes the
SELinux LSM enabled in its Fedora Core 3 distri-
bution.

Unfortunately, the MAC controls offered by the
LSM framework are limited at present. The LSM
framework enables a module to control which pro-
cesses may use which sockets to send and receive
messages, but little control over how the sockets
are used. Network control is currently implemented
by filtering inbound and outbound packets in proto-
col processing and via Netfilter, respectively. The
power of the filters depends on the information
available regarding the packet at this time. The
original LSM proposal used the IP Security Op-
tions [18] to encode labelling information regard-
ing a packet. The overhead of extracting this infor-
mation and maintaining labels as packets are frag-
mented and defragmented added significant over-
head to packet processing, even when no security in-
formation was specified. This part of the LSM pro-
posal was rejected by the Linux networking subsys-
tem maintainers, so LSMs currently control socket
access by restricting the network interface and IP
addresses that sockets may use. As a result, MAC
control of networking is coarse-grained and not
based on strongly authenticated remote parties.

Because of these limitations, it is not possible
to build a LSM-based MAC system across multi-
ple machines. Suppose we have two LSM systems
one running a process labelled master that man-
ages a distributed computation and one running a
process labelled helper that performs some of-
floaded computations. When a packet is received

by the LSM Linux kernel destined for the master
process, it is not possible for the kernel to deter-
mine if the packet should really be delivered. The
IP address may be spoofed or the packet may not
be from the helper process, so the integrity of the
application may be compromised. Historically, such
protections are implemented at user-level, but then
the LSM system cannot reason about the overall in-
tegrity of the system.

To enable MAC on network communications, we
leverage the kernel’s mechanism for secure com-
munication for the IP protocol, IPSec [12, 13, 14,
17]. IPSec enables the kernel to automatically con-
struct secure communication channels between two
machines or individual ports on those machines.
The administrator configures IPSec policies that are
used to determine the security requirements (e.g.,
using the ipsec-tools program setkey). Such
requirements may be negotiated by the two sys-
tems dynamically by a user-level IKE daemon (e.g.,
ipsec-tools racoon). IPSec represents secure com-
munication channels by security associations that
are stored in the kernel and used on each packet.

Previous work demonstrated that MAC control on
network communication could be implemented by
restricting socket access to IPSec security associ-
ations in the Flask system [20]. In this work, se-
curity associations are labelled such that a socket’s
ability to send or receive a packet using a secu-
rity association can be authorized. We begin by
applying this basic goal to the Linux kernel, but
find that the Linux implementation of IPSec, called
the XFRM subsystem (pronounced “transform”), re-
quires some different design decisions to minimize
intrusiveness and performance impact.

In this paper, we describe the design of IPSec-
based MAC of network communication for Linux
2.6.12. We implement the changes necessary to
support this design in the Linux kernel and in the
ipsec-tools that implement user-level administration
and policy negotiation. Our kernel changes sup-
port the two interfaces that may be used to man-
age IPSec policies pfkey and xfrm user. With
these hooks, we get a bonus that IPSec secure com-
munications may be selected based on the access
control labels of the processes which enables finer-
grained usage of IPSec. We examine the utility of
the IPSec MAC controls by using these hooks to en-

force remote application-to-remote application ac-
cess control and assist a system in labelling pro-
cesses triggered by requests from remote clients
(e.g., via inetd). The downside is that the perfor-
mance impact of IPSec must be absorbed on com-
munications, but the security offered by IPSec is
commensurate with that required for the types of
secrecy and integrity goals that the access control
supports. We find that the impact of new authoriza-
tion mechanisms is within the noise of the network
communication.

In Section 2, we describe the Linux Security
Modules framework and Linux IPSec implementa-
tion (XFRM) upon which our work is based. In Sec-
tion 3, we outline the design approach and the res-
olution of some key design issues. In Section 4, we
detail the implementation of network access con-
trol in Linux. We describe some applications of our
mechanism in Section 5. We summarize our find-
ings and future work in Section 6.

2 Problem

In this section, we define the problem that we aim
to solve in this paper, leveraging IPSec to enable
mandatory access control (MAC) across machines
using the Linux Security Modules (LSM) frame-
work. We first describe how MAC is implemented
in Linux by the LSM framework. We then examine
how IPSec is implemented by the XFRM subsystem
in Linux and how the ipsec-tools suite of user-level
programs support IPSec configuration and negotia-
tion. We then outline the security functions that we
envision that LSM should provide.

2.1 Linux Security Modules

The Linux Security Modules (LSM) framework de-
fines a reference monitor interface in the Linux ker-
nel as shown in Figure 1. A reference monitor inter-
face defines where authorization decisions are re-
quested of an authorization module, which imple-
ments the actual authorization mechanism using its
access control policy. An access control decision
determines whether a particular subject (e.g., pro-
cess, user, etc.) may access a particular object (e.g.,
file, socket, etc.) to perform a specified operation
(e.g., read, write, etc.). The LSM reference monitor

K
er

ne
l

U
se

r

Linux Security Module

Authorization Mechanism
plus Access Control Policy

Syscalls

Authorization Requests

Figure 1: Linux Security Modules (LSM) architecture.

interface is implemented as function pointers that
are placed at the location that such authorizations
are required. 140 of such function pointers are de-
fined in Linux 2.6.12.

The LSM design aims to meet the criteria of a
classic reference monitor interface. Anderson iden-
tified that a reference monitor interface should have
the following features [1]: (1) it must mediate all
security-sensitive operations; (2) it must be as sim-
ple as possible to enable validation of correctness;
and (3) it must be tamperproof. First, LSM me-
diates access to a wide variety of operations that
are identified as security-sensitive operations in the
Linux kernel. Independent validation of the media-
tion implemented by the LSM design has been done
using static and runtime analyses [11, 24]. Sec-
ond, the LSM design aims to place the authoriza-
tion interfaces as close to the actual operation as
feasible. This contrasts with the syscall intercep-
tion approach [2, 6, 8] where the authorization may
require redundant interpretation of arguments (e.g.,
to extract an inode from a file name) and be vul-
nerable to race conditions between time of check to
time of user [3]. Third, the Linux kernel provides
the tamperproof protection of all modules that use
this interface.

A wide variety of modules have been imple-
mented as reference monitors behind the LSM in-
terface (e.g., [9, 10, 16]). These modules define the
policy model and authorization mechanism that will
be invoked when the LSM interface is used. In this
work, we extend the SELinux module [16] to enable
network control. The SELinux module implements
the LSM interface comprehensively using an access

control policy representing in an extended Type En-
forcement policy model [5, 19]. SELinux support
29 different kernel object types with about 10 dif-
ferent operations per type. SELinux is included in
the Linux kernel mainline distribution, and it is en-
abled by default in RedHat’s Fedora Core 3.

Using the LSM interface enables control of most
objects in a fine-grained manner. For example, the
extended attributes of the ext3 filesystem can be
used to store labels on individual inodes, so that ac-
cess to each file may be controlled independently.
For most types of kernel objects, fine-grained la-
belling is possible, but not for network packets.
When a network packet is sent or received, the cur-
rent LSM hooks enable authorization based on the
socket and the packet (i.e., sk buff). However,
IP packets do not contain a lot of information that
is used for authorization currently. SELinux autho-
rizes network communications as follows: (1) it au-
thorizes the process’s access to the socket and (2) it
authorizes the socket’s access to the network inter-
face used and remote IP address of the packet. For
the receiver of a packet, this information is not par-
ticularly helpful in authorization. IP addresses may
be spoofed, and the source IP address does not in-
dicate the source application. In general, more than
the IP address is necessary for two SELinux ma-
chines to work together to manage information flow.

2.2 IPSec

IP Security protocol [12, 13, 14, 17] (IPSec) pro-
vides per-packet authenticity and confidentiality
guarantees between peer machines communicat-

ing over an untrusted network. An authentication
header (AH) may be used to provide a strong cryp-
tographic checksum for a packet. An encapsulating
security payload (ESP) encrypts packets to protect
the confidentiality of their contents. IPSec is a ker-
nel protocol that is implemented as part of IPv4 and
IPv6. The choice of modes and algorithms is deter-
mined by an IPSec policy. Policy entries may refer
to a directed pair of machines and, optionally, the
communication ports. The kernel determines if an
IPSec policy is present for a particular communica-
tion, and if so, it retrieves an IPSec security asso-
ciation for the communication compatible with that
policy. If no security association has been created,
the kernel can initiate a negotiation with the remote
party which is implemented by a user-level Internet
Key Exchange (IKE) daemon which creates a secu-
rity association if the negotiation is successful.

In Linux 2.6, an IPSec implementation is part of
the mainline kernel. IPSec is implemented in the
XFRM (pronounced “transform”) subsystem which
is based on the USAGI prototype [15, 23]. The idea
is that prior to transmitting a packet or prior to deliv-
ering a packet to higher protocol layers, the packet
may be transformed by a specific algorithm.

The implementation of IPSec in the XFRM sub-
system is shown in Figure 2. First, the pfkey and
xfrm user interfaces are defined which enable
IPSec policies and security associations to be input
to the kernel. The kernel stores IPSec policies in
the Security Policy Database (SPD) and the security
associations in the Security Association Database
(SAD). Second, when a packet is sent, the kernel
determines whether there is an IPSec policy for the
endpoint pair. If so, it is used to retrieve an exist-
ing transform bundle which is a set of security asso-
ciations. These correspond to security associations
in the traditional IPSec sense. If no bundle can be
found, then the kernel tries to acquire a bundle us-
ing the IKE daemon. If one is generated, then a
bundle is created that includes all the security asso-
ciations for this endpoint pair. Prior to transmitting
the packet, the bundle of security associations is ap-
plied to transform the packet.

On the receiving end, the security associations in
the transform bundle provided are applied first, then
the IPSec policy is retrieved to check whether it is
consistent with the bundle applied. The IPSec pol-

icy is retrieved using the same code as for the trans-
mission case. Then, the retrieved IPSec policy is
compared to the security associations in the bundle
to verify that each algorithm in the policy is im-
plemented by a security association with the same
identifier (i.e., spi).

In both cases, bundles are attached to each packet,
so it is possible to use the security associations in
them to guide authorization decisions. A previ-
ous prototype on the Flask security architecture [7]
demonstrated that socket access to security associ-
ations could be used to control packet sends and
receives. The design of the Linux XFRM subsys-
tem seems to enable such authorization, but we find
that the existing LSM interface is not suitable to use
such information correctly as described in the fol-
lowing subsection.

We must also consider changes to the user-level
daemons that to support authorization via IPSec.
We use the ipsec-tools programs setkey and
racoon to manage IPSec policies and negotiate
security associations, respectively. setkey takes
policy specifications and generates IPSec policy and
security associations objects that it submits to the
kernel for entry into the SPD and SAD, respectively.
racoon accepts negotiation requests from the ker-
nel including an IPSec policy. It then negotiates
transform bundles and enters them into the kernel
SAD if the negotiation succeeds. Both daemons use
the pfkey interface to communicate with the ker-
nel. Note that the addition of access control infor-
mation will require changes to both daemons: (1) to
specify access control labels in the setkey config-
uration and (2) to account for access control labels
in negotiation in racoon and generate security as-
sociations with appropriate access control labels.

2.3 Problem Statement

The problem is to determine how to extend the LSM
interface using the IPSec (XFRM) implementation
in Linux to enable the kernel to control an appli-
cation’s network communication based on its ac-
cess control label. We envision that such a mech-
anism would enable two LSM-based systems in the
same trust domain to limit communication between
their applications. An additional benefit we en-
vision is that security-aware applications can use

Security Policy
Database

Security Association
Database

policy_lookup

process_transforms

find_bundle

policy_lookup

process_transforms

setkey

K
er

ne
l

U
se

r
Send

Receive

racoon

pfkey pfkey pfkey

policy_check

pfkey
xfrm_user

application

Figure 2: Linux XFRM subsystem.

the labels on the security associations to guide the
selection of access control labels for the process-
ing that such communications trigger (e.g., inetd-
triggered processing).

IPSec is typically not envisioned as an
application-level mechanism, but the ability for a
LSM-based system to control information flows
to applications enables application-to-application
information flow control. The recent work of Yin
and Wang demonstrate that IPSec may enable
application-level provisioning [22]. That work
relies on an ad hoc socket monitor to detect socket
activity and trigger policy changes. In this work, we
want to enable our security via small extensions to
the LSM interface and minor changes to ipsec-tools
to recognize access control labels. Distribution of
credentials for IPSec is a significant problem for
establishing distributed trust [4] as well. We do not
address this issue specifically, but using IPSec to
enable fine-grained access control will require that
such issues be addressed effectively in the future.

The straightforward solution would be to use the
existing LSM interface to authorize the packet’s se-
curity associations used. The problem is that if the
choice of IPSec policy does not account for access
control labels, then the security associations will of-
ten not be authorized and communication will be
terminated. Thus, new LSM hooks must be added
that account for authorization in the choice of IPSec
policies and ensure that this choice is propagated
to security associations. Unlike the IP Security
Options hooks previously proposed, the new LSM

hooks should minimally impact unlabelled packets
and any implementation should have minimal, addi-
tional per packet overhead.

3 Design

The overall design of the LSM and ipsec-tools
extensions that enable packet-level access control
based on labelled security associations is shown in
Figure 3. First, IPSec policies and security associ-
ations are extended so that they may contain access
control labels. We must both add labels to objects
(alloc) and ensure that labels are removed when
the objects are deleted (free). If no label is pro-
vided, the default label of unlabelled is assumed.

Second, when a packet is sent or received, an
IPSec policy for that packet is retrieved by the ker-
nel. A new LSM hook is added to authorize a selec-
tion (lookup), so only authorized policies are used
subsequently.

Third, the authorized IPSec policy is used to en-
sure that the security associations used have the
same access control label (match). No new LSM
hooks are added, but functions are added in the
XFRM subsystem that ensure that the access control
label identifiers match. The identifiers are module-
specific, but the matching function need not be – it
can compare the module identifier and labels. For
inbound communications, the security association
used must have the same access control label as the
retrieved IPSec policy. For outbound communica-
tions, we extend the kernel to ensure that only se-

Security Policy
Database

Security Association
Database

policy_lookup

process_transforms

find_bundle

policy_lookup

process_transforms

setkey

K
er

ne
l

U
se

r
Send

Receive

racoon

policy_check

lookup

lookup

free
alloc alloc

freefree
alloc

match

match

application

Figure 3: LSM extensions for IPSec network control.

curity associations with the same access control la-
bel are retrieved. If no security association matches,
then the kernel requests that the IKE daemon (e.g.,
ipsec-tools racoon) negotiate a security associa-
tion given the authorized policy. The IKE daemon
must be capable of building a security association
with a specified access control label.

In the remainder of the section, we discuss the
details of the design of these three steps and the res-
olution of the design issues that were identified.

3.1 Adding Access Control Labels

The IPSec policy and the security association data
structures are extended by the addition of an access
control label, xfrm sec ctx. The structure has
the following fields:

domain_of_interpretation
algorithm
SID
context_name

The domain of interpretation is used by the IKE
daemon to identify the domain in which the negoti-
ation takes place. The algorithm specifies the LSM
for which the label is generated (e.g., SELinux).
The SID is an integer representation of the label that
is interpreted by the LSM. The context name is a
string representation of the label, also interpreted by
the LSM. Storing both an integer and string repre-
sentation for the label is done to speed authoriza-

tion, which uses the integer, and dumping contexts
on user requests, which uses the string.

When an IPSec policy or security associ-
ation is input (e.g., via pfkey), an LSM
hook must be added to allocate the label
and perform any LSM-specific processing (e.g.,
computing the SID from the context name).
We have one hook each for IPSec policies
and security associations, xfrm policy alloc
and xfrm state alloc, respectively. Since
xfrm sec ctx is dynamically allocated, it must
also be freed, by hooks xfrm policy free and
xfrm state free.

The choice of label must be authorized for the re-
questing process. First, we must control which pro-
grams can input IPSec policies and security associ-
ations in general. SELinux has a set of operations
on the security of the system, so a new operation is
added for IPsec configurations, ipsec label.

Also, it is also possible for applications to set
policies for their own sockets via setsockopt.
For example, racoon must set a policy for its
socket that handles negotiation to avoid causing a
recursive negotiation request. We must ensure that
the label chosen for such policies are permissible.
We do not want a low secrecy process to create a
policy that permits it to read high secrecy data. The
process of adding policy is tantamount to relabelling
a security association from the default label for the
policy (e.g., entered via setkey) for the process
to a new label. The process must be authorized to

perform such relabelling. In SELinux, this involves
having permissions to relabelfrom the origin
label and relabelto the specified label.

3.2 Authorizing IPSec Policy

Policy selection is the point at which authorization
is done. In the XFRM subsystem, an IPSec policy
that matches the source, destination, protocol, and
ports (if specified) is retrieved. In addition, we re-
quire that the IPSec policy has a security context
that the socket can use for the operation (i.e., send
or receive). An LSM hook is added to authorize any
matching policy, called xfrm policy lookup.
If the policy is not authorized, then the XFRM sub-
system continues to search for another match.

The result is that the IPSec policy selected for
a socket is always the first one retrieved that both
matches the selection criteria and is authorized.
This is consistent with the prior case where the first
policy that matched the selection criteria is returned.
As a result, each combination of socket label and
selection criteria can result in only one IPSec policy
being selected, so the correctness of the IPSec pol-
icy database can be checked against this property.

The XFRM subsystem actually retrieves IPSec
policies in two passes: (1) socket-specific poli-
cies added via setsockopt and (2) gen-
eral machine and port policies. Thus, the
xfrm policy lookup LSM hook for authoriza-
tion must be added in both places.

With the addition of labels, IPSec policies may
be specific to processes. In SELinux, sockets in-
herit the labels of their process by default. For ex-
ample, a high secrecy service may be labelled high
service and its sockets would inherit the same label.
When the socket aims to send a packet to a remote
computer, we can limit it to send only to other com-
puters that we trust to deliver the communication to
authorized processes (e.g., other processes labelled
high service. This is done by giving high service
sockets access only to security associations with la-
bels accessible to remote high service sockets (e.g.,
high data). If the remote machine is truly com-
patible and trustworthy, it can restrict the delivery
of packets only to sockets that can receive packets
via the high data security associations. Since only
these sockets running in high service processes can

receive high data, no lower secrecy applications can
intercept the data. We do not actively address covert
channels in this design as we see it being outside the
scope of hook placement (i.e., based on storage and
timing channels in the drivers and protocol).

3.3 Using Security Associations

Once an authorized IPSec policy has been selected,
we must ensure that the security associations used
in the communication have the same access control
label as the policy. Since security associations are
used differently on inbound and outbound commu-
nications, we examine each separately.

For outbound communications, the XFRM sub-
system uses the previously cached bundle of secu-
rity associations for the policy. We ensure that any
bundle retrieved matches the access control label of
the policy. If none are cached, then security associa-
tions may be retrieved individually from the security
association database. Once again, we ensure that
these security associations have a matching access
control labels with the policy. Finally, if there is no
matching security association in the database with
the same access control label, then the IKE daemon
will be requested to negotiate one. Note that this is
the existing behavior of the XFRM subsystem, so
no additional code is necessary to trigger the nego-
tiation. Once the negotiation is complete, we check
that the security association built by the IKE dae-
mon has an access control label that matches the
policy.

The IKE daemon must be modified as well to
ensure that the access control label is used in the
negotiation. The IKE daemon generates possibly
multiple proposal payloads that consist of a set of
transform payloads. The idea is that one of the
initiator’s proposal payloads should match the pro-
posal payload generated by the responder. If so,
that proposal is returned to the initiator for accep-
tance. We must modify the proposal payload gen-
eration on both sides to ensure that security asso-
ciations are built with the appropriate access con-
trol labels. On the initiator side, the access control
label is extracted from the policy submitted to the
IKE daemon, and it is added as an attribute to the
corresponding security association in the proposal
payload. On the responder side, the responder is

For Policy?
Retrieve SA

Find Authorized
IPSec Policy?

1 labelled IPSec

2 unlabelled IPSec

1 labelled IPSec

2 unlabelled IPSec

xfrm_lookup

unlabelled SA
Authorize

packet?
Is SA for

Netfilter postroute_last

Yes

No

No

Yes

NoYes

Yes
Xmit Packet

Drop Packet

Drop Packet

No

3 non−IPSec

xfrm_policy_lookup

Figure 4: Outbound packet processing.

changed to peek at the initiator’s proposal to extract
the access control labels. There must be a policy
in the initiator’s database that matches this proposal
and access control label, else the negotiation will
fail.

For inbound communications, the XFRM subsys-
tem compares the security associations of the re-
ceived packets to the authorized IPSec policy for
the socket. First, we extend the XFRM subsystem
to ensure that only authorized IPSec policies are se-
lected. The same function is used to select policies
for both the inbound and outbound direction, so no
new LSM hooks are required. Second, comparison
between security associations and IPSec policies is
based on a runtime identifier, spi. When the se-
curity associations are built, templates of each are
associated with the IPSec policy from which they
originated. The template spi and the security associ-
ation spi must match. We extend this comparison to
also verify that the access control labels match. This
may not be strictly necessary since the kernel veri-
fies consistency between security associations and
policy on negotiation, but this does ensure correct-
ness of behavior at runtime for low cost.

Find Authorized
IPSec Policy?

1 labelled IPSec
2 unlabelled IPSec

3 non−IPSec

unlabelled SA
Authorize

packet?
Is SA for

LSM sock_rcv_skb

No
No

No

Yes

NoYes

Yes
Deliver Packet

Drop Packet

Drop Packet
SA Matches
Policy?

__xfrm_policy_check

Yes

xfrm_poliicy_lookup

Figure 5: Inbound packet processing.

4 Implementation

In this section, we detail the implementation of the
design described above in the Linux 2.6.12 kernel
and ipsec-tools. The overall process is shown in
Figures 4 and 5. There are three cases implemented
by the LSM nethooks: (1) for packets that use IPSec
policies with access control labels; (2) for packets
that use IPSec policies without access control la-
bels; and (3) for non-IPSec packets. In the first
case, the socket is authorized to use the labelled
IPSec policy at selection time. The second case is
also checked at selection time, but the socket is au-
thorized to process “unlabelled” packets. The third
case applies only to packets that are not processed
via the IPSec code path. In this case, we use the ex-
isting network control hooks to determine whether
the IPSec authorizations have been performed. If
not, then the socket is authorized to use “unlabelled”
packets as in the second case.

Below, we describe the changes to the Linux
kernel interfaces and XFRM subsystem, SELinux
LSM, and ipsec-tools that are necessary to enable
such authorizations.

4.1 pfkey and xfrm user Changes

The kernel supports two interfaces by which IPSec
policies (xfrm policy) and security associations

(xfrm state) can be input. Passing access con-
trol labels to the kernel requires that a data structure
be defined for transporting this information to the
kernel. Fortunately, the same information can be
provided in the case, so a common data structure
xfrm user sec ctx is defined for both. The
LSM hooks for allocation take these data structures
and add access control labels to IPSec policies and
security associations as defined below:

xfrm_policy_alloc(struct xfrm_policy *xp,
struct xfrm_user_sec_ctx *ctx)

xfrm_state_alloc(struct xfrm_state *x,
struct xfrm_user_sec_ctx *ctx)

These LSM hooks dynamically generate
xfrm sec ctx objects that are stored in the
xfrm selector object of the IPSec policy
or security association depending on the hook.
The selector is used to match the IPSec policy or
security association on subsequent retrieval.

Each command that enables adding an IPSec
policy or security association via these interfaces
must have an LSM hook to allocate the security
data structure xfrm sec ctx. For the pfkey
interface, IPSec policies can be added via the
pfkey spdadd command and by applications for
individual sockets using setsockopt (pfkey
function compile policy). xfrm user has
corresponding functions for xfrm add policy
and xfrm compile policy. Security associ-
ations can only be added via the interfaces (i.e.,
not via setsockopt) via commands pfkey add
and xfrm add sa.

Implementations of these hooks have been de-
veloped for the SELinux LSM. The main tasks of
these hooks are to: (1) authorize the addition of the
access control labels (xfrm sec ctx) and hence
the IPSec policies and security associations them-
selves; (2) generate the access control label ob-
ject; and (3) compute and store LSM-specific in-
formation in the fields of the label. First, autho-
rization is requires a permission to change system
security by adding IPSec policies. This is defined
by the operation ipsec mod on the SELinux class
security. Further, the subject must be capable
of relabelling security associations from the origin
label to the proposed label. We use the subject type
of the socket as the origin label. Second, SELinux
allocates the new access control label and attaches it

to the IPSec policy or security association (see be-
low). Third, SELinux uses the access control label
string to compute a label identifier (e.g., SELinux
SID) for use in subsequent authorization. The ac-
cess control label string is an opaque value that can
be interpreted by the module as necessary.

Since the xfrm sec ctx objects are dy-
namically allocated, they must be deallocated
when deleted. The hooks below are added
where IPSec policy and security association
additions listed above fail and where they
are freed, xfrm policy destroy and
xfrm state gc destroy.

xfrm_policy_free(struct xfrm_policy *xp)
xfrm_state_free(struct xfrm_state *x)

4.2 XFRM Subsystem Changes

Once the IPSec policies in the Security Policy
Database (SPD) and the security associations in the
Security Association Database (SAD) are labelled,
then the XFRM subsystem needs to be modified to
utilize these labels. Below, we show how the fol-
lowing steps in IPSec processing are extended to
ensure access control labels are enforced.

IPSec Policy Lookup For each packet, the first
step is to retrieve the IPSec policy for the packet.
IPSec policies are retrieved in two phases: (1)
socket-specific IPSec policies are retrieved via
xfrm sk policy lookup and (2) general IPSec
policies are retrieved via xfrm policy lookup.
Both are changed to authorize the socket’s access
to use the IPSec policies using the following com-
mand.

security_xfrm_policy_lookup(struct sock *sk,
struct xfrm_selector *sel,
struct flowi *fl,
u8 dir)

The sock defines the subject, the
xfrm selector has the access control la-
bel, the flowi is used when there is no socket
(e.g., ICMP), and the direction indicates a send or
receive operation. This hook is used in both lookup
functions as below.

xfrm_policy_lookup(struct flowi *fl,
struct sock *sk,
u16 family, u8 dir,

void **objp,
atomic_t **obj_refp)

{...
for (pol = xfrm_policy_list[dir]; pol;

pol = pol->next) {
xfrm_selector *sel = &pol->selector;
int match;
...
match = xfrm_selector_match(sel, fl,

family);

if (match) {
if (!security_xfrm_policy_lookup(sk,

sel, fl, dir)) {
xfrm_pol_hold(pol);

break;
}

}
}

The SELinux LSM has been modified to use this
new LSM hook to authorize a socket’s access to an
IPSec policy covering the first two cases of autho-
rization (i.e., labelled and unlabelled IPSec pack-
ets). If the xfrm selector for the IPSec pol-
icy has an access control label (xfrm sec ctx),
SELinux extracts the access control label identifier
SID from the structure and uses it to authorize ac-
cess. If not, the socket is authorized to access (i.e.,
send or receive depending on the direction input) an
unlabelled security association.

This implementation covers the first two autho-
rization cases shown in Figures 4 and 5. In the
outbound case, xfrm lookup is used to retrieve
a policy which is now authorized. The security as-
sociation bundle that is retrieved must match the
authorized access control label. For IPSec pack-
ets (i.e., those with a security association), the
existing Netfilter hook permits it to be sent, be-
cause it has already been authorized. In the in-
bound case, the authorized policy is retrieved by
xfrm policy check in the same way as for

the outbound case. Matching the spi is done in
xfrm state ok for each security association in
the bundle for the inbound packet. Similar to the
outbound case, the existing input packet filter hook
sock rcv skb permits IPSec packets to be deliv-
ered without further authorization.

Retrieving Security Associations Once the
IPSec policy has been determined, we must
ensure that the security associations used have
the same access control label. The function
xfrm sec ctx match ensures that two access
control labels match. We use this function to
ensure that the access control label of a secu-
rity association matches that of the authorized
IPSec policy. For outbound communication, the
match is done on security associations cached
on the policy (protocol-specific function, such as
xfrm4 find bundle), security associations

retrieved from the SAD (xfrm state find), and
security associations returned by IKE negotiation
(also xfrm state find). For inbound commu-
nications, the match is done when the identifier
of the policy is checked against the input security
association.

A problem is that packets are dropped during IKE
negotiation, so an application that expects that the
transmission will succeed may not attempt a retrans-
mission. To address this, the packets should be
queued in the kernel for a retransmission. An im-
plementation of this mechanism has not been com-
pleted at the present time.

4.3 SELinux Module Changes

The SELinux LSM has been modified to imple-
ment hook functionality for allocation, freeing, and
lookup that is described in the previous subsections.
In this subsection, we detail two additional exten-
sions to the SELinux LSM: (1) authorize access to
non-IPSec packets per the third case in Figures 4
and 5 and (2) retrieve access control labels for ac-
tive security associations for use by access control-
aware applications.

Authorizing Non-IPSec Packet Access The
SELinux LSM has existing functions for filtering
inbound or outbound packets, sock rcv skb and
Netfilter postroute last, respectively. Cur-
rently, these functions authorize socket access to
ports, IP addresses, and network interfaces. We
extend these functions to also authorize non-IPSec
packets. Since both IPSec and non-IPSec pack-
ets use this hook, we distinguish between them by
checking whether the packet has any security as-

sociations attached to it. For inbound packets, a
security path is associated with each packet, and
all IPSec packets will have security associations in
the security path. For outbound packets, a series
of dst entry objects may be associated with a
packet, and all IPSec packets will have security as-
sociations attached to at least one of these objects.

Retrieving Labels Using the getsockopt sys-
tem call with the flag SO PEERSEC, it is possible to
retrieve the access control label of a peer in a UNIX
domain socket communication. Since the UNIX do-
main sockets are on the same machine and both are
used in authorization, the LSM can cache the label
of the respective peer sockets, so that this can be
retrieved using the system call.

We extend the SELinux LSM to also cache the
label of a security association being used by a TCP
socket. This can be retrieved using getsockopt
as well via a new a new flag SO TCPPEERSEC.
Our patch adds LSM hooks that set the peer on TCP
connection (set tcp peer establishment and re-
move the peer on closure (remove tcp peer).
The former uses the security association on the
packet at the time of connection to set the peer.
This is determined by the socket’s state being set to
TCP ESTABLISHED. The latter simply clears the
peer value.

4.4 ipsec-tools Changes

To enable awareness of access control labels to the
ipsec-tools suite, a data structure matching the
xfrm sec ctx is added.

struct security_ctx {
u_int8_t ctx_doi;
u_int8_t ctx_alg;
u_int16_t ctx_strlen;
char ctx_str[MAX_CTXSTR_SIZE];

};

This new structure, security ctx is added to
the already existing, policyindex structure. The
policyindex structure is used as a key to find
policy. It is similar to the xfrm selector struc-
ture in kernel.

When the IKE daemon racoon receives an ac-
quire message from the kernel to initiate a negotia-
tion, this message includes an index to an outbound

IPSec policy. This index is used to retrieve the out-
bound policy from the racoon database. racoon
uses the policy and sainfo from its configuration
file (racoon.conf) to create a proposal.

In the ISAKMP negotiation protocol, a payload
consists of a hierarchical set of security association
payloads containing one or more proposal payloads
that in turn contain one or more transform payloads.
The transform payload consists of a set of attributes,
such as the encryption or authentication algorithms,
lifetime, etc. We added the access control label as
another attribute. The access control label value
from the retrieved policy is added to the set of trans-
form attributes, if present.

The responder extracts the source, destination,
and protocol to retrieve its own IPSec policy which
is used to create a proposal. The responder then
parses the SA payload sent by initiator and com-
pares the newly created proposal with that sent by
initiator. The responder derives a specific proposal
which is sent to initiator for approval. If initiator
approves, this becomes the new set of SAs.

We modified this sequence slightly to add
get security context(vchar t *sa,
struct policyindex *p) which the re-
sponder calls before retrieving its policy. This
routine peeks into the initiator’s proposal to get the
proposed access control label. Currently, only one
access control label is used, although it may be that
multiple options are proposed ultimately. If there
is an access control label attribute, the contents are
copied into the newly generated proposal.

When the responder compares its newly created
proposal to initiator’s proposal, the access control
labels must match exactly, or the negotiation fails.
This mode of negotiation means that the access con-
trol label for both the inbound and outbound secu-
rity associations will be the same. This is not neces-
sarily a requirement of IPSec if the policies are man-
ually specified via setkey. We note that negoti-
ated encryption/authentication algorithms also will
always match, so having the access control labels
match is consistent with current behavior.

5 Applications and Evaluation

We discuss two applications of IPSec-based MAC
of network communication.

Master

SELinux System

SELinux System

SELinux System SELinux System

Helper

Helper

Helper

Helper

Figure 6: Distributed Computation Example.

5.1 Distributed Computation

Figure 6 shows a master computation process
and helper processes that it distributes to remote
machines that it trusts. All systems run our
IPSec-based MAC Linux system with the extended
SELinux LSM. The IPSec policy specifies an ac-
cess control label of master computationmay
be used for traffic between the helper machines and
the master. The SELinux policies on each machine
specify that the master process is labelled master
and helper processes are labelled helper. Fur-
ther, the SELinux policies on permit communica-
tions using master and helper sockets to use
the master computation security associations.
As a result, the master and each helper can
communicate. Note that the helpers cannot com-
municate unless an IPSec policy is added with
the master communication label for a pair of
helper machines.

5.2 Labelled inetd

inetd can use the mechanism described in Sec-
tion 4.3 to retrieve the access control label of a
security association using getsockopt with the
SO TCPPEERSEC flag. We configure IPSec poli-
cies such that each subject from a different do-
main receives a different security association label.
When inetd receives a remote request, it can re-
trieve the access control label of the security asso-
ciation used. It can then use the SELinux command
setexeccon to cause the resultant helper process
to be run under the same label.

6 Conclusion and Future Work

In this paper, we detailed an implementation of
mandatory access control for Linux network com-
munications that restricts socket access to labelled
IPSec security associations. This implementation
has been developed as a patch to Linux 2.6 which is
under consideration for adding to the future Linux
systems. The main patch consists of new LSM
hooks for allocating and deallocating access con-
trol labels for IPSec and for authorizing IPSec pol-
icy selections. Also, the patch ensures that IPSec
security associations have labels that match the au-
thorized policy. Since the only functionality added
to the runtime IPSec processing is the authorizing
LSM hook and the matching code, the runtime over-
head is negligible. We also described patches for
SELinux and ipsec-tools that implement the autho-
rization and IPSec configuration, respectively. We
demonstrated these patches using two examples: (1)
access control of network communications between
processes running on different systems and (2) en-
abling security-aware applications to leverage ac-
cess control labels for subprocesses that they spawn.
The latter example requires two additional LSM
hooks to update connection state.

The main challenge that emerges from this work
is enabling management of policies and creden-
tials for both IPSec and SELinux (or other LSM)
across multiple systems. First, credentials for ap-
plications need to be securely distributed, such that
IPSec communications can be established. Cur-
rently, IPSec is not used in such a fine-grained
manner, but the complimentary work of Yin and
Wang [22] shows that application-level sensitivity
in IPSec is useful. Next, SELinux policies need to
become multi-system aware. At present, SELinux
policies have only a single system scope, mainly to
protect that system from the outside world. How-
ever, application-level control of network communi-
cation means that SELinux will need to enable con-
trol at a scope that protects a distributed application
from the network and from other low integrity pro-
cesses on the individual machines.

Acknowledgements

Anonymized for review.

References
[1] J. P. Anderson. Computer security technology planning

study. ESD-TR-73-51, Air Force Electronic Systems Di-
vision, 1972.

[2] A. Berman, V. Bourassa, and E. Selberg. TRON:
Process-specific file protection for the UNIX operating
system. In Proceedings of the 1995 USENIX Winter
Technical Conference, January 1995.

[3] M. Bishop and K. Dilger. Checking for race conditions
in file accesses. Computing Systems, 9(2), 1996.

[4] M. Blaze, J. Ioannidis, and A. Keromytis. Trust manage-
ment for IPSec. In ACM Transactions on Information
and System Security (TISSEC), 5(2), May 2002.

[5] W. E. Boebert and R. Y. Kain. A practical alternative to
hierarchical integrity policies. In Proceedings of the 8th

National Computer Security Conference, Gaithersburg,
Maryland, 1985.

[6] S. Chari and P-C. Cheng. BlueBoX: A policy-driven,
host-based intrusion detection system. In ACM Trans-
actions on Information and System Security (TISSEC),
6(2), May 2003.

[7] A. Chitturi. Implementing mandatory network security
in a policy-flexible system. Master’s thesis, University
of Utah, 1998.

[8] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer.
A secure environment for untrusted helper applications:
Confining the wily hacker. In Proceedings of the 10

th

USENIX Security Symposium, August 2001.

[9] Immunix Corp. Immunizing applications with Ap-
pArmor host intrusion prevention. http://www.
immunix.com, 2005.

[10] LIDS Organization. LIDS: Linux Intrusion Detection
System. http://www.lids.org, 2005.

[11] T. Jaeger, A. Edwards, and X. Zhang. Consistency anal-
ysis of authorization hook placement in the Linux Secu-
rity Modules framework. ACM Transactions on Infor-
mation and System Security (TISSEC), 7(2), May 2004.

[12] S. Kent and R. Atkinson. Security Architecture for the
Internet protocol. RFC 2401, Internet Engineering Task
Force, 1998.

[13] S. Kent and R. Atkinson. IP authentication header (AH).
RFC 2402, Internet Engineering Task Force, 1998.

[14] S. Kent and R. Atkinson. IP encapsulating security pay-
load (ESP). RFC 2401, Internet Engineering Task Force,
1998.

[15] K. Miyazawa et al. IPv6, IPSec, and Mobile IPv6 imple-
mentation of Linux. In Proceedings of the 2003 Ottawa
Linux Symposium, July 2004.

[16] National Security Agency. Security-Enhanced Linux
(SELinux). http://www.nsa.gov/selinux,
2001.

[17] D. Piper. The Internet IP Security domain of interpreta-
tion. RFC 2407, Internet Engineering Task Force, 1998.

[18] M. St. Johns. Draft revised IP Security Option. RFC
1038, Internet Engineering Task Force, 1988.

[19] S. Smalley. Configuring the SELinux policy. NAI Labs
Report #02-007, available at www.nsa.gov/selinux, June
2002.

[20] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. An-
derson, and J. Lepreau. The Flask Security Architecture:
System support for diverse security policies. In Pro-
ceedings of the 8

th USENIX Security Symposium, Au-
gust 1999.

[21] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux Security Modules: General
security support for the Linux kernel. In Proceedings of
the 11

th USENIX Security Symposium, August 2002.

[22] H. Yin and H. Wang. Building application-aware IPSec
policy system. In Proceedings of the 14

th USENIX Se-
curity Symposium, August 2005.

[23] H. Yoshifuji, K. Miyazawa, Y. Sekiya, H. Esaki, and
J. Murai. Linux IPv6 networking. In Proceedings of
the 2003 Ottawa Linux Symposium, July 2003.

[24] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL
for static analysis of authorization hook placement. In
Proceedings of the 11

th USENIX Security Symposium,
August 2002.

