
RC23651 (W0507-029) July 5, 2005
Computer Science

IBM Research Report

Managing the Response Time for Multi-tiered 
Web Applications

Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer, Malgorzata Steinder,
Asser Tantawi, Alaa Youssef

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



1

Managing the Response Time for Multi-tiered Web
Applications

Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer, Malgorzata Steinder, Asser Tantawi, and Alaa Youssef
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

{giovanni,werewolf,mspreitz,steinder,tantawi,ayoussef}@us.ibm.com

Abstract— We present a system for managing the response
time of web applications. This system allows service providers
to group web application requests into different classes and
assign response time goals to these classes of requests. We
manage response times by using mechanisms that control the
amount of server resources allocated to each class of web
requests. We show how our platform can manage complex multi-
tiered applications where each request uses multiple resources
distributed over multiple tiers. We consider the case of a data
center that supports multiple web applications, with each web
application deployed and replicated on different but overlapping
subsets of machines. We also show how our system can produce
resource request signals that can guide another system that
dynamically adjusts the application deployments. We also show
how our system can manage heterogeneous requests by taking
into account the amount of resources that each request con-
sumes at each tier. To manage the response times of web requests
we introduce an additional tier, the Proxy tier. The proxy adds
layer-7 mechanisms that divide and control the flow of requests
into the application tiers. We use a feedback control loop
that periodically adjusts the resources allocated to each class.
The feedback controller uses an approximate first-principles
model of the system, with parameters derived from continuous
monitoring. We discuss our prototype implementation and
report experimental results that show the dynamic behavior
of the system.

I. INTRODUCTION

Many organizations rely on web applications to deliver
critical services to their customers and partners. These service
providers want to be able to specify response time goals for
their web applications and be able to differentiate the perfor-
mance delivered to preferred customers and business partners
from other ordinary customers and partners. To manage the
response time of web applications we must build platforms
that provide resource virtualization and continuously monitor,
in real-time and without human intervention, the performance
and resource usage of user requests and dynamically decide
how to allocate resources to meet the response time goals.

Several papers have reported studies that make important
advances towards this goal. We categorize these studies into
session-based admission control [1], [2], [3], server farm
partitioning [4], [5], and request scheduling and routing

techniques [6]. Some of these systems use classical feedback
control [7], [8], some use reactive non-classical feedback [9],
while others rely on optimizing a system-wide utility func-
tion [10], [11]. We have also addressed this problem in
our prior work [6], [12], where we used a gateway tier,
which performed multi-class queueing and weighted round
robin scheduling of individual requests, in order to enforce
statistical multiplexing of computing resources.

In this paper we describe a key progress towards the goal of
managing response times for web applications. We describe
a prototype platform and show how this platform delivers re-
sponse time management for web application under realistic
usage and deployment scenarios. In particular, we show how
to manage multi-tiered web applications where each request
uses multiple resources distributed over multiple tiers. We
consider the case of a data center that supports multiple
web applications, with each web application deployed and
replicated on different but overlapping subsets of machines.
In such a data center there may be another controller that
dynamically adjusts the placement of applications on server
machines; we show how our system can produce resource
requests to guide such a placement controller.

We also show how our system can manage heterogeneous
requests that use computing resources with heterogeneous ca-
pacities. We classify requests according to configured policy
and use estimates of the resource demand by each kind of
request for each machine and consider the capacity of each
machine in each tier.

We describe how we implemented these response time
management mechanisms by extending a popular middleware
platform for Java 2 Enterprise Edition (J2EE) web applica-
tions. We have embedded our mechanisms in the middleware
without relying on any special performance management
functionality from the underlying operating system. In this
way our system can support web applications that run on the
many operating systems supported by the J2EE platform we
used. Our management technique requires no help from the
application code hosted by the middleware.

Our system uses a tier of layer-7 request proxies that
classify incoming requests according to configured policy



2

and monitors their response times and resource usage. The
gateways slectively queue and release requests to manage
response time goals and protect computing resources from
overload. We group requests into service classes and we
use a per class utility function to express the value of any
given performance result. A resource controller decides on:
(i) the maximum number of outstanding concurrent requests
allowed from each gateway, and (ii) a weighted round robin
scheduling weight per queue; these are enforced by the layer-
7 gateways. Those values are derived from the results of a
resource allocation problem. We formulate the resource allo-
cation problem as an optimization problem with an objective
function derived from the class utility functions.

The rest of this paper is organized as follows. Section II
discusses related work and what our study adds to the existing
literature. Section III presents the system architecture and im-
plementation. The resource allocation problem is formulated
in Section IV. Section V describes the performance model
used to derive response times from resource allocations.
Section VI presents experimental results, which demonstrate
the behavior of the system. In Finally, in Section VII we
discuss our conclusions.

II. RELATED WORK

Several research groups have addressed the issue of QoS
support for middleware systems [13]. In this section we
summarize the current state of the art. The first class of
research studies deals with session-based admission control
for overload protection of web servers. Urgaonkar et al. [14]
developed a system for handling the case of extreme over-
loads in web application servers. They study an admission
control system that runs on a “sentry” tier and decides in
real-time and low overhead which flow to admit when the
resources in the application tier are overloaded. Chen et
al. [1] proposed a dynamic weighted fair sharing sched-
uler to control overloads in web servers. The weights are
dynamically adjusted, partially based on session transition
probabilities from one stage to another, in order to avoid
processing requests that belong to sessions likely to be
aborted in the future. Similarly, Carlström et al. [2] proposed
using generalized processor sharing for scheduling requests,
which are classified into multiple session stages with tran-
sition probabilities. Welsh et al. [3], [15] presented a multi-
stage approach to overload control based on adaptive per
stage admission control. In this approach, the system actively
observes application performance and tunes the admission
rate of each processing stage to attempt to meet a 90th-
percentile response time target. This approach is based on the
SEDA architecture [16], and was extended to perform class-
based service differentiation. The downside of these multi-
staged admission control approaches is that a request may be
rejected late in the processing pipeline, after it has consumed
significant resources in upstream stages.

Web server overload control and service differentiation
using OS kernel-level mechanisms, such as TCP SYN polic-
ing, has been studied in [17]. Socket-level prioritization of
packets, based on a shortest remaining processing time policy,
has been also studied in [18] and [19]. A common tendency
across these approaches is tackling the problem at lower
protocol layers, such as HTTP or TCP, and the need to modify
the web server or the OS kernel in order to incorporate the
control mechanisms. Our solution on the other hand operates
at the middleware layer, which does not require changes to
the kernel, and allows for finer granularity of content-based
request classification.

Another area of research deals with performance control
of web servers using classical feedback control theory. Ab-
delzaher et al. [7] used classical feedback control to limit
utilization of a bottleneck resource in the presence of load
unpredictability. They relied on scheduling in the service
implementation to leverage the utilization limitation to meet
differentiated response-time goals. They used simple priority-
based schemes to control how service is degraded in overload
and improved in under-load. Diao et al. [8] used feedback
control based on a black-box model to maintain desired levels
of memory and CPU utilization. In this paper we use a new
technique that gives the service provider a finer grain control
on how the control subsystem should tradeoff resources
among different web requests. We use a first-principles model
and maximize a system-wide objective function.

All the abovementioned approaches focus on enhancing the
performance of a server singleton, which is useful. However,
having such enhanced servers does not solve issues related
to optimizing load distribution in server farms, which is our
focus in this paper.

In [9], a collection of middleware services, for monitoring,
configuration, and load balancing, is used to construct a QoS-
aware clustering service. The system relies on warning and
breaching points that are derived from the SLA. Warning
and breaching points for throughput, response time, etc, are
combined into one point for the resource. Once the resource
usage reaches the warning point, configuration adaptation
must start. If the breaching point is reached, then adapta-
tion has failed. In contrast, our system maps the observed
performance to a continuous utility function, and constantly
adapts the resource allocation to optimize the overall system
utility.

Service differentiation in cluster-based network servers has
also been studied in [4] and [5]. The approach taken here
is to physically partition the server farm into clusters, each
serving one of the traffic classes. This approach is limited in
its ability to accommodate a large number of service classes,
relative to the number of servers. Lack of responsiveness due
to the nature of the server transfer operation from one cluster
to another is typical in such systems. On the other hand,
our approach uses statistical multiplexing, which makes fine-
grained resource partitioning possible, and unused resource



3

capacities can be instantaneously shared with other traffic
classes.

Chase et al. [10] refine the above approach. They note that
there are techniques (e.g., cluster reserves [20], and resource
containers [21]) that can effectively partition server resources
and quickly adjust the proportions. Like our work, Chase
et al. also solve a cluster-wide optimization problem. They
add terms for the cost (due, e.g., to power consumption) of
utilizing a server. They use a black-box model rather than
first-principles one.

Zhao and Karamcheti [22] propose a distributed set of
queuing intermediaries with non-classical feedback control
that maximizes a global objective. Their technique does not
decouple the global optimization cycle from the scheduling
cycle.

The approaches mentioned above for managing clustered
web servers lack support for multi-tiered web applications.
They do not provide a comprehensive management frame-
work that manages the request performance from entry to exit
from the system. In addition, these solutions do not address
important realistic deployment scenarios in which each web
application is replicated on different but overlapping subset
of machines, at each tier.

The notion of using a utility function and maximizing a
sum [23] or a minimum [24] of utility functions for various
classes of service has been used extensively to support service
level agreements in communication services. Recently, the
same concept has been applied to Web servers. In [11],
the authors proposed a controller for multi-tier web data
centers, which maximizes the profits associated with multi-
class service level agreements. The cost model consists of
a class of linear utility functions which include revenues
and penalties incurred depending on the achieved average
response time and the cost associated with running servers.
The overall optimization problem considers the set of servers
to be turned on, the allocation of applications to servers, and
routing and scheduling at servers as joint control variables.
This problem is NP-hard. The authors ended up dividing
the problem into smaller problems, and developed heuristics
based on a local search algorithm. In this paper we use
the concept of utility function to encapsulate the business
importance of meeting or failing to meet performance targets
for each class of service. Our approach is to address each
of the above problems by a separate autonomic controller,
optimized specifically for the problem it solves. In this paper,
we focus only on the techniques used for optimizing the
server allocations and scheduling weights, given a certain set
of application placement constraints. The separation makes
the controllers’ problems simpler and easier to solve in real-
time. Additionally, we believe that our architecture provides
superior overload protection, since our gateway tier shields
the servers from load surges. Our technique applies control
only at the entrance to the system, while their technique
requires control over both routing to, and scheduling within,

all machines on all tiers. Moreover, we implemented our
design and validated it using experimental data.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

In this section, we present the architecture and prototype
implementation of our platform for managing the response
times of web applications. Our platform allows a service
provider to specify a policy that divides all possible requests
for web applications into service classes and assigns a
performance goal to each service class. A performance goal
describes a target response time (either average or percentile),
and includes an importance level that specifies the relative
importance of meeting, exceeding, or failing to meet the
target. We use the performance targets and importance levels
to decide how to allocate resources to requests.

Using a management console, the service provider con-
figures the goal of each service class and associates web
requests with service classes. The prototype described in
this paper uses URI patterns to map requests to service
classes. Our prototype supports goals defined as average
response times or percentile response times. We also support
importance levels ranging from 1 to 99 (where 1 is the highest
importance level). We could extend our platform to support
classification based on a larger set of request parameters (for
example user identities).

Figure 1 illustrates the overall system architecture using a
prototypical J2EE application scenario. We show three appli-
cations A, B and C deployed across two tiers (Application
Tier 1 and Application Tier 2). For example, in the case
of a J2EE application the first tier hosts servlets and EJBs
while the second tier hosts the database. In this example,
the first tier uses three different machines while the second
uses two machines. In this paper, we use the term Node
when referring to a machine. In a given tier, a particular
application may be available on multiple nodes. We refer to
the presence of an application on a node as an application
instance. In Fig. 1 application A has three instances on the
first tier and one instance on the second tier. The first tier
has a total of six application instances: three for application
A, two for application B, and one for application C. In
particular, the three instances of application A on Tier 1 are
three application server processes (one on each machine of
the tier), and those three application instances are grouped
together in a cluster. However, we do not really care about the
details of server processes and clusters; what is important is
which application is available on which node. We presume
some load balancing technique is used to spread the load
among the instances of a given application in a given tier.
In our experience, a large enterprise typically has several
web applications deployed in an environment with a few
tens to several hundred application instances spread across
a few to a hundred nodes. Typically customers consider
isolation, availability, and demand to decide the placement of
application instances. Therefore, like in our example, we need



4

App C-1

App B-1

App A-1

Node 3-1

App B-1

App A-1

Node 2-1

App A-1

Node 1-1

Client

Client

Client

C Flows

B Flows

A Flows

A, Gold

B, Gold

C, Gold

A, Silver

B, Silver

C, Silver

A, Bronze

B, Bronze

C, Bronze

Scheduling
Load

Balancing

L7 Proxy
Tier

Application
Tier 1

Application
Tier 2

Messaging Network

Resource
Controller

Management
Console

Monitoring Control Path

Monitoring Control Path

Classification

App C-2

App B-2

Node 2-2

App C-2

App A-2

Node 1-2

Placement
Controller

Fig. 1. System overview

to support a scenario where customers: replicate different
applications to different degrees, use nodes with different
computing capacities, and map URI patterns from different
applications onto the same service class.

Our system primarily reacts to the application placement
currently in effect, but also computes signals, called resource
requests, that can guide the dynamic adjustment of the
application placement. By application placement we mean the
decision of how many replicas to run for each application,
and which server machine should run each replica. We do
not suppose that a single machine can run a replica for each
application at the same time; that would require more mem-
ory, and perhaps more CPU switching, than is desirable. We
do not even suppose that each application could potentially
run on each machine; for example, an application may have
hardware requirements that are met by only some machines.
Our system takes as given a set of allowed placements,
described simply in terms of which application could run
on which machine. Our system computes a resource request
for each application. A resource request is an amount of
computing capacity. The computed set of resource requests
can be met by an allowed placement, and would produce
a nearly optimal performance result compared with other

allowed placements (it may fall short of optimal because we
use a heuristic search technique).

To manage the response times of web requests we intro-
duce an additional tier, the Proxy tier. The proxy adds layer-
7 mechanisms that divide and control the flow of requests
into the application tiers. The proxy is given values for
its resource allocation parameters and controls the request
flows. Our platform has a resource controller that monitors
the request response times and other performance metrics,
and periodically recomputes the resource allocation para-
meter values that the proxy uses. The components of the
proposed platform share monitoring and control information
via a messaging network, which uses a publish/subscribe
paradigm [25].

A. Proxy layer: Controlling the request flow
The proxy implements three main resource control mech-

anisms: classification, queueing and scheduling, and load
balancing. When a request arrives at the proxy the clas-
sification mechanism examines the request attributes and
classifies the request according to the user defined policy.
The classification process produces a tuple 〈d, c〉 that defines
the entry application and service class associated with the



5

request and is referred to as a traffic class. The proxy has
a request queue for each traffic class. A classified request is
placed at the end of the queue associated with its traffic class
and its execution is suspended. As an example, in Fig. 1 we
show a proxy configured with three service classes (Gold,
Silver, and Bronze) and with three applications (A, B, and
C). This makes nine request queues.

Note that we have designed a separate queue for each
traffic class even though multiple traffic classes may belong
to the same service class and thus share a performance
goal. We have chosen to split a service class into traffic
classes as separate management units, because the maximum
amount of resources available for a request of one service
class may differ depending on the application involved. For
example, in Fig 1 application A has three instances in the
first tier while application C has only one instance deployed
in the same tier. Therefore, the maximum resource capacity
available to application A is bigger than that available to
application C. In addition, resource requirements of requests
belonging to different applications may vary. Thus, to prevent
the system overload, in addition to controlling the overall
resource consumption in each tier, we must control the
amount of resources consumed in each tier per application.

To implement the overload control, we logically divide
the queues into gateways, where a gateway is a set of
queues corresponding to a given application. Thus, in the
example shown in Fig. 1, three gateways exist. We use
the same symbol, d, to represent both a gateway and the
corrresponding application. With each gateway, we associate
two kinds of resource allocation parameter: (i) the maximum
number of concurrent requests (counted at the proxy, not
at deeper places where the number may be different) that
the application tiers may execute on behalf of this gateway
(for gateway d we denote this parameter with Nd) and (ii)
the round robin scheduling weight for each traffic class (for
gateway d and class c we denote this parameter by ωd,c).

Each gateway has a scheduling mechanism that decides
when to remove a request from a queue and forward the
request for execution on the application tiers. The scheduler
divides the application’s resources among its service classes.
By dynamically changing the amount of resources allocated
to each class we can control the response time experienced
by the web requests in each class. A gateway’s scheduler
controls the request flows of all the service classes belonging
to the gateway’s application. A gateway’s scheduler tracks
the number of outstanding requests for its application and
makes sure that there are at most Nd requests executing
concurrently. When the number of concurrently outstanding
requests from gateway d is smaller than Nd, and some
requests are queued in d, the scheduler for d selects a new
request for execution. That scheduler uses a weighted round
robin scheme.

After selecting a request for execution, the scheduler
passes the request to a load balancer mechanism that selects

a node and sends the request to it. The load balancer
spreads the load across the multiple deployed instances of
an application. The load balancer tries to equalize response
time across all the instances of a given application while
respecting request affinities.

When a request completes its execution and the response
returns from the application tiers, the relevant scheduler uses
this information to both keep an accurate count of the number
of requests currently executing and to measure performance
data such as service time.

Each scheduler collects statistics on arrival rates, service
rates, queueing times, and execution times. Each scheduler
periodically broadcasts this data on the messaging network.

B. Resource Controller

The resource controller implements the logic that computes
(a) the amount of resources to allocate to each pair of service
class and application, and (b) the resource requests that may
be used to drive placement changes.

Fig. 2 shows the internal structure of the resource con-
troller and its inputs and outputs. The controller computes
Nd values, the maximum number of concurrent requests that
can be simultaneously executing for each application d on
the application tiers. It also computes ωd,c values, the round
robin scheduling weight of the queue that is associated with
each traffic class 〈d, c〉. The controller runs periodically and
computes the resource allocation parameters, the Nd and
ωd,c, that each gateway will use during the control interval
i + 1, using the request execution and server utilization
statistics measured during interval i.

Measurements

in interval i

Decisions

for interval i+1

Resource
Allocations

d,c and Nd

Class
Goals

c

Class
Importance

Resource
Capacities

s

Execution Times Ed,c

Response Times Rd,c

Arrival Rates d,c

Class
Allocations

Predicted

Utility

Power

Consumption 

Factors

d, c, s

Instances
Placement

It
d,c

Compute Class 
Utility

System Model

Model

Parameters

Predicted

Response
Times

Model

Tuner

Utilization
Levels

t

Configuration

Parameters

Controller

Loop

^

Resource
Requests d

Compute Class 
Allocation

Fig. 2. Resource controller inputs and outputs

The size of the control interval affects the ability of
the controller to respond to rapid changes in traffic load
or response time. On one hand, with a small interval, the
resource allocation parameters are updated frequently which
makes the system more adaptive. On the other hand, a larger
interval increases the stability of the system.



6

The resource controller uses an independent queuing-
network model for each traffic class; the model is described
in Section V. Using the queuing model for traffic class
〈d, c〉, the resource controller predicts the response time for
this traffic class, Rd,c, under any given resource allocation
represented by Nd and ωd,c. The resource controller also
uses a per-class utility function of response time, Uc(R)
that expresses the business value of achieving any given
performance for this class. During control interval i, the
controller receives for each traffic class 〈d, c〉 the measured
request arrival rate λd,c, response time Rd,c, and execution
time Ed,c. The controller first uses these parameters, along
with the allocation decision applied to interval i, to tune a
queuing model of the trafic class 〈d, c〉. Then, using the tuned
models the resource controller computes vectors of allocation
parameters Nd and ωd,c that equalize the utility of all traffic
classes.

The controler also has a parameter ρ̂t through which the
service provider specifies a limit on the utilization of the
bottleneck resource in tier t.

When exploring the space of possible allocations the
controller uses a set of constraints to avoid overloading the
resources in the application tiers. In this paper we assume
that (a) there is one bottleneck resource in each application
tier, and (b) that resource has a well-defined capacity that
does not vary from application to application. Let t be a tier
that includes node s. We use Ωs to denote the capacity of the
bottleneck resource on node s. We define a bottleneck power
consumption factor, κd,c,s, that represents the amount of the
bottleneck resource that is consumed on node s by a system-
entering request of traffic class 〈d, c〉, averaged over the time
that request spends among the application tiers, while the
average bottleneck resource utilization on each relevant node
is at the limit (ρ̂) for its tier. For example, if Ωs represents
the CPU capacity of node s, in cycles per second, then κd,c,s

represents the amount of CPU, in cycles per second, that one
request from traffic class 〈d, c〉 consumes on node s.

The controller must also know on which nodes in each
tier the applications are deployed. In tier t, the relationship
between the applications and nodes is given by the appli-
cation placement matrix It. For a given tier, the rows of
the matrix represent applications and the columns represent
nodes in that tier. Thus for tier t, It

d,s = 1 only if an
instance of application d is deployed on node s, otherwise
It
d,s = 0. When exploring the space of possible allocation

vectors the controller must observe per-application resource-
capacity limits resulting from application placement It in
each tier t.

After the controller computes a new set of Nd and ωd,c

values, it broadcasts them on the messaging network. Upon
receiving the new resource allocation parameters, each gate-
way switches to use the new values.

Our system works under the assumption that the execution
time of requests does not change greatly from one control

cycle to the next. To help make this true, our system attempts
to limit the utilization of the computational resources to a
range over which the execution times vary relatively little. For
example, execution times vary much less for CPU utilizations
from 0% to 90% than for CPU utilizations that range up to
100%.

We use the approach of queueing the work before it enters
the application tiers. We use power consumption factors
(κd,c,s) and resource capacities (Ωs) to decide how much
work of each class the application tier can execute at any
given time. We use a scheduler to decide how to split the
application tier resources among the traffic classes. During
period of low traffic the application tiers resources will be
under utilized and there will be no queueing at each gateway.
As the traffic demand increases some applications will reach
their concurrency limits (Nd). At that time we will start
queueing requests at the gateways and use the scheduling
weights to decide which queued request should be forwarded
to the application tiers when capacity becomes available.

For this system to work we must be able to compute the
portion of resource s that each request of each traffic class
consumes on average (κd,c,s). For the experiments reported
in Sec VI we used an on-line profiling technique to compute
κd,c,s. In the next subsection we show how we can define
these parameters.

C. Power Consumption Factor

Let’s focus on one application tier and let’s assume that
the node CPU is the bottleneck resource tier.

We want to describe the amount of CPU consumed by
requests of a given type, i.e., the power consumption factor at
which a given type of request uses the CPU cycles, measured
in clock cycles per second, on a node in this tier, when
the utilization there, and at every other node that has a
performance interation with that one, is at the configured
limit. If disk access rather than CPU is the bottleneck, we
would express the power consumption factor and the resource
capacity in bytes per second. Thus, request packing can be
accomplished by the resource controller in the same manner,
for all tiers, independent of the nature of the bottleneck
resource.

Figure 3 shows how to define the power consumption
factor for tier t, under the assumption that there is no
parallelism in the processing of any one particular request.
Consider a request of traffic class 〈d, c〉; that means it (1)
has service class c and (2) is for application d. In the
course of processing this request, application d may itself
make requests on deeper tiers, and so on. Consider all the
processing done on behalf of that original 〈d, c〉 request,
in relation to some given node s in some tier t. The total
average time spent among the application tiers can be divided
into four segments: (a) the average time spent in upstream
application tiers (θ(0)

d,c,s); (b) the average time spent using the



7

(1) + (2) (3)

CPU s

on Tier t

request from

upstream tier

CPU capacity, s to downstream

tier

response to

upstream tier

response from

downstream tier

. . .

Average time spent 

by a request

on all downstream 

tiers

Average time 

spent

by a request on 

tier t

. . .
(0)

Average time spent 

by a request

on all upstream tiers

Fig. 3. Multi-tiered request processing

CPU on tier t (θ(1)
d,c,s); (c) average time spent waiting for the

CPU on tier t because of resource contention (θ(2)
d,c,s); (d) the

average time the request spends waiting for responses from
downstream tiers (θ(3)

d,c,s). In particular, θ
(0)
d,c,s, θ

(1)
d,c,s, θ

(2)
d,c,s

and θ
(3)
d,c,s are the values when the CPU utilization on node

s at tier t is equal to ρ̂s, i.e., our target utilization for this
resource; we similarly stipulate the CPU utilization of every
other node on whose CPU utilization the response time in
question (directly or indirectly) depends.

Here θ
(1)
d,c,s is the average time spent using the CPU on

tier t for processing a single request admitted to the entry
tier of the system. A single request admitted to the entry tier
may result in multiple requests submitted to tier t. Therefore,
θ
(1)
d,c,s can be expressed as the product vθ̂

(1)
d,c,s, where v is the

number of visits to tier t induced by an entry tier request,
and θ̂

(1)
d,c,s is the average time spent using the CPU on tier t

per visit to t.
We define the power consumption factor for node s at t

for requests belonging to traffic class 〈d, c〉 as follows:

κd,c,s =
θ
(1)
d,c,sΩs

θ
(0)
d,c,s + θ

(1)
d,c,s + θ

(2)
d,c,s + θ

(3)
d,c,s

(1)

In other words, a request of this type consumes an average
of θ

(1)
d,c,sΩs CPU cycles on node s during an average period

of time equal to θ
(0)
d,c,s + θ

(1)
d,c,s + θ

(2)
d,c,s + θ

(3)
d,c,s. This is easily

extended to encompass parallelism in the processing of a
request at the other tiers: the power consumption factor
remains the quotient of the CPU cycles consumed on s
divided by the time from entry to exit at the first application
tier, provided the tier t processing is all done on s. As always,
we must use the times that obtain when the utilization of
every relevant node is at its configured limit.

The above approach assumes that the average power con-
sumption factors do not vary over time. This assumption
may be too restrictive when the power consumption factor
depends heavily on the data associated with the request.

In our experiments we have used an on-line estimation
technique that recomputes κd,c,s by periodically estimating
θ
(1)
d,c,s, θ

(2)
d,c,s and θ

(3)
d,c,s for the one tier of interest (where θ

(0)
d,c,s

is necessarily 0).
In this paper we use κd,c,s to denote the power consump-

tion factor of requests belonging to traffic class 〈d, c〉 on
server node s, when every relevant node is loaded to the
desired utilization point. We also assume that each node is
dedicated to a single tier.

D. Estimating Power Consumption Factor

A power consumption factor κd,c,s characterizes its traffic
class and the way it is served. When these do not change,
off-line profiling can be used to experimentally determine
the power consumption factors. To track changes, an on-line
technique is needed. We have designed and implemented such
a technique, and used it in the experimental work reported in
this paper. The full details of on-line estimation of power
consumption factors are beyond the scope of this paper.
Following is a brief outline.

We estimate power consumption factors by two stages of
computation. First we estimate work factors, which describe
the total amount of computational work involved in serving
requests, and then we estimate how that work will be spread
out over time. A work factor αd,c,t is the total amount of
computational work on tier t required to serve a request of
traffic class 〈d, c〉. We equate computational work with CPU
usage. In the simplified situation discussed earlier, αd,c,t is
θ
(1)
d,c,sΩs (we presume this product is the same for all servers

s in tier t). We estimate work factors by fitting observations
of request throughput and CPU utilization to a simple linear
model. The model is

ρsΩs =
∑

d,c

αd,c,t(s) λd,c,s (2)

where ρs is the observed CPU utilization fraction of server
s, Ωs is the CPU power of server s, and t(s) is the tier
of server s. Observations of different servers within a tier
may be combined to give more data against which to fit.
Even so, there are challenges concerning noisiness and lack
of throughput diversity in the data.

The second stage of estimating a power consumption factor
is to (a) estimate what the entry-level service time would
be if the CPU utilization of each relevant node were at the
configured limit, and (b) divide the relevant work factor by
that service time (as in equation (1)). The entry-level service
time for a traffic class 〈d, c〉 is the time from (a) entry to
the first application tier (application d) to (b) the response
from that tier. We can observe what those entry-level service
times are, but the CPU utilizations are not necessarily at the
configured limits. We have a technique for estimating the
desired entry-level service times, under the assumption that
only one node’s CPU utilization is relevant. It is based on a



8

simple queuing model that relates CPU utilization to service
times by describing competition for the server’s CPU(s) and
the (presumedly constant) time spent waiting for work to be
done by deeper tiers. We fit observed performance metrics
to the model to extract the values of the model’s parameters.
Then we use the parameterized model to extrapolate the
service times that would obtain if the server’s load were high
enough to cause the prescribed level of CPU utilization.

IV. COMPUTING OPTIMAL SERVER ALLOCATION

In this section we describe the computation that the
resource controller performs in order to find an optimal
set of request concurrency values and scheduling weights.
In Section IV-A we formulate a constrained resource allo-
cation problem to solve for Nd,c,s, the allocated number
of concurrent requests on server s for requests targeting
application d with service class c. The solution technique
is described in Section IV-B, where we use an incremental
algorithm with heuristic bin packing. The utility function,
which expresses the business importance of achieving the
target performance goals, is given in Section IV-C. From
the results of the resource allocation problem (the Nd,c,s

values) we then derive, as shown in Section IV-D, both (a)
the gateway resource allocation parameter values and (b) the
resource requests to drive placement.

A. Problem Formulation
We formulate a constrained resource allocation problem.

The objective of this optimization problem is to equalize the
utility of all traffic classes, as opposed to the more common
objective of maximizing the sum of the utilities. Equalizing
utilities results in fair discrimination among service classes,
and avoids potential starvation of some of the classes, espe-
cially in situations of scarce resources. A utility function Uc

is defined per service class c, since we define service goals
and importance at the service class level. However, the utility
of each traffic class < d, c > appears as an independent term
in the objective function of the optimization problem. Details
of the utility function are described in Section IV-C.

We have two sets of constraints: server capacity and
application placement. For each tier t, let S(t) denote the
set of servers belonging to that tier. We place a constraint
that each of the servers in the set S(t) is not loaded beyond
a desired utilization level ρ̂t, for tier t servers. In other words,
ρ̂t is the maximum allowed utilization of the bottleneck
resource on tier t, and it is a configurable parameter.

The current placement of application instances in tier t is
represented by a placement matrix It defined in Section III-
B.

To solve for the set of Nd,c variables ∀d, c, we introduce
the set of supplementary variables, Nd,c,s, ∀d, c, s, which
represents the concurrency of traffic class < d, c > on server
s. Thus, we formulate the constrained resource allocation
problem as maximizing

min
d,c

Uc(Rd,c(Nd,c)) (3)

subject to

∀t, sεS(t) :
∑

d,c

κd,c,sNd,c,s ≤ ρ̂tΩs (4)

∀t, d, c, s ∈ S(t) : (It
d,s = 0) ⇒ (Nd,c,s = 0)(5)

∀t, d, c :
∑

sεS(t)

Nd,c,s = Nd,c (6)

∀d, c, s : Nd,c,s ≥ 0 (7)

The function Rd,c(Nd,c), or simply Rd,c, gives the pre-
dicted response time of traffic class < d, c > when allocated
a concurrency value Nd,c. Rd,c depends on the definition of
the service goal for class c. Our system allows for average
response time goals, as well as percentile response time goals.
Rd,c is computed by solving a single class queueing model,
as will be detailed in Section V. Ideally, a multi-class model
should be used in which Rd,c is computed as a function of
all the allocations given to all the classes. However, in order
to simplify the problem and make it separable, we assume
that Rd,c depends only on the allocation Nd,c.

The first constraint ensures that the outcome of the re-
source allocation problem respects the capacity and desired
utilization limit of individual servers. The second constraint
is the placement constraint. It enforces the condition of not
allocating any fraction of the resources of a server to traffic
classes the target application of which is not deployed on
that server. Nd,c is the concurrency limit allocated to traffic
class < d, c >. The third constraint limits it by the minimum
allocated concurrency on the bottleneck tier for that traffic
class. The last constraint bounds the solution to be non-
negative.

B. Solution Technique

The optimization problem is a resource allocation prob-
lem with bin packing constraints. We use an incremental
algorithm for the resource allocation problem [26] and a
heuristic approach to satisfy the bin packing constraints.
The incremental algorithm requires the objective function to
be separable and convex. In our case, we treat each traffic
class < d, c > independently, i.e. the response time for a
class is not a function of the allocation of other classes.
Though in practice there are interdependencies, we capture
such interactions among classes indirectly through the values
of service times as described in V. Further, the response time
function Rd,c is nonincreasing and the utility function Uc

is decreasing, hence we satisfy the convexity requirement.
Though more efficient algorithms for the resource allocation
problem exist, we find the incremental algorithm attractive
due to the simplicity of its implementation and the fact that it
lends itself to employing heuristics to satisfy the bin packing



9

constraints. More precisely, let traffic class < d, c > be the
one to receive an additional allocation to Nd,c at an incre-
mental step. We need to choose a server s for the assignment
of this additional allocation. Since the optimization problem
is solved repeatedly at every control cycle, the computation
complexity is a prime concern. Hence, we do not attempt to
find a global optimal solution. Rather we employ a simple
heuristic approach where we use two heuristics in order, and
without backtracking. The first heuristic chooses an available,
non-shared server where class Nd,c is the only class assigned
to it. This postpones sharing to a later point in the incremental
algorithm. The second heuristic chooses an available server
with the largest minimum available allocations to other
classes after assigning class < d, c > to it. This reduces the
possibility of having to switch two or more classes among
servers in order to allow for a future allocation. The results
of using our incremental and heuristic solution technique will
be described in section VI.

Variations to the above optimization problem are possi-
ble [26]. Lower and upper constraints on the allocations
Nd,c are handled using standard techniques. Also, a more
fair allocation may be obtained by solving both the minmax
and maxmin problems, then by identifying a solution that lies
between the two solutions obtained.

C. The Class Utility Function

We use a utility function Uc to encapsulate the business
importance of meeting or failing to meet the performance
goals of class c. The utility function maps the performance
actually experienced by web requests into a real number.
The utility function for service class c is defined using two
parameters: (1) the response time threshold τc, and (2) the
importance zc of that service class. We allow for average as
well as percentile response time thresholds.

If τc represents an average response time goal, the instanta-
neous utility of a traffic class < d, c > experiencing average
response time Rd,c is given by

Uc(Rd,c) =

{ τc−Rd,c

τc
if Rd,c ≤ τc(

τc−Rd,c

τc

)
.
(

100−zc

99

)
if Rd,c ≥ τc.

(8)
The utility value is bounded by one, and is always greater

than or equal to zero as long as the system meets the response
time goal of the traffic class. If the goal is violated, the
utility function yields negative values. In the negative region,
zc scales the magnitude of loss in utility according to the
importance of the service class. A service class with zc = 1
has the highest importance, while a service class with zc = 99
has the lowest importance, as the utility value never goes
below zero even under extreme violation of the response time
goal of the class.

D. Deriving Controller Outputs from Resource Allocations

After solving for the set of Nd,c,s variables ∀d, c, s, the
resource controller maps them to (a) the required gateway
resource allocation parameter values and (b) the resource
requests that may be used to drive dynamic placement. The
required gateway resource allocation parameter values are
the Nd and ωd,c values used by the gateway responsible for
managing the traffic for application d. Nd is the maximum
number of concurrent requests that the server nodes may
execute on behalf of this gateway, and ωd,c is the weighted
round robin scheduling weight for traffic class < d, c >. The
parameter values are computed as follows.

ωd,c =
Nd,c

Ed,c
(9)

Nd =
∑

c

Nd,c (10)

where Ed,c is the average execution time for requests target-
ing traffic class < d, c >.

In other words, the total concurrency limit allocated for a
gateway is the sum of allocated concurrency limits for all
traffic classes belonging to the application served by this
gateway. The scheduling weights are chosen in proportion
to the anticipated request flow rates based on the given
allocations, since λd,c = Nd,c

Ed,c
, from Little’s law.

We chose to enforce a total concurrency limit for each
gateway, and have the traffic classes served by the gateway
proportionally share this limit, as opposed to enforcing a
concurrency limit per traffic class. This is in order to have
a work conserving scheduler that allows for instantaneous
sharing of unused allocated resources, in response to rapid
traffic fluctuations, which may occur within a control cycle
of the resource controller.

The resource request for application d is an amount ζd

of computing capacity to allocate to that application. It is
computed in two steps. The first step simply takes the product
of the concurrency and the power consumption factor for the
application:

ζ̂d = Nd κd (11)

where the power consumption factor for application d is
a weighted average, weighted by throughput, of the power
consumption factors for the various request flows of that
application:

κd =

∑
c,s λd,c,s κd,c,s∑
c,s λd,c,s

. (12)

The second step does smoothing. For each application d, the
controller produces a series of ζ̂d values, one per control
cycle. At each control cycle the current series is reduced
to a weighted average and approximate standard deviation,
using a simple incremental technique. The weights decrease
geometrically with age, which means the new average and
approximate standard deviation can be computed in constant
space (regardless of the length of the series). The resource



10

request ζd is the sum of the average and twice the approxi-
mate standard deviation. The resource requests may be used
by a controller that runs on a significantly slower time scale,
and the resource requests are inflated by an estimate of the
variability to provide some “headroom” over the course of
one of those longer control cycles.

V. PERFORMANCE MODELING

Figure 4 illustrates the closed queueing network used
to model the traffic arriving at a gateway for traffic class
< d, c >. The Md,c clients represent the sources of requests.
Each client goes through a cycle of sending a request, waiting
for the response, and then generating the next request. The
time to generate a request is referred to as the think time,
which is assumed to be generally distributed with mean Zd,c.
Upon arrival to the system, a request is queued in a FCFS
queue in the gateway, identified for traffic class < d, c >.
Once dispatched, a request is served by one of the server
nodes. The execution time of a request is assumed to be
exponentially distributed with mean Ed,c. The number of
servers in the model represents the concurrency limit Nd,c,
hence allowing no more than Nd,c requests to be served
simulateously. The response time includes both the queueing
time in the gateway and the execution time in the server
nodes. The mean response time for traffic class < d, c > is
denoted by Rd,c.

Response time

Rd,c

d,c

Execution

time

Ed,c

Concurrency

Nd,c

Think time

Zd,c

Data

Center

Number of clients 

Md,c

Fig. 4. Closed queueing network model for traffic class < d, c >

This closed queueing network model is also known as the
machine repairmen model, where a set of Md,c machines
breakdown, with mean up time Zd,c, then get repaired by
Nd,c repairmen, with mean repair time Ed,c. A repairman
works on one broken machine at a time. If all repairmen
are busy, broken machines wait to be repaired by the first
available repairman.

We model each traffic class independently using this closed
queueing network model. The interaction among the various

traffic classes, mainly due to competition on resources on the
server nodes, manifests itself in the values of the execution
times Ed,c. Thus, our independence approximation would
work well in steady state, when changes in traffic and
allocation are minimal. Otherwise, the values of Ed,c will
change over a few control cycles, until they reflect the
interaction among the traffic classes.

We use the traffic class queueing model in two ways.
First, we train the model using performance measurements
to estimate the parameters of the model. Second, in the
optimization, we analyze the model to obtain the mean
response time Rd,c as we change the concurrency Nd,c.

A. Model Parameter Estimation

The parameters of each traffic class closed queueing
network model are estimated based on some performance
measurements over a period of time. At a given concur-
rency, Nd,c, we measure the average response time, Rd,c,
throughput, λd,c, and average execution time, Ed,c. Then,
we find estimates for the number of clients, Md,c, and the
average think time between requests, Zd,c, that would yield
a average response time close to the measured value, Rd,c.
One may formulate this problem as an optimization problem,
where the objective function is the absolute error between
the average response time obtained by the model and the
measured average response time, and the variables are (1) the
integer variable Md,c and (2) the continuous variable Zd,c.
Given that the average response time is nondecreasing in the
first variable, Md,c, and decreasing in the second variable,
Zd,c, there may be many values of (Md,c, Zd,c) which would
result in the same measured average response time, Rd,c.
We take the solution with the minimum Md,c that has an
error in an acceptable range. The reason being that it is
more efficient to solve the queueing network with a small
number of clients. Hence, we decrease the solution time of
the resource allocation optimization problem, where we need
to analyze the queueing network model repeatedly.

B. Model Analysis

Given the above modeling assumptions, the closed queue-
ing network has a product form solution, and therefore, it
is straightforward to use the Mean Value Analysis (MVA)
technique to compute the mean response time Rd,c [27].
The mutiserver queue is treated as a single server queue
with state-dependent service rate. Thus, the standard MVA
technique has to be enhanced to recursively compute the
queue length distribution.

Once the (Md,c, Zd,c) parameters are estimated, they are
used, together with the measured Ed,c, to predict the response
time corresponding to a given allocation, Nd,c. The optimizer
repeatedly uses this prediction function, in the incremental
algorithm [26], until an optimal choice of Nd,c ∀d, c is found,
subject to placement and request packing constraints.



11

VI. EXPERIMENTAL RESULTS

In this section, we study the behavior of our platform using
a benchmark application and a synthetic load. We used the
set up describe in Fig. 5 to run our experiments. The set
up uses two applications deployed on a J2EE tier with three
nodes and a database tier with one node.

df212

df211

Trade B-T1

Trade B-T1

App A-T1

Trade A-T1

df209

Client

Client

Client

Proxy

Tier

Application
Tier 1

Application
Tier 2

Trade B-T2

Trade A-T2

eutil37
df200

Fig. 5. Experimental topology

For our application we use Trade6, an IBM WebSphere
end-to-end benchmark and performance sample application.
This benchmark models an online stock brokerage applica-
tion and it provides a real world workload driving server
implementation of J2EE 1.3 and Web Services. We de-
ployed two different flavor of the Trade6 application on our
experiment platform: TradeA and TradeB. TradeA consists
of the Trade6 application configured to use direct JDBC
connections. TradeB consists of Trade6 configured to access
the database through a layer of Enterprise JavaBeans (EJBs).
We used these two different configurations to study the
effects of web requests that bring different resource demands
to the platform.

We also configured the system with two service classes:
gold and bronze and we set an average response time goal
of 350 ms for the gold requests and 1.2 seconds for the
bronze requests. We also configured the gold request with
the hieghest importance level and the bronze requests with
the lowest level. We mapped all the URIs associated with
Trade A onto the gold class and all the URIs associated with
TradeB onto the bronze class.

Service Class Response Time Threshold Importance Application
Gold 350 ms 1 TradeA

Bronze 1,200 ms 99 TradeB

TABLE I
SERVICE CLASSES

For our experiments we used three nodes running the
WebSphere J2EE platform and one node running DB2.
Table II shows the resource configuration and the resource

df209 df211 df212 eutil37
κA 125 MHz 125 MHz 125 MHz 50 MHz
κB 300 MHz 300 MHz 300 MHz 75 MHz
Ω 1,490 MHz 1,490 MHz 1,490 MHz 8,000 MHz

Memory 0.75 GB 1 GB 0.75 GB 2 GB

TABLE II
RESOURCE PARAMETERS

demand of the different classes. We used three machines with
multiple CPUs in the J2EE tier. One of the machines, df211,
has sufficient memory to run two application servers, while
the other two have only enough memory for one application
server. We therefore deployed both TradeA and Trade B
on df211, while deploying only TradeA on df209 and only
TradeB on df212. We used the node named eutil37 to run the
database server. Table II shows that the nodes in the J2EE tier
have similar CPU capacities. The node running the database
server has a larger capacity. The table in Table II shows also
the power consumption factors for the two traffic classes we
used an for each resource (the only bottleneck resource in
our experiments was the node’s CPU). We used a node with
capacity similar to df212 to run the proxy server that fronts
the application tiers. Finally we used a set of machines to
run the cient session emulators.

We investigate four issues over the course of two ex-
periments. The first experiment: (i) demonstrates how the
proposed system protects against server overload situations
by basing resource allocation decisions on power consump-
tion factors and server capacities, (ii) shows how the system
achieves service level differentiation, and (iii) illustrates
how the system respects placement constraints while making
resource allocation decisions. All those is done for a pair
of applications with different demands (power consumption
factors). The second experiment studies the system resilience
to application server placement changes. In both experiments,
we compare results obtained with and without our control
mechanisms.

A. Overload protection

In the first experiment the generated load goes through
two phases; each phase is about 20 minutes long. In the first
phase there are 10 clients for TradeA and 10 for TradeB. In
the second phase there are 40 clients for TradeA and 20 for
TradeB.

Figure 6 illustrates the number of requests permitted by
the proxy to execute concurrently. We note that during the
first phase, where the number of emulated sessions of TradeA
and TradeB are equal, the concurrency of TradeB is slightly
higher than that of tradeA. While during the second phase,
where the number of emulated sessions of TradeA is double
that of TradeB, the concurrency of TradeB remained the same
at less than half the concurrency of tradeA. The rest of the
TradeB sessions are made to wait in the proxy queue, as



12

 0

 5

 10

 15

 20

20:40 20:50 21:00 21:10 21:20 21:30 21:40 21:50

A
B

Fig. 6. Experiment 1, number of requests concurrently executing

 0

 2

 4

 6

 8

 10

 12

 14

20:40 20:50 21:00 21:10 21:20 21:30 21:40 21:50

A
B

Fig. 7. Experiment 1 - Average queue length

Figure 7 shows. This is due to the fact that κA is about half
of κB . This is more evident when we observe that the CPU
utilization levels in the two phases are almost equal, as shown
in Figure 8. Thus, taking power consumption factors into
account while making resource allocation decisions enabled
us to prevent server overload in phase two of the experiment.

In phase two of the experiment, where the total offered
load is above the system capacity, queueing takes place. Fig-
ures 9 and 10 show the average response time and throughput,
respectively. Since the service goal for TradeA traffic is
tighter than that for TradeB traffic, and its importance is much
higher than TradeB, the system differentiates accordingly,
favoring TradeA over TradeB traffic, as expected.

Figure 11 illustrates the concurrent requests executing on
each server, for each of the two applications. As can be easily
observed from the figure, TradeA requests always executed
on servers df211 and df209, while TradeB requests always
executed on df211 and df212. df211 was the only shared
node, and its capacity was divided among the two traffic
classes by the resource controller. At all times, the placement
constraints were respected.

As more of the CPU power of server df211 is shifted from
TradeB to TradeA, in the second phase of the experiment, we

 0

 20

 40

 60

 80

 100

 120

20:40 20:50 21:00 21:10 21:20 21:30 21:40 21:50

df209
df211
df212

Fig. 8. Experiment 1 - CPU Utilization

 0

 200

 400

 600

 800

 1000

 1200

 1400

20:40 20:50 21:00 21:10 21:20 21:30 21:40 21:50

A
B

Fig. 9. Experiment 1 - Average response time

can see that the concurrency of TradeB on df211 decreases
by about three sessions, while that of TradeA rises by about
six sessions. This is because the power consumption factor of
TradeB requests is about double that of TradeA requests, as
previously mentioned. This emphasizes that the heterogeneity
in power consumption factors of different request types is
respected while making resource allocation decisions, and
shifting resources from one traffic class to another.

The goal of our controller is to equalize the utility val-
ues of the various traffic classes, independent of offered
load, application placement, and available capacity. This is
apparent from Figure 12 where we see that both TradeA
and TradeB had similar high utility values during phase
one, while they both had similar lower utility values during
phase two. Without a controller, the utility values would have
been as illustrated in Figure 13, where the utility values
of TradeA goes negative (i.e. missed target) while TradeB
receives high utility values. The average response time for
TradeA and TradeB in the uncontrolled case is illustrated in
Figure 14. Note that TradeA missed its target of 350 msec
during phase two, while TradeB was well below its target of
1,200 msec. In contrast, using our controller and as shown



13

 0

 20

 40

 60

 80

 100

 120

20:40 20:50 21:00 21:10 21:20 21:30 21:40 21:50

A
B

Fig. 10. Experiment 1 - Throughput

 0

 2

 4

 6

 8

 10

 12

 14

20:40 20:50 21:00 21:10 21:20 21:30 21:40 21:50

A/df209
A/df211
B/df211
B/df212

Fig. 11. Experiment 1 - Number of requests concurrently executing at each
server node

in Figure 9, the average response time for both TradeA and
TradeB were slightly below target during the second phase
of the experiment.

B. Resilience to placement changes

In this experiment, we start with the same placement of
applications nodes as in the first experiment. However, after
15 minutes from the beginning of the experiment we emulate
a server failure scenario by bringing one node (df209) down,
and we observe how the system reacts to this bottleneck.
After another 15 minutes, we bring node df209 back up,
with only TradeA placed on it. We repeat the same scenario
for an uncontrolled system (resource controller disabled) and
compare the results of the 2 cases.

Figures 15 (a) and (b) show the number of requests
that concurrently execute on backend servers in the case
of the controlled and uncontrolled system, respectively. In
the uncontrolled case, the number of executing requests is
a function of service time, and increases as service time
does. The controlled system reduces the number of executing
requests by queuing them as shown in Figure 16. At 23:58

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

20:40 20:50 21:00 21:10 21:20 21:30 21:40 21:50

A
B

Fig. 12. Utility per flow, with control

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

11:58 11:59 12:00 12:01 12:02 12:03 12:04 12:05

A
B

Fig. 13. Utility per flow, without control

and 8:02 in the controlled and uncontrolled cases, respec-
tively, we stop server on node df209. The controlled system
reacts to the decreased capacity by increasing the rate of
queuing for both flows. In the uncontrolled system, service
time significantly increases due to system overload, hence the
number of requests in the system also increases. At 00:13 and
8:17 in the controlled and uncontrolled cases, respectively,
we restart df209, which causes the concurrency and queue
length to return to the values seen in the first phase of the
experiment.

In Figures 17 (a)–(f), we compare the performance of the
managed flows in the controlled and uncontrolled systems
side by side. Figures 17 (a) and (b) show throughput of
TradeA and TradeB. We see that, in the uncontrolled case,
the throughput of the high importance traffic (TradeA) drops
by as much as 70% when the server is brought down. In
the controlled case, the impact of server failure is reduced to
about 50%. At the same time, the throughput of TradeB class
is only slightly lower in the controlled case. Furthermore,
in the uncontrolled case (Figure 17 (d)), TradeA experiences
response time which is much above its goal of 350 ms, while
in the controlled case, it almost always stays below this target



14

 0

 5

 10

 15

 20

00:1500:0023:45

A
B

 0

 5

 10

 15

 20

08:1508:00

A
B

(a) Controlled (b) Uncontrolled
Fig. 15. Experiment 2 - Number of concurrently executing requests

 0

 100

 200

 300

 400

 500

 600

 700

 800

11:58 11:59 12:00 12:01 12:02 12:03 12:04 12:05

A
B

Fig. 14. Experiment 1 - Average response time, without control

(Figure 17 (c)). While the server is down, the performance
of TradeB is worse in the controlled case compared to the
uncontrolled case, as the response time goal of TradeB is
much higher. Nevertheless, even TradeB always stays below
or near its response time goal.

Recall, that the objective of our system is to equalize
utilities among flows. In Figures 17 (e) and (f), we show that
in the controlled case, we indeed manage to keep the values
of the objective functions for TradeA and TradeB closer to
each other as is the case in the uncontrolled system. Observe,
that in the controlled case, the values of both utility functions
are above 0, indicating both flows meet their performance
goals. In the uncontrolled case, the lower importance class
receives better performance at the expense of the higher
importance class.

VII. CONCLUSIONS

We have presented the architecture and underlying model
of a performance management system for multi-tiered web
applications deployed on clustered web servers. The man-
agement system is transparent and allocates server resources

 0

 2

 4

 6

 8

 10

 12

00:1500:0023:45

A
B

Fig. 16. Experiment 2 - Number of requests queued in the controlled
system case

dynamically in order to optimize the expected value of a
system-wide utility function. The resource allocation prob-
lem is constrained by application placement constraints, and
accounts for heterogeneity in server processing powers. The
performance management system also computes resource
requests that may be used to drive a dynamic placement
management system.

The architecture features gateways that implement local
request queueing and scheduling mechanisms. A resource
controller solves the optimization problem and tunes the
parameters of the scheduling mechanisms. In this study, we
have used a closed queuing network model to predict the
response time of requests for different resource allocations.

We use the notion of power consumption factors per tier in
order to allocate resources in a way that does not overload any
server, beyond a desired utilization level. Server capacities
and power consumption factors are expressed in the same
units. Thus, the resource controller can address server ca-
pacity constraints while packing requests in a uniform way,
which is independent of the nature of the bottleneck resource



15

 0

 10

 20

 30

 40

 50

 60

 70

00:1500:0023:45

A
B

 0

 10

 20

 30

 40

 50

 60

 70

08:1508:00

A
B

Throughput
(a) Controlled (b) Uncontrolled

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

00:1500:0023:45

A
B

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

08:1508:00

A
B

Response time
(c) Controlled (d) Uncontrolled

-1

-0.5

 0

 0.5

 1

00:1500:0023:45

A
B

-1

-0.5

 0

 0.5

 1

08:1508:00

A
B

Utility
(e) Controlled (f) Uncontrolled

Fig. 17. Experiment 2 - Comparing a controlled system to an uncontrolled one

at each tier.
Experimental results, using a full implementation of the

proposed management system, showed that the control sys-
tem converges quickly without significant oscillations, yield-
ing service level differentiation and server overload protec-
tion based on set service goals and fluctuating offered loads.

REFERENCES

[1] H. Chen and P. Mohapatra, “Session-based overload control in QoS-
aware web servers,” in Proceedings of the IEEE INFOCOM, (New
York, NY), June 2002.

[2] J. Carlström and R. Rom, “Application-aware admission control and
scheduling in web servers,” in Proceedings of the IEEE INFOCOM,
(New York, NY), June 2002.



16

[3] M. Welsh and D. Culler, “Adaptive overload control for busy internet
servers,” in Proceedings of the 4th USENIX Conference on Internet
Technologies and Systems (USITS03), March 2003.

[4] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar,
S. Krishnakumar, D. Pazel, J. Pershing, and B. Rochwerger, “Oceano
SLA based management of a computing utility,” in Proceedings of the
International Symposium on Integrated Network Management, (Seattle,
WA), pp. 14–18, May 2001.

[5] H. Zhu, H. Tang, and T. Yang, “Demand-driven service differentiation
in cluster-based network servers,” in Proceedings of the IEEE INFO-
COM, (Anchorage, AL), April 2001.

[6] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and
A. Youssef, “Performance management for cluster based web services,”
in Proceedings of the IFIP/IEEE International Symposium on Inte-
grated Network Management, (Colorado Springs, Colorado), March
2003.

[7] T. Abdelzaher, K. Shin, and N. Bhatti, “Performance guarantees
for web server end-systems: A control-theoretical approach,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, January
2002.

[8] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury,
“Using MIMO feedback control to enforce policies for interrelated
metrics with application to the Apache web server,” in Network
Operation and Management Symposium, (Florence, Italy), pp. 219–
234, April 2002.

[9] G. Lodi and F. Panzieri, “Qos-aware application server: preliminary
design and implementation report,” CTR technical report, University
of Bologna, Italy, September 2004.

[10] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle, “Managing
energy and server resources in hosting centers,” in Proceedings of
the ACM Symposium on Operating System Principles, (Chateau Lake
Louise, Banff, Canada), pp. 103–116, October 2001.

[11] D. Ardagna and L. Zhang, “SLA based profit optimization in auto-
nomic computing systems,” in International Conference On Service
Oriented Computing, (New York, NY), pp. 173 – 182, November 2004.

[12] G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef, “Performance
management for web services,” IBM Research Technical Report
RC22676, IBM T.J. Watson Research Center, Yorktown Heights, NY,
August 2002.

[13] D. Schmidt, “Middleware for real-time and embedded systems,” Com-
munications of the ACM, vol. 45, June 2002.

[14] B. Urgaonkar and P. Shenoy, “Cataclysm: Policing extreme overloads
in internet applications,” in Proceedings of the International World
Wide Web Conference, (Chiba, Japan), pp. 740 – 749, May 2005.

[15] M. Welsh and D. Culler, “Overload management as a fundamental
service design primitive,” in Proceedings of the 10th ACM SIGOPS
European Workshop, (Saint-Emilion, France), September 2002.

[16] M. Welsh, D. Culler, and E. Brewer, “Seda: An arcitecture for well-
contained, scalable internet services,” in Proceedings of the 18th ACM
Symposium on Operating Systems Principles, (Banff, Canada), October
2001.

[17] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra, “Kernel mechanisms
for service differentiation in overloaded web servers,” in In Proceed-
ings of the USENIX Annual Technical Conference, (Boston, MA), June
2001.

[18] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal, “Size-
based scheduling to improve web performance,” ACM Transactions on
Computer Systems, vol. 21, pp. 207–233, May 2003.

[19] B. Schroeder and M. Harchol-Balter, “Web servers under overload:
How scheduling can help,” in Proceedings of 18th International
Teletraffic Congress, (Berlin, Germany), September 2003.

[20] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster reserves: A
mechanism for resource management in cluster-based network servers,”
in ACM Sigmetrics, (Santa Clara, CA), June 2000.

[21] G. Banga, J. Mogul, and P. Druschel, “Resource containers: A new
facility for resource management in server systems,” in Proceedings
of the Symposium on Operating Systems Design and Implementation,
(New Orleans, LA), February 1999.

[22] T. Zhao and V. Karamcheti, “Enforcing resource sharing agreements
among distributed server clusters,” in Proceedings International Par-

allel and Distributed Processing Symposium, (Ft. Lauderdale, FL),
pp. 501–510, April 2002.

[23] S. Low and D. Lapsley, “Optimization flow control I: basic algorithm
and convergence,” IEEE/ACM Transactions on Networking, vol. 7,
December 1999.

[24] P. Marbach, “Priority service and max-min fairness,” in Proceedings
of the IEEE INFOCOM, (New York, NY), June 2002.

[25] S. Microsystems, Java Messaging Service API.
http://java.sun.com/products/jms/.

[26] T. Ibraki and N. Katoh, Resource Allocation Problems. Massachusetts
Institute of Technology, 1988.

[27] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,
Quantitative System Performance. Prentice–Hall, 1984.


