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Abstract

The high cost of operating large computing installations has motivated a broad

interest in reducing the need for human intervention by making systems self-managing.

This paper explores the extent to which control theory can provide an architectural

and analytic foundation for building self-managing systems. Using the IBM autonomic

computing architecture as a starting point, we show the correspondence between the

elements of autonomic systems and those in control systems. For example, the sensors

and effectors of the autonomic architecture provide the measured outputs and control

inputs in control systems. The benefit of making this connection is that control theory

provides a rich set of methodologies for building automated self-diagnosis and self-

repair systems with properties such as stability, short settling times, and accurate

regulation. This said, there remain considerable challenges in applying control theory

to computing systems, such as developing effective resource models, handling sensor
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delays, and addressing lead times in effector actions. To illustrate these challenges,

we present a case study in which control theory has been used in an IBM database

management product. We believe that addressing these challenges requires a broader

engagement of the research community. To this end, we propose a deployable testbed

for autonomic computing (DTAC) that we believe will reduce the barriers to addressing

key research problems in autonomic computing. The initial DTAC architecture is

described along with several problems that it can be used to investigate.

1 Introduction

The high cost of ownership of computing systems has resulted in a number of industry

initiatives to reduce the burden of operations and management. Examples include IBM’s

Autonomic Computing, HP’s Adaptive Infrastructure, and Microsoft’s Dynamic Systems

Initiative. All of these efforts seek to reduce operations costs by increased automation, ideally

to have systems be self-managing without any human intervention (since operator error has

been identified as a major source of system failures [1]). While the concept of automated

operations has existed for two decades (e.g., [2]) as a way to adapt to changing workloads,

failures and (more recently) attacks, the scope of automation remains limited. We believe this

is in part due to the absence of a fundamental understanding of how automated actions affect

system behavior, especially system stability. Other disciplines such as mechanical, electrical,

and aeronautical engineering make use of control theory to design feedback systems. This

paper uses control theory as a way to identify a number of requirements for and challenges

in building self-managing systems.

The IBM Autonomic Computing Architecture [3] provides a framework in which to build

self-managing systems. We use this architecture since it is broadly consistent with other

approaches that have been developed (e.g., [4]). Figure 1 depicts the components and key

interactions for a single autonomic manager and a single resource. The resource (sometimes
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Figure 1: Architecture for Autonomic Computing.

called a managed resource) is what is being made more self-managing. This could be a single

system (or even an application within a system), or it may be a collection of many logically

related systems. Sensors provide a way to obtain measurement data from resources, and

effectors provide a means to change the behavior of the resource. Autonomic managers read

sensor data and manipulate effectors to make resources more self-managing. The autonomic

manager contains components for monitoring, analysis, planning, and execution. Common

to all of these is knowledge of the computing environment, service level agreements, and other

related considerations. The monitoring component filters and correlates sensor data. The

analysis component processes these refined data to do forecasting and problem determination,

among other activities. Planning constructs workflows that specify a partial order of actions

to accomplish a goal specified by the analysis component. The execute component controls

the execution of such workflows and provides coordination if there are multiple concurrent

workflows. (The term “execute” may be broadened to “enactment” to include manual actions

as well.)

In essence, the autonomic computing architecture provides a blue print for developing

feedback control loops for self-managing systems. This observation suggests that control
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theory might provide guidance as to the structure of and requirements for autonomic man-

agers.

Many researchers have applied control theory to computing systems. In data networks,

there has been considerable interest in applying control theory to problems of flow control,

such as [5] who develops the concept of a Rate Allocating Server that regulates the flow of

packets through queues. Others have applied control theory to short-term rate variations in

TCP (e.g., [6]) and some have consider stochastic control [7]. More recently, there have been

detailed models of TCP developed in continuous time (using fluid flow approximations)

that have produced interesting insights into the operation of buffer management schemes

in routers (see [8], [9]). More recently, control theory has been applied to middleware to

provide service differentiation and regulation of resource utilizations as well as optimization

of service level objectives. Examples of service differentiation include enforcing relative delays

[10], preferential caching of data [11], and modifying application codes to insert effectors

(e.g., [12]). Examples of regulating resource utilizations include a mixture of queueing and

control theory used to regulate the Apache HTTP Server [13], regulation of the IBM Lotus

Domino Server [14], and multiple-input, multiple-output control of the Apache HTTP Server

(e.g., simultaneous regulation of CPU and memory resources) [15]. Examples of optimizing

service level objectives include minimizing response times of the Apache Web Server [16] and

balancing the load to optimize database memory management [17].

The foregoing illustrates the value of using control theory to construct self-managing

systems as first described in [18]. Section 2 seeks to educate systems oriented computer

science researchers and practitioners on the concepts and techniques needed to apply control

theory to computing systems. Section 3 describes how control theory can aid in building self-

managing systems, and identifies the challenges in doing so. Section 4 presents a case study

of applying control theory to an IBM database management product. Section 5 proposes a

deployable testbed for autonomic computing that is intended to foster research that addresses
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Figure 2: Block diagram of a feedback control system. The reference input is the desired value

of the system’s measured output. The controller adjusts the setting of control input to the target

system so that its measured output is equal to the reference input. The transducer represents effects

such as units conversions and delays.

the challenges identified. Our conclusions are contained in Section 6.

2 Control Theoretic Framework

This section relates control theory to self-managing systems.

2.1 Components of a Control System

Over the last sixty years, control theory has developed a fairly simple reference architecture.

This architecture is about manipulating a target system to achieve a desired objective. The

component that manipulates the target system is the controller. In terms of Figure 1, the

target system is a resource, the controller is an autonomic manager, and the objective is part

of the policy knowledge.

The essential elements of feedback control system are depicted in Figure 2. These ele-

ments are:

• control error, which is the difference between the reference input and the measured

output.

5



• control input, which is a parameter that affects the behavior of the target system and

can be adjusted dynamically (such as the MaxClients parameter in the Apache HTTP

Server).

• controller, which determines the setting of the control input needed to achieve the

reference input. The controller computes values of the control input based on current

and past values of control error.

• disturbance input, which is any change that affects the way in which the control input

influences the measured output (e.g., running a virus scan or a backup).

• measured output, which is a measurable characteristic of the target system such as

CPU utilization and response time.

• noise input, which is any affect that changes the measured output produced by the

target system. This is also called sensor noise or measurement noise.

• reference input, which is the desired value of the measured output (or transformations

of them), such as CPU utilization should be 66%. Sometimes, the reference input is

referred to as desired output or the setpoint.

• target system, which is the computing system to be controlled.

• transducer, which transforms the measured output so that it can be compared with

the reference input (e.g., smoothing stochastics of the output).

The foregoing is best understood in the context of a specific system. Consider a cluster

of Apache Web Servers. The Administrator may want these systems to run at no greater

than 66% utilization so that if any one of them fails, the other two can immediately absorb

the entire load. Here, the measured output is CPU utilization. The control input is the

maximum number of connections that the server permits as specified by the MaxClients
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parameter. This parameter can be manipulated to adjust CPU utilization. Examples of

disturbances are changes in arrival rates and shifts in the type of requests (e.g., from static

to dynamic pages).

While the autonomic computing and control systems architectures are very similar, there

are some important differences, mostly in emphasis. Autonomic computing focuses on the

specification and construction of components that interoperate well for management tasks.

For example, the autonomic computing architecture focuses sensors and effectors since there

are specific interfaces that must be developed.

In contrast, the emphasis in control theory is on analyzing and/or developing components

and algorithms such that the resulting system achieves the control objectives. For exam-

ple, control theory provides design techniques for determining the values of parameters in

commonly used control algorithms so that the resulting control system is stable and settles

quickly in response to disturbances.

2.2 Objectives and Properties of Control Systems

Controllers are designed for some intended purpose. We refer to this purpose as the control

objective. The most common objectives are:

• regulatory control: Ensure that the measured output is equal to (or near) the reference

input. For example, the utilization of a web server should be maintained at 66%. The

focus here is on changes to the reference input such as changing the target utilization

from 66% to 75% if a fourth server becomes available. Another example is service

differentiation.

• disturbance rejection: Ensure that disturbances acting on the system do not signifi-

cantly affect the measured output. For example, when a backup or virus scan is run

on a web server, the overall utilization of the system is maintained at 66%. This differs
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from regulator control in that we focus on changes to the disturbance input, not to the

reference input.

• optimization: Obtain the “best” value of the measured output, such as optimizing the

setting of MaxClients in the Apache HTTP Server so as to minimizes response times.

There are several properties of feedback control systems that should be considered when

comparing controllers for computing systems. Our choice of metrics is drawn from expe-

rience with the commercial information technology systems. Other properties may be of

interest in different settings. For example, [19] discuss properties of interest for control of

real-time systems.

Below, we motivate and present the main ideas of the properties considered.

• A system is said to be stable if for any bounded input, the output is also bounded.

Stability is typically the first property considered in designing control systems since

unstable systems cannot be used for mission critical work.

• The control system is accurate if the measured output converges (or becomes suffi-

ciently close) to the reference input. Accurate systems are essential to ensuring that

control objectives are met, such as differentiating between gold and silver classes of

service and ensuring that throughput is maximized without exceeding response time

constraints. Typically, we do not quantify accuracy. Rather, we measure inaccuracy.

For a system in steady state, its inaccuracy, or steady state error is the steady state

value of the control error.

• The system has short settling times if it converges quickly to its steady state value.

Short settling times are particularly important for disturbance rejection in the presence

of time-varying workloads so that convergence is obtained before the workload changes.
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• The system should achieve its objectives in a manner that does not overshoot. Consider

a system in which the objective is to maximize throughput subject to the constraint

that response time is less than one second, which is often achieved by a regulator that

keeps response times at their upper limit so that throughput is maximized. Suppose

that incoming requests change so that they are less CPU intensive and hence response

times decrease to 0.5 seconds. Then, by avoiding overshoot, we mean that as the

controller changes the control input that causes throughput to increase (and hence

response time to increase), response times should not exceed one second. Overshoot

is particularly important if exceeding a limit has significant consequences, such as a

buffer overflow.

Much of our application of control theory is based on the properties of stability, accuracy,

settling time, and overshoot. We refer to these as the SASO properties.

To elaborate on the SASO properties, we consider what constitutes a stable system. For

computing systems, we want the output of feedback control to converge, although it may

not be constant due to the stochastic nature of the system. To refine this further, computing

systems have operating regions (i.e., combinations of workloads and configuration settings)

in which they perform acceptably and other operating regions in which they do not. Thus,

in general, we refer to the stability of a system within an operating region. Clearly, if a

system is not stable, its utility is severely limited. In particular, the system’s response times

will be large and highly variable, a situation that can make the system unusable.

Figure 3 displays an instability in an the Apache HTTP Server that employs an improp-

erly designed controller. The horizontal axis is time, and the vertical axis is CPU utilization

(which ranges between 0 and 1). The solid line is the reference input for CPU utilization,

and the line with markers is the measured value. During the first 300 seconds, the system

operates in open loop. When the controller is turned on, a reference input of 0.5 is used.
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Figure 3: Example of an unstable feedback control system for the Apache HTTP Server. The

instability results from having an improperly designed controller.
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Figure 4: Response of a stable system to a step change in the reference input. At time 0, the

reference input changes from 0 to 2. The system reaches steady state when its output always lie

between the light weight dashed lines. Depicted are the steady state error (ess), settling time (ks),

and maximum overshoot (MP).

At this point, the system begins to oscillate and the amplitude of the oscillations increases.

This is a result of a controller design that overreacts to the stochastics in the CPU utilization

measurement. Note that the amplitude of the oscillations is constrained by the range of the

CPU utilization metric.

If the feedback system is stable, then it makes sense to consider the remaining SASO

properties—accuracy, settling time, and overshoot. The vertical lines in Figure 4 plot the

measured output of a stable feedback system. Initially, the (normalized) reference input is 0.

At time 0, the reference input is changed to its steady value rss = 2. The system responds

and its measured output eventually converges to yss = 3, as indicated by the heavy dashed
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line. The steady state error ess is −1, where ess = rss −yss. The settling time of the system

ks is the time from the change in input to when the measured output is sufficiently close

to its new steady state value (as indicated by the light dashed lines). In the figure, ks = 9.

The maximum overshoot MP is the (normalized) maximum amount by which the measured

output exceeds its steady state value. In the figure, the maximum value of the output is 3.95

and so (1 + MP)yss = 3.95, or MP = 0.32.

The properties of feedback systems are used in two ways. The first relates to the analysis.

Here, we are interested in determining if the system is stable as well as measuring and/or

estimating its steady state error, settling time, and maximum overshoot. The second is in

the design of feedback systems. Here, the properties are design goals. That is, we construct

the feedback system to have the desired values of steady state error, settling times, and

maximum overshoot. More details on applying control theory to computing systems can be

found in [20].

2.3 Control Analysis and Design

This subsection uses a running example to outline an approach to control analysis and design

for self-managing systems with SASO properties.

We consider the IBM Lotus Domino Server. To ensure efficient and reliable operation,

Administrators of this system often regulate the number of remote procedure calls (RPCs)

in the server, a quantity that we denote by RIS. RIS roughly corresponds to the number

of active users (those with requests outstanding at the server). Regulation is accomplished

by using the MaxUsers tuning parameter that controls the number of connected users. The

correspondence between MaxUsers and RIS changes over time, which means that MaxUsers

must be updated almost continuously to achieve the control objective. Clearly, it is desirable

to have a controller that automatically determines the value of MaxUsers based on the

objective for RIS.
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Our starting point is to model how MaxUsers affects RIS. The input to this model is

MaxUsers, and the output is RIS. We use u(k) to denote the k-th value of the former and

y(k) to denote the k-th value of the latter. (Actually, u(k) and y(k) are offsets from a desired

operating point.) A standard workload was applied to a IBM Lotus Domino Server running

product level software in order to obtain training and test data. In all cases, values are

averaged over a one minute interval. We construct the following simple autoregressive model

using least squares regression:

y(k + 1) = 0.43y(k) + 0.47u(k) (1)

Figure 5(a) displays the values of u(k) (solid line) and the corresponding y(k) (“x”s). We

see that the model fits these data quite well.

To better facilitate control analysis, Equation (1) is put into the form of a transfer

function, which is a Z-transform representation of how MaxUsers affects RIS. Z-transforms

provide a compact representation for time varying functions, where z represents a time shift

operation. The transfer function of Equation (1) is

0.47

z − 0.43
. (2)

The transfer function of a system tells us about its steady state output and its settling

times. We do this by computing the steady state gain of the transfer function, which is

the value of the transfer function when z = 1. For example, Equation (2), the steady state

gain is 0.82. This means that RIS will be (0.82)MaxUsers at steady state.

The poles of the transfer function provide a way to estimate the settling time of the

system. The poles are the values of z for which the denominator is 0. For example, in

Equation (2), there is one pole, which is 0.43. The effect of this pole on settling time is clear

if we solve the recurrence in Equation (1). The result has the factors 0.43k+1, 0.43k, · · · .

Thus, if the absolute value of the pole is greater than one, the system is unstable. And the
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closer the pole is to 0, the shorter the settling time. A pole that is negative (or imaginary)

indicates an oscillatory response. In general, for a transfer function whose largest pole is

p, its settling time is approximately −4

log|p|
[20]. Thus, the settling time for Equation (2) is

approximately 5 time units.

0 0.5 1 1.5 2 2.5
0

100

200

300
RIS
MaxUsers



R
IS

, 
M

a
x
U

s
e
rs

Time

(a) Data used in system identifica-

tion

0 100 200
0

100

200
RIS
x=y

P
re

d
ic

te
d
 R

IS

Observed RIS

(b) Model evaluation

Figure 5: Data and model evaluation for the IBM Lotus Domino Server.

Figure 6 contains a block diagram of a control system that automatically adjusts MaxUsers

to regulate the measured value of RIS. Note that the target system consists of two blocks—

the Notes Server and the Notes Sensor. These blocks correspond to a resource and its sensor

in the autonomic computing architecture. The Notes Sensor is modelled separately because

it introduces delays and affects the accuracy of the measured output. Each block contains

a transfer function that describes that component’s behavior. The controller has a transfer

function with the variable KI. The purpose of control design is to select KI to ensure the

SASO properties. This is done by finding the end-to-end transfer function from the reference

R(z) Y(z)
zKI

z −1

Notes

+

−

Server

Notes

Sensor

0.47
z −0.43

0.17z-0.11
z −0.64

Target System

Controller

Figure 6: Block diagram for integral control of the IBM Lotus Domino Server.
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input to the measured output:

zKI(0.47)(0.17z − 0.11)

(z − 1)(z − 0.43)(z − 0.64) + zKI(0.47)(0.17z − 0.11)
(3)

By setting KI to different values, we obtain different poles. For example, if KI = 0.1

in Equation (3), the largest pole is very close to 1, which results in a long settling time.

However, if KI = 1, the largest pole is approximately 0.8, which greatly reduces settling

times. These effects are clear in Figure 7. More details can be found in [14].
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Figure 7: Transient response of the control system in Figure 6. Figure 7(a) has a pole close to 1

and so it converges slowly. Figure 7(b) has a much smaller (but still positive) pole, and so converges

quickly.

As illustrated in this section, control theory provides rigorous analysis and design tech-

niques for building self-managing systems. Both the response to system dynamics (e.g.,

transient behavior or sensor delay) and robustness to uncertainties (e.g., workload variations

or measurement noise) can be studied analytically. Besides the classical control theory used

in this section, different formal control methods such as state space optimal control, model
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reference adaptive control, gain scheduling, and stochastic control can either be deployed

directly or used as a source of inspiration in building the analysis and planning components.

3 Building Self-managing Systems Using Control The-

ory

This section describes how control theory can be used to build self-managing systems and

identifies challenges in doing so. The material is structured in terms of the components of

the autonomic computing architecture in Figure 1.

3.1 Modeling Resource Dynamics

It should be apparent from the methodology described in Section 2.3, that control analysis

and design is based on the ability to model resources. This can be approached in several ways,

although the construction of system models for resources remains a significant challenge in

the successful application of control theory to computing systems.

Considered first is a purely empirical approach that employs curve fitting to construct

static system models; these models do not address dynamics and typically only characterize

single input single output relationships. This has been very effective in IBM’s mainframe

systems [21].

The second approach to modeling is a black box methodology (a.k.a., system identifica-

tion) such as that described in Section 2.3. This approach requires: choosing an operating

point, designing appropriate experiments, and developing empirical models. This approach

explicitly models system dynamics and is readily generalized to multiple control inputs and

measured outputs. For example, in the Apache HTTP Server, there are two control in-

puts, the maximum number of clients (denoted by MaxClients) that controls the level of

concurrency, and the keep alive timeout (denoted by KeepAlive) that specifies how long a
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connection to the server persists after the completing of the last request on that connection.

We consider two measured outputs, the utilization of the CPU (denoted by CPU) and the

utilization of memory (denoted by MEM). Since MaxClients affects both CPU and MEM but

KeepAlive only affects CPU, we use the following model

yCPU(k) = aCPUyCPU(k − 1) + bCPUKA(k − 1)

+ cCPUMC(k − 1)

yMEM(k) = aMEMyMEM(k − 1) + bMEMMC(k − 1)

This model works well in studies we have conducted [15].

Still another approach is to develop special purpose models from first principles. An

example of this is the first principles analysis done for adaptive queue management in network

routers [9]. This approach involves a detailed understanding of the TCP/IP protocol and

the development of differential equations to estimate a transfer function.

Note that the above models can be built either off-line or on-line. Although on-line

modeling is usually preferred for capturing system and workload variations, special consid-

erations need be given to ensure that the online collected data are sufficient to reflect the

system behaviors, a topic called “persistent excitation” that is studied in adaptive control

literature.

3.2 Sensors

A significant focus in the management of computing systems is the choice of sensors, es-

pecially standardizing interfaces to sensors. The most widely used protocol for accessing

sensor data in computing systems is the Simple Network Management Protocol (SNMP)

[22]. While this allows for programmatic access, it has not addressed various issues that are

of particular concern for control purposes. Among these are the following:

1. Typically, there are multiple measurement sources (even on a single server) that pro-
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duce both interval and event data. Unfortunately, the intervals are often not synchro-

nized (e.g., 10 second vs. 1 minute vs. 1 hour), and missing data are common. Even

worse, data from different servers often come from clocks that are unsynchronized (or

worse still, are synchronized via some complex protocol that converges over a longer

window).

2. Often, the metric that it is desirable to regulate is not available. For example, end-to-

end response times are notoriously difficult and expensive to obtain. Thus, surrogate

metrics are often used such as CPU queue length. Hence, it may well be that the

surrogate is well regulated but the desired metric is not.

3. There can be substantial overheads associated with metric collection. For example,

it can be quite informative to collect information about the resource consumption of

individual requests to a web server. However doing so may consume a substantial frac-

tion of the server CPU. This results in another kind of control problem—determining

which measurements to collect and at what frequency.

4. Often, the measurement system has built-in delays. For example, response times can-

not be reported until the work unit completes. Sometimes, the mean response time is

about the same as the control interval, which can lead to instabilities. Unpredictable

delays are common as well since measurement collection is typically the lowest priority

task and so is delayed when high priority work arrives (which can be a critical time for

the controller).

5. An on-going challenge for developers of instrumentation for computing systems is that

there is a wide variation in the semantics of supposedly standard metrics. For example,

the metric “paging rate” could mean any of the following: (a) the rate at which pages

are written to disk; (b) the rate at which pages are read from disk; and (c) the rate at
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which page-ins are requested (not all of which result in accessing secondary storage).

Because of these disparities, an attempt has been made to standardize the definition

of metrics [23]. However, this effort is limited to UNIX Operating Systems since they

have a similar structure and hence similar metrics.

3.3 Effectors

One of the more challenging problems in the control engineering of computing systems is

that the set of available effectors (actuators) often has a somewhat complex relationship with

the measured output, especially in terms of dynamics. We illustrate this problem by giving

several examples.

Consider again the IBM Lotus Domino Server with the objective of controlling the num-

ber of active users RIS by adjusting the number of connected users MaxUsers. As noted

previously, the number of connected users is not the same as the number of active users. For

example, during lunch time, there may be many connected users, very few of whom submit

requests. Under these circumstances, MaxUsers could be much larger than the number of

active users. On the other hand, during busy periods (e.g., close to an end-of-month dead-

line), almost all connected users may have submitted requests. In this case, MaxUsers may

be very close to the number of active users.

There is still another complication with MaxUsers. The mechanism employed does not

maintain a queue of waiting requests to connect to the server. That is, if MaxUsers is

increased, there is no effect until the next request arrives. If requests are of short duration

and are made quickly, there is little delay. However, if requests occur at a lower rate, then

this effector introduces a dead time that makes control more challenging.

Another example of a complex effector is the nice command used in UNIX systems. nice

provides a way to adjust the priority of a process, something that is especially important if

there is a mixture of CPU intensive and non-CPU intensive work in the system. In theory,
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nice can be used to enforce SLOs dealing with the fraction of the CPU that a process receives.

However, this turns out to be complicated to do in practice because of the way nice affects

priorities. As shown in [24], this is non-linear relationship that depends on the number of

processes competing for the CPU as well as the range of priority numbers used. Recognizing

the limitations of using nice, special purpose schedulers have been developed (e.g., [25]). In

essence, these approaches create a new, more rational set of effectors.

A final example is the start-time fair queueing (SFQ) algorithm. This resource man-

agement algorithm controls the service delivered by a resource by controlling the priority

assigned to incoming requests [26]. Specifically, SFQ operates by tagging incoming work by

class, and the tags determine the priority by which the request is processed. Unfortunately,

this mechanism has some subtle, load-dependent characteristics that create challenges for

designing control systems. In particular, changing the tag assigned to a new request has

no effect until the requests ahead of it have been processed. If load is light, there will be

few such requests, and so little dead time. However, if loads are heavy, dead times could be

substantial. If dead times can be predicted, then compensation might be possible. Other-

wise, the control performance of this effector can be impaired, possibility even resulting in

stability problems.

4 Case Study

This section gives a case study of applying control theory to computing systems. The results

of this work have been incorporated into an IBM database management product. More

details can be found in [12].

The operation of many important software systems involves the execution of administra-

tive utilities needed to preserve the system’s integrity and efficiency. Such administrative

utilities have the following characteristics: (1) their execution is essential to the integrity
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of the system; (2) however, they can severely impair the performance of the primary func-

tion (hereafter, referred to as production work) if executed concurrently with that work.

Hence, administrators typically use overnight periods, holidays or scheduled downtimes to

execute such tasks. With the advent of 24×7 operation, such administrative windows are

disappearing, creating a significant problem for the system administrator. Therefore, it is

highly desirable to provide enforceable policies for regulating the execution of utilities.
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Figure 8: Performance degradation due to running utilities. Plots show time-series data of

throughput and response time measured at the client, averaged over a 60s interval.

Fig. 8 demonstrates the dramatic performance degradation from running a database

backup utility while emulated clients are running a transaction-oriented workload against

that database. The throughput of the system without this backup utility (i. e. , workload

only) averages 15 transactions per second (tps). When the backup utility is started at

t=600sec, the throughput drops to between 25–50% of the original level, and a correspond-

ing increase is seen in the response time. Note also that with the utility running, throughput

increases with time (indicating that the resource demands of the utility decrease). Thus, en-

forcing policies for administrative utilities faces the challenge of dealing with such dynamics.

What kinds of policies should be used to regulate administrative utilities? Based on

our understanding of the requirements of database administrators, we believe that policies

should be expressed in terms of degradation of production work. A general form for such a

policy is
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Administrative Utility Performance Policy : There should be no more than an x%

performance degradation of production work as a result of executing administrative

utilities.

In these policies, the administrator thinks in terms of “degradation units” that are nor-

malized in a way that is fairly independent of the specific performance metric (e.g., response

time, transaction rate). It is implicit that the utilities should complete as early as possible

within this constraint, i. e. , the system should not be unnecessarily idle.

There are two challenges with enforcing such policies.

Challenge 1 : Provide a mechanism for controlling the performance degradation

from utilities.

We use the term throttling to refer to limiting the execution of utilities in some way so

as to reduce their performance impact. One example of a possible throttling mechanism is

priority, such as nice values in Unix systems (although this turns out to be a poor choice,

as discussed later).

Challenge 2 : Translate from degradation units (specified in the policy) to throt-

tling units (understood by the mechanism).

Such translation is essential so that administrators can work in terms of their policies,

not the details of the managed system. Unfortunately, accomplishing this translation is

complicated by the need to distinguish between performance degradation of the production

work caused by contention with the administrative utilities and changes in the production

work itself (e.g., due to time-of-day variations).

We begin by addressing the first challenge. One approach is to use operating system

(OS) priorities, an existing capability provided by all modern operating systems. Throttling

could be achieved by making the utility threads less preferred than threads doing production
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work. In principle, such a scheme is appealing in that it does not require modifications to the

utilities. However, it does require that the utility executes in a separate dispatchable unit

(process/thread) to which the OS assigns priorities. Also, a priority-based scheme requires

that access to all resources be based on the same priorities. Unfortunately, the priority

mechanisms used in most variants of Unix and Windows only affect CPU scheduling. Such

an approach has little impact on administrative utilities that are I/O bound (e.g., backup).

Our approach is to use self-imposed sleep (SIS). SIS relies on another OS service: a

sleep system call which is parameterize by a time interval. Most modern OSes provide

some version of a sleep system call that makes the process or thread not schedulable for the

specified interval. Fig. 9 describes a throttling API that uses this sleep service.

FUNCTION Utility()

BEGIN

WHILE (NOT done)

BEGIN

... do some work ...

SleepIfNeeded()

END

END

(a) Inserting SIS point

FUNCTION SleepIfNeeded()

BEGIN

(workTime, sleepTime) = GetThrottlingLevel() ;

timeWorked = Now() - workStart ;

IF (timeWorked > workTime)

SLEEP( sleepTime ) ;

workStart = Now() ;

ENDIF

END

(b) SIS implementation

Figure 9: High-level utility structure and sleep point insertion
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We address the second challenge by using a feedback control system to translate degra-

dation units (specified in the policy) into throttling units. This should be done in a manner

that not only achieves the administrative target of “x% performance degradation” but also

adapts quickly to changes in the resource requirements of utilities and/or production work.

Throttle
Manager Target

Utilities

Sensor

Admin Users

Impact
Limit

Performance

Throttling
Level

Figure 10: Throttling system operation

The overall operation of our proposed automated throttling system is illustrated in

Fig. 10. Administrators specify the degradation limit, which corresponds to the x in the

policy described above. The main component is the Throttle Manager, which determines the

throttling levels (i. e. , sleep fraction) for the utilities based on the degradation limit as well

as performance metrics from the target system.

The sensor in Fig. 10 estimates the performance degradation due to utilities. This is done

by first estimating the metric’s baseline, which is the value of the metric if there were no

utilities running. The baseline value is compared to the most recent performance feedback

to calculate the current degradation (as a fraction):

Degradation = 1 −
performance

baseline

Given the current degradation level, the Throttle Manager must calculate throttling levels

for the utilities. Because of the relatively straightforward effects of sleepTime on perfor-

mance, we use a standard Proportional-Integral (PI) controller from linear control theory[27]

to drive this error quantity to zero, thereby enforcing the throttling policy. A PI control

structure is proven to be very stable and robust and is guaranteed to eliminate any error in
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steady-state. It is used in nearly 90% of all controller applications in the real world. A new

throttling value at time k + 1 is computed as follows:

throttling(k + 1) = KP ∗ error(k) + KI ∗

k∑

i=0

error(i) (4)

KP and KI are chosen to ensure the SASO properties.

To evaluate our control system, we first show in Fig. 11(a) that the throttling system

follows the policy limit in the case of a steady workload generated by 25 emulated users. For

comparison, the workload performance as well as the effect of an unthrottled utility (from

Fig. 8) are also shown. While the average throughput without the BACKUP running is 15.1

tps, the throughput with a throttled BACKUP is 9.4 tps – a degradation of 38%, which is

close to the desired 30%. Note how the throttling system compensates for the decreasing

resource demands of the utility by lowering the sleep fraction (Fig. 11(c)), resulting in a

throughput profile that is more parallel to the no-utility case.

To highlight the adaptive nature of this system, we consider a scenario where there is

a surge in the number of users accessing the database system while the BACKUP utility

is executing. We start with a nominal workload consisting of 10 emulated users, and start

the utility at 300 sec. At time 1500 sec, an additional 15 users are added (thus, resulting

in a total of 25 users). Fig. 11(b) shows the raw performance data for the surge, with the

no-utility case (in the same scenario) shown for reference. We see that the throttling system

adapts when the workload increases, reaching a new throttling level within 600sec. For

this case, the pre-surge average throughputs are 13.1 (workload only) and 8.37 (throttled

BACKUP) – a degradation of 36%. Analogously, the post-surge degradation is 19%. Note

that the sleep fraction used (and the resultant throughput) towards the latter half of the run

is similar to the value seen for the steady-workload case, indicating that the models learned

by the Baseline Estimator are similar.
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Figure 11: Effect of throttling a utility under a steady workload and a workload surge with

a 30% impact policy. x axis is time. The throughput data shown is computed over 1 minute

intervals, sleep fraction is set every 20sec.
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Figure 12: Architecture of the Deployable Testbed for Autonomic Computing (DTAC).

5 Deployable Testbed for Autonomic Computing (DTAC)

Section 3 details a number of challenges with building autonomic systems. Some of these

challenges relate to developing appropriate control techniques. Other challenges relate to

engineering the software components that support the requirements of control systems. Un-

fortunately, to evaluate efforts in either area, a complete system must be developed, a fact

that hinders progress since researchers prefer to focus on their area of expertise. For example,

it took months to develop the system in Section 4.

The foregoing has motivated our interest in DTAC, a deployable testbed for autonomic

computing. DTAC is intended to be a complete end-to-end system with pluggable compo-

nents so as to facilitate research in various aspects of autonomic computing. For example,

researchers focusing on control algorithms need only modify these components, but they

would still have an end-to-end system to evaluate their algorithms. Similarly, researchers

primarily interested in sensors and effectors could replace these elements and take advantage

of existing control algorithms.

Figure 12 displays our initial architecture for DTAC. There are four layers in the archi-

tecture, all of which are intended to be pluggable. The Test Harness provides the overall

experimental environment, including the generation of synthetic workload, and a suite of
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tools for analyzing experimental results. The operation of the Testbed is as follows: (1) The

Test Harness creates a request that is sent to an HTTP server; (2) HTTP servers process re-

quests, forwarding to an Application Server those requests that require extensive processing;

and (3) Application Servers forward to a Database Server those requests that require data

intensive operations. To satisfy scaling requirements, one or more tier of the eCommerce

System may contain server clusters with appropriate load balancing.

In terms of the autonomic computing architecture, the eCommerce system is a set of

resources. These resources have a variety of sensors for accessing measurements and effectors

for controlling their behavior. For example, effectors of interest in the Apache HTTP server

include the KeepAlive timeout and the maximum number of clients. Key effectors for the

Database server might be the size of memory pools for sorts and joins. Observe that there

is a natural hierarchy of resources that may well imply a hierarchy of managers of these

resources. That is, the full eCommerce system provides statistics on end-to-end response

times and its main effector is based on traffic shaping. In addition, there may be managers

for clusters of servers that provide sensors for relative utilizations of servers within the cluster

and an effector that determines how to balance load among servers within the cluster.

The variety of different sensors and effectors motivates the need for Manageability Mid-

dleware that virtualizes these differences and provides commonly used functions. In terms

of the autonomic computing architecture, this corresponds to the monitoring and execu-

tion components in the autonomic manager. Examples of Manageability Middleware include

KinestheticsExtreme [4], IBM’s autonomic computing Toolkit [28], and ControlWare [29].

We expect that the Manageability Middleware will incorporate common functions, such as

filtering events and maintaining state.

The Controller Layer is primarily responsible for making decisions and taking actions

(although this layer may incorporate elements of analysis as well). This is the primary layer

for doing policy interpretation and enforcement.
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Last, the Test Harness operates the experimental environment, including the control of

experimental runs, workload generation, data collection, and reporting. Workload generation

is of particular concern since it has a dramatic effect on the experimental results. We

advocate the use of industry standard workloads, such as those developed by the Transaction

Processing Council (TPC) and the Standard Performance Evaluation Corporation (SPEC).

We emphasize that Figure 12 depicts the layers in our Testbed, not necessarily compo-

nent instances. For example, there may be separate instances of Manageability Middleware

for each server, along with their own Controller. And there may be separate instances of

Manageability Middleware and Controllers for each server cluster.

Our goal is to develop an easily deployable package that instantiates the above architec-

ture in a way that researchers can readily substitute their components and run experiments

to evaluate their technologies. For the eCommerce System, we plan to use the Apache HTTP

Server, the Tomcat Application Server, and the MySQL Database Server. All are publically

available, both the executables and the source. Also, they are widely used in production

systems.

Going a step further, we anticipate that a DTAC stack will be needed on each resource

to be managed in the eCommerce System. Figure 13 depicts at a high level the layers in this

stack, beginning with the lowest level – level 0, which are the resources (applications) to be

managed.

Layer 1 are the touchpoints. There is a set of touchpoints associated with every resource

to be managed. Touchpoints make up level 1 and perform the duties of sensors and effectors

for the resource of interest, they encapsulate resource specific strategies for interacting with

the resource.

Layer 2 contains the resource models that specify “interesting” facets and attributes of a

resource. These facets include considerations for performance, configuration, and operating

environment.
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Figure 13: Software stack needed by managed elements to run DTAC.

Level 3 consists of the resource analyzers. Resource analyzers provide filtering, control

analysis, root cause analysis, forecasting, proactive management, and other higher level func-

tions by using technologies such as inference engines, data-mining and correlation algorithms.

The layers in the DTAC stack have associated interfaces as well. These are:

• ITouchpoint – the interface implemented by elements performing the duties of sensors

and effectors

• IResourceModel – the interface implemented by elements that aggregate data of interest

about a resource

• IAnalyzer – the interface implemented by elements that refines the resource model and

makes decisions over it

We are in the early stages of discussion of the choice of Manageability Middleware and

Controller to distribute with the Testbed. The intent is to use something simple. For

example, the Controller distributed with the Testbed might be a classical multiple input

multiple output (MIMO) controller (e.g., [15]) that manipulates configuration parameters

in all three tiers. More generally, there are two main requirements for components in the

Testbed package. First, the component should be sufficient to conduct experiments on
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unrelated components. Second, components distributed with the Testbed should illustrate

the use of the APIs required for component pluggability.

The details of the Test Harness are still under consideration. However, the workload

driver will likely be the TPC Web Workload (TPC-W) [30] since there is a publically available

software driver.

6 Conclusions

This paper takes the position that control theory can provide an architectural and analytic

foundation for building self-managing systems. Our approach to establishing the architec-

tural connection is to show the correspondence between the elements of the IBM autonomic

computing architecture and those in the elements control systems. For example, the sensors

and effectors of the autonomic architecture provide the measured outputs and control inputs

in control systems. The benefit of making this connection is that control theory provides

a rich set of methodologies for building automated with properties such as stability, short

settling times, and accurate regulation. This said, there remain considerable challenges in

applying control theory to computing systems, such as developing reliable resource mod-

els, handling sensor delays, and addressing lead times in effector actions. These challenges

motivate the need for broader engagement of the research community in these areas.

The last observation has motivated our recent efforts with developing DTAC, a deployable

testbed for autonomic computing. DTAC is intended to support the study of a wide range of

research problems related to automating the management of distributed systems. Examples

of research questions include: (1) What sensors and effectors work best in maintaining service

level objectives? This can be investigated by modifying one or more of the eCommerce tiers.

(2) How can data from heterogeneous sensors be virtualized in a way that supports the

goal of end-to-end service level management? This can be studied by developing appropriate
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Manageability Middleware. (3) Which control techniques best ensure end-to-end service level

objectives? This may involve a combination of pluggable Controllers and selection of different

sensors and effectors. (4) What is required to better automate provisioning of distributed

systems? This may entail modifications to the eCommerce, Manageability Middleware, and

Controller layers.
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