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ABSTRACT 

In this paper, we propose a semantic routing and filtering 

framework for large-scale monitoring of video streams. Our 

goal is to build a distributed system that at any given time is 

capable of simultaneously monitoring the content of 

multiple video streams being transmitted over the Internet 

(or a proprietary network). A key design requirement of 

such a system is the ability to handle tens of gigabytes of 

multimedia data per second.  Traditional techniques have an 

important limitation. Once a bottleneck in terms of CPU or 

storage is reached, data is dropped indiscriminately.. In this 

paper, we propose distributed real-time semantic filters to 

route and filter video data. We propose a mechanism to 

alter the accuracy of classification with the complexity of 

execution; thus avoiding system failure during periods of 

overload. We propose a set of novel video features that 

perform better than our previous semantic classifiers. This 

system is capable of classifying over a hundred concepts. 

Experiments on 190 hours of pre-stored and live video 

streams validate the effectiveness of the proposed system. 

1. INTRODUCTION 

Monitoring user-interested information from large-

scale video streams is a challenging problem. For instance, 

an intelligence agent may need to monitor foreign country 

military or political activities from hundreds of live 

broadcasting video channels. An administrator of video 

sensor system may needs to monitor the activities of 

hundreds of video cameras mounted on cars or soldiers and 

understand the context environment of them. Multimedia 

entertainment industry may want to monitor Internet traffics 

to know whether their movies are illegally distributed 

through the Internet. To achieve the above mentioned goals, 

a system needs to process large amount of data, 

understand/classify their semantic content meanings (e.g., 

what kind of scenes is the soldier looking, what type of 

videos is being played through an Internet source, where a 

foreign broadcasting news is mentioning the activities of 

their leader, etc.) in real-time, and route the interested 

information (e.g., videos) to the agent or the field 

commander for intelligence analysis or decision making. In 

these scenarios, the targeted video contents may range in a 

scale of tens of gigabits per second, and the system has to 

be able to conduct semantic classification on these video 

streams in real-time. Unfortunately, to the best of our 

knowledge, no existing system can achieve such a task. The 

major challenges reside in the needs for (1) the bandwidth 

of streaming videos for routing multimedia data to the 

classifiers and (2) the real-time requirement for semantic 

detection. In these application cases, traditional indexing 

and semantic concept detection techniques developed for 

databases usually cannot be easily extended for the dynamic 

nature of streams. Recently, real-time stream information 

classification is also getting more attention on other 

modalities (such as email activities, chat room monitoring, 

VoIP monitoring, etc.) because of its inherited challenges 

on the speed of classification, routing of information, etc. 

Traditional approaches usually rely on the storage-and-

process analyses. However, these techniques have their own 

limitations. Once the data amount or CPU/power/memory 

reaches a certain threshold, these systems tend to break 

down entirely. Therefore, the challenge here will be: how 

can a system route or filter transmission video packets 

based on the semantic contents in a speed much faster 

enough and flexible under various resource constraints? In 

[1], Madden et. al. use the semantic routing tree to route 

signal-level information on a resource-constrained sensor 

network. Routing is based on the signal properties and pre-

defined decision trees. Comparing with [1], multimedia 

streaming data is more difficult to route/filter and detect 

concepts. Even in the raw video data domain without any 

resource constraint, video semantics detection is still an 

open issue [2].  

The scope of this paper is to provide an overview of a 

novel semantic filtering and routing system that can be 

applied to large-scale content monitoring. Because of the 

page limit, we will have to leave algorithmic details to 

future reports. In this paper, we show a semantic filtering 

system that reduces the amount of transmission loads or 

routing video content packets based on semantic detection. 

We propose to use the complexity-accuracy curves to 

dynamically change the operating point so as to 

accommodate for the possibly varying amount of incoming 
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Figure 1: System Diagrams of Semantic Filtering on Distributed Systems 

data and/or processing resources. We also utilize a set of 

novel video features that results in better performance. 

Experiments validate the effectiveness of the proposed 

system.  

This paper is organized as follows. In Section 2, we 

introduce our system architecture. In Section 3, we describe 

a novel feature set and a technique to configure classifiers 

for resource-constrained environments. Experiments are 

shown in Section 4. Section 5 concludes this work.  

2. SYSTEM ARCHITECTURE 

As shown in Figure 1, a new video semantic filtering 

system is implemented based on the novel CDS real-time 

classifiers. In this system, the feature extraction Processing 

Elements (PEs) and the display module do not need to 

reside on the same machine. This system handles TV 

broadcasts, VCR, DVD discs, video file databases, and 

webcam inputs. Our middleware extracts the shot-based 

features and sends those features to a server machine which 

implements one hundred concept detectors. A control 

module is used to match the user interests with the 

confidence output of the semantic model vectors. Then, the 

similarity values are stored as metadata and sent back to the 

display module to filter the content.  

A PE is an independent executable thread which has 

specific ports for input and output streams. Thus, PEs can 

be distributed in different machines. In this system, we 

placed the GOP, feature extraction and shot segmentation 

functions on the client machine, which resides in a smart 

camera or an edge router in the network. There can be tens 

of such distributed (and parallel) clients sending feature 

packets to the distributed server classifiers. For each shot, a 

CDS feature packet, which is less than 1.4K bits is sent to a 

server router which multicasts these feature packets to the 

classifier PEs. Because the feature rate is less than 2.8 

Kbps, the transmission load is only 56 kbps if the server 

PEs need to classify 200 video streams simultaneously. In 

our experiments, even if all classifier PEs are placed in one 

machine, a regular Pentium 2.4 GHz with 1GB RAM server 

can deal with 40 concurrent incoming streams in real-time 

with one hundred concept detectors. 

3. REAL-TIME VIDEO SEMANTIC FILTER 

3.1 Compressed-Domain Slice Features 

In this paper, we propose a new feature set that results 

in better accuracy of concept classifiers with a shorter 

extraction time, comparing to the work in [2] and [3]. The 

reduction in computational load is significant: for a typical 

320x240 MPEG-1 video stream, a decoder needs about 2 

million multiplications to decode an I-frame. Also, the 

algorithms in [2, 3] require complex region/object 

segmentation and compute 12 sets of features. Feature 

selection of previous system was about 3 times slower than 

real-time, which was the bottleneck for real-time large-scale 

implementations. 

We denote this new set of features as Compressed-

Domain Slice (CDS) features. This feature set is extracted 

as follows: 

1. Parse the MPEG-1/2 packets and get the beginning 

of an I-frame or the closest I-frame of a pre-specified 

shot keyframe. 

2. Using the VLC maps to map variable-length codes to 

the DCT-domain coefficients. 

3. Within am MPEG slice or a union of slices, truncate 

selected DCT coefficients and calculate the 

histogram of these DCT coefficients. 

4. Form a feature vector of the frame based on the 
histogram coefficients with multiple slices. 

In the above procedure, we can see that no 

multiplication operation is required to get these feature 

vectors. Only addition is needed for getting the histogram. 

In a typical situation, we partition a frame into three slices, 

and use the histograms from 3 DCT coefficients (1 DC and 

2 lowest frequency AC coefficients) on each color plane Y, 

Cb and Cr. This forms a 576-dimensional feature vector. As 

in [2], we use SVM to train models and classification. In 

our experience, we notice that fusion of different sets of 



features (color, edge, motion, texture) is an open issue, 

which is also application-dependent. Complicated (feature 

or classifier) fusion does not necessary lead to better results 

[2]. These CDS features can be considered as an early-

fusion method for classification.  

3.2 Complexity-Accuracy Curves 

Our goal is to find out whether specific types of classifiers 

can perform relatively well under all kinds of resource 

constraints, because many classification systems may not be 

able to do so. Suppose we are given training 

data ( ) ( ) ( ){ }1 1 2 2, , , , , ,N Nx y x y x y… , where 
ix ∈X  denotes the 

input patterns, and { 1,1}
i
y ∈ − denotes the binary labels. 

The goal for a supervised classifier is to find a function 

( )f x that has at most ε deviation from 
iy for all the training 

data, and is as flat as possible. In the training stage, if using 

SVM, the models can be built based on different kernel 

functions and cost ratios of error margin on positive and 

negative examples. The SVM classifier is the functional of: 

 

 (1) 

 

where S is the number of support vectors, k(.,.) is a kernel 

function, e.g., the Gaussian kernel , 

 

 (2) 

and ai’s are the weightings of SVs and b is a constant 

threshold value. The goal of SVM is to find a hyperplane 

which best separates training examples with the minimum 

cost. The kernel function can be considered as a distance 

function between unknown vectors and SVs.  

In the distributed system with independent PEs, we 

require PEs to be able to switch among various operating 

points with little overhead. One solution is to generate 

embedded classifiers. For different operating points, the 

lower complexity classifiers are subsets of high complexity 

classifiers w/o a few parameters’ updates. For instance, 

from (1) and (2), we know that the complexity of SVM-

based classifiers depends on the kernel, the feature 

dimensions and the number of support vectors. Regardless 

of the storage and I/O access requirements, if we consider 

the complexity c as the number of operations 

(multiplications, additions) required for classification, then 

the resource needed for such computation is: 

 (3) 

where D is the dimensionality of the feature vector, and S is 

the number of support vectors. The Processing Element 

(PE) achieves various operating points of the C-A curve by 

controlling the number of features to extract and the 

number of support vectors by setting unneeded SVs to zero. 

In our system, we assume models were only trained once 

without resource constraint consideration or models may be 

provided by third-party provider. Thus, the system can only 

generate these CA curves based on existing classifiers. We 

used four methods to determine these curves: selecting n 

SVs with n max ai, |ai|, randomly select, or clustering on 

SVs. The first three are embedded classifiers, while the 

fourth method is not. Operation points are determined by 

off-line training using a validation set.  

If training samples are available, the system may use 

other methods, e.g., ν-SVM [4] with pre-determined 

thresholds on SVs and error margin. However, this shall 

cause additional system I/O load while switching between 

different operating points.  
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Fig. 3: Complexity-Accuracy curve on the feature vector 

dimension parameter of the “Weather_News” filter at CV set.  
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Fig. 4: Complexity-Accuracy curve on changing the number of 

support vectors of the “Weather_News” filter at the CV test set.  

4. EXPERIMENTAL RESULTS 

We mention the speed and the scalability of the system 

in Section 2. In Section 4, we demonstrate the accuracy of 

our semantic filtering classifiers and the adaptability of 

them. We used the NIST TRECVID 2003 corpus. In our 

experiments, we use the 62 hours of development set, 

which has been manually annotated with 133 audio and 

video concepts [5]. This set was divided into four parts: CR  

(38 hrs), CV (6 hr), CF1 (6 hr) and CF2 (12hr). As in [2], 

we train our visual models using the CR set, and select the 

modeling parameters using the CV set. The models are then 

tested on the unseen CF1 and CF2 sets. Note that the 

manual annotation of CF1 and CF2 sets is only used for 

measuring the system performance. We use the Average 

Precision (AP) value, which is the integral area under the 

precision-recall curve to measure the accuracy. AP is 

usually used by NIST to provide a single-value metric of 

the P-R curve. Mean Average Precision (MAP) is used by 

averaging the AP values of a system across all testing 

concepts [2] to compare the performance of systems.  

The 576-dimensional CDS feature vectors of the 

28,055 keyframes in the CR set were used for training. 

Each visual concept is trained independently. Positive 

examples of a training set were selected, if a shot is 

annotated with this label or any children label in the 

hierarchical semantic tree [5]. All other shots are 

considered as negative. The negative examples are sub-

sampled by a constraint of maximum negative-positive ratio 

of 5:1. For each concept, 9 models of a hybrid of 3 different 

kernels (linear, polynomial, and Gaussian) and 3 cost 

functions (1, 10, and 100) are trained. A demo is at 

http://www.research.ibm.com/VideoDIG.  

A performance comparison between the new models 

and the IBM 2003 visual concept models is shown in Figure 

2. The IBM visual concept models were fused with the 

speech-based detectors to form the IBM multi-modality 

detectors that performed best in the TRECVID 2003 [2]. In 

2003, 42 visual models were internally extensively 

evaluated using the CF2 set, with an MAP of 0.1404. The 

MAP of the corresponding 42 models based on the new 

CDS features is 0.1705, which is 21.48% better. If we only 

consider the 13 visual detectors specified by NIST, the gain 

of MAP values is 23.6% (0.2091 v.s. 0.1692).  

In Figures 3 and 4, we show the accuracy and 

complexity curve of some preliminary experiments. In both 

cases, classifiers are all embedded, thus, only simple 

coefficient masking is used in the run-time system 

operations. In Figure 3, we show that if we reduce the 

dimensionality of feature vectors, the AP of classifier 

varies. For instance, if the system operates at 22% of the 

original resources (in terms of time and storage), then it can 

achieve an AP of 0.658, which is 83% of the best accuracy. 

For each complexity value, there may be several accuracy 

points available due to different feature dimension 

reduction techniques. E.g., in the above case, the operating 

point was selected with the feature values from all 3 slices, 

1 set of color histograms (i.e., gray-level) and 2 sets of 

textures (i.e., 1 DC histogram and 1 AC histogram). 

In Figure 4, we show an example of the accuracy-

complexity curve based on the reduction of number of SVs. 

This model has 440 SVs. We see that, with 50% of the SVs, 

the classifier achieves 86.6% of the original accuracy. 

Similarly, there could be several operating points for each 

reduction ratio.  

5. CONCLUSIONS 

In this paper, we proposed a novel semantic 

routing/filtering system for large-scale video monitoring 

and reducing the amount of transmission loads. We also 

showed a set of novel visual features, which results in 

significant gains in both speed and accuracy. Complexity-

accuracy curves for optimally choosing operating points are 

used. We shall investigate more effective multi-modal 

features and develop algorithms for user-profile 

management, graph management and planning issues.  
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