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Abstract

We address the problem of active diagnosis on
a Bayesian network using most-informative test
selection. Finding an optimal subset of tests in
this setting is intractable in general. We show
that it is difficult even to compute the next most-
informative test using greedy test selection, as it
involves several entropy terms whose exact com-
putation is intractable. We propose an approxi-
mate approach that utilizes the loopy belief prop-
agation infrastructure to simultaneously compute
approximations of marginal and conditional en-
tropies on multiple subsets of nodes. We apply
our method to fault diagnosis in computer net-
works, and demonstrate promising empirical re-
sults on realistic Internet-like topologies.

1 Introduction

The problem of fault diagnosis appears in many places un-
der various guises. Examples include medical diagnosis,
computer system troubleshooting, decoding messages sent
through a noisy channel, etc. In recent years, diagnosis
has often been formulated as an inference problem on a
Bayesian network, with the goal of assigning most likely
states to unobserved nodes based on outcome of certain
“test” nodes.

An important issue in diagnosis is the trade-off between
the cost of performing tests and the achieved accuracy of
diagnosis. It is often too expensive or even impossible to
perform all tests. In this paper, we concentrate on the prob-
lem of active diagnosis, in which tests are selected sequen-
tially to minimize the cost of testing. We use entropy as
the cost function and select a set of tests providing maxi-
mum information, or minimum conditional entropy, about
the unknown variables.

However, exact computation of conditional entropies in a
general Bayesian network can be intractable. While much

existing research has addressed the problem of efficient and
accurate probabilistic inference, other probabilistic quan-
tities, such as conditional entropy and information gain,
have not received nearly as much attention. There is a
vast amount of literature on value of information and most-
informative test selection [8, 3, 7, 15], but none of the pre-
vious work appears to focus on the computational complex-
ity of most-informative test selection in a general Bayesian
network setting.

We propose an approximation algorithm for computing
marginal conditional entropy. The algorithm is based on
loopy belief propagation, a successful approximate infer-
ence method. We illustrate the algorithm at work in the set-
ting of fault diagnosis for distributed computer networks,
and demonstrate promising empirical results. We also ap-
ply existing theoretical results on the optimality of certain
greedy algorithms to our test selection problem, and ana-
lyze the effect of approximation error on the expected cost
of active diagnosis. Our method is general enough to apply
to other applications of Bayesian networks that require the
computation of information gain and conditional entropies
of subsets of nodes. In our application, it can efficiently
compute the information gain for all candidate tests simul-
taneously.

The paper is structured as follows. Section 2 introduces
necessary background and definitions. In section 3, we
describe the general problem of active diagnosis and the
emerging computational complexity issue. We propose a
solution to this problem in section 4. Section 5 discusses
an application of our approach in the context of distributed
computer system diagnosis, while section 6 presents em-
pirical results. We survey related work in section 7, and
conclude in section 8.

2 Background and Definitions

Let X = {X1,X2, . . . , XN} denote a set of N discrete ran-
dom variables and x a possible realization of X. A Bayesian
network is a directed acyclic graph (DAG) G with nodes
corresponding to X1,X2, . . . , Xn and edges representing



direct dependencies [14]. The dependencies are quantified
by associating each node Xi with a local conditional prob-
ability distribution P (xi|pai), where pai is an assignment
to the parents of Xi (nodes pointing to Xi in the Bayesian
network). The set of nodes {xi,pai} is called a family.
The joint probability distribution (PDF) over X is given as
product

P (x) =
n∏

i=1

P (xi|pai). (1)

We use E ⊆ X to denote a possibly empty set of evidence
nodes for which observation is available.

For convenience of presentation, we will also use the termi-
nology of factor graphs[5], which unifies the directed and
the undirected graphical representations of joint probabil-
ity distributions. A factor graph is an undirected bipartite
graph that contains factor nodes (usually shown as squares)
and variable nodes (shown as circles). (See Fig. 1 for an
example.) There is an edge between a variable node and
a factor node if and only if the variable participates in the
potential function for the corresponding factor. The joint
distribution is assumed to be written in a factored form

P (x) =
1
Z

∏

a

fa(xa), (2)

where Z is the normalization constant called the partition
function, and the index a ranges over all factors fa(xa),
defined on the corresponding subsets Xa of X.

The computation complexity of many probabilistic infer-
ence problems can be related to graphical properties. Exact
inference algorithms require time and space exponential in
the treewidth[14] of the graph, which is defined to be the
size of the largest clique induced by inference, and can be
as large as the size of the graph. Many common proba-
bilistic inference problems are NP-complete [1]. This in-
cludes our problem of probabilistic diagnosis, which can be
formulated as a Maximum A posteriori Probability (MAP)
problem: given a set of observations (test outcomes), find
the most likely states of unobserved variables.

Although probabilistic inference can be intractable in gen-
eral, there exists a simple linear-time approximate infer-
ence algorithm known as belief propagation (BP) [14]. BP
is provably correct on polytrees (i.e. Bayesian networks
with no undirected cycles), and can be used as an approx-
imation on general networks. Belief propagation passes
probabilistic messages between the nodes and can be it-
erated until convergence. Convergence is guaranteed only
for polytrees; otherwise BP is said to diverge.

Let a denote a factor node and i one of its variable nodes.
Let N(a) represent the neighbors of a, i.e., the set of vari-
able nodes connected to that factor. Let N(i) denote the
neighbors of i, i.e., the set of factor nodes to which vari-
able node i belongs. The BP message from node i to factor

a is defined as [10]:

ni→a(xi) :=
∏

c∈N(i)\a

mc→i(xi), (3)

and the message from factor a to node i is define as

ma→i(xi) :=
∑

xa\xi

fa(xa)
∏

j∈N(a)\i

nj→a(xj). (4)

Based on these messages, we can compute the beliefs about
each node and about the probability potential for each fac-
tor, respectively:

bi(xi) ∝
∏

a∈N(i)

ma→i(xi) (5)

ba(xa) ∝ fa(xa)
∏

i∈N(a)

ni→a(xi). (6)

Observations are incorporated into the process via δ-
functions as local potentials for each node in E. When that
is done, bi(xi) becomes the approximation of the posterior
probability P (xi|e).

3 The Active Test Selection Problem

In many diagnosis problems, the user has an opportunity
to actively select tests in order to improve the accuracy of
diagnosis. For example, in medical diagnosis, doctors face
the experiment design problem of choosing which medical
tests to perform next.

Let S = {S1, S2, . . . , SN} denote a set of unobserved
random variables we wish to diagnose, and let T =
{T1, T2, . . . , TM} denote the available set of tests. Our
objective is to maximize diagnostic quality while mini-
mizing the cost of testing. The diagnostic quality of a
subset of tests T∗ can be measured by the amount of un-
certainty about S that remains after observing T∗. From
the information-theoretic perspective, this can be measured
by the conditional entropy H(S|T∗). Clearly, H(S|T) ≤
H(S|T∗) for all T∗ ⊆ T. Thus the problem is to find
T∗ ⊆ T which minimizes both H(S|T∗) and the cost of
testing. In the case of equally costly tests, this is equivalent
to minimizing the number of tests. This problem is known
to be NP-hard [?]. However, a simple greedy approach is
to choose the next test to be T ∗ = arg minT H(S|T, T′),
where T′ is the currently selected test set. We give a the-
oretical anlysis of performances bounds of this greedy ap-
proach in the Appendix section. Our current and previous
empirical results [9][12] show that the approach also works
well in practice.

We make a distinction between off-line test selection and
online test selection. In the latter case, previous test out-
comes are available when selecting the next test. We will



focus on the online approach, sometimes called active di-
agnosis, which is typically much more efficient in practice
than its off-line version [?].

Active Test Selection Problem: given the observed out-
come t′ of previously selected sequence of tests T′, se-
lect the the next test T to be arg minT H(S|T, t′) , where
H(S|T, t′) is the conditional marginal entropy.

The joint entropy H(X, T) can be decomposed into sum of
entropies over the families in a Bayesian networks and thus
can be easily computed using only the input CPT specifica-
tion. Conditional marginal entropies, on the other hand, do
not generally have this property: although under certain in-
dependence conditions they decompose into functions over
the families, computing those functions will require an in-
ference. (See Appendix for proofs.)

Lemma 1. Given a Bayesian network representing a joint
PDF P (X), the joint entropy H(X) can be decomposed
into the sum of entropies over the families: H(X) =∑n

i=1 H(Xi|Pai).
Lemma 2. Given a Bayesian network representing a joint
PDF P (S, T), where ∀i : pa(Ti) ⊆ S (i.e. tests Ti and
Tj are independent given a subset of S), the observation
T′ = t′ of previously selected test set T′, and a candidate
test T , the conditional marginal entropy H(S|T, t′) can be
written as

H(S|T, t′) = −
∑

t,spa(T )

P (spa(T ), t|t′) log P (t|spa(T )) (7)

+
∑

t

P (t|t′) log P (t|t′) + const, (8)

where const is a constant expression.

As the proof of Lemma 3 demonstrates (see Appendix), the
conditional test independence requirement above is indeed
necessary for decomposing the conditional entropy.

Note that minimizing conditional entropy is a particular
case of value of information analysis [7], where the next
test T is selected to minimize the expected value of certain
cost function c(s, t, t′). The result of Lemma 2 can be gen-
eralized to this case if the cost function is decomposable
over the families as follows:

Lemma 3. Given a Bayesian network representing a joint
PDF P (S, T), where ∀i : pa(Ti) ⊆ S (i.e. tests Ti and
Tj are independent given a subset of S), the observation
T′ = t′ of previously selected test set T′, a candidate test
T , and a cost function decomposable over the families, i.e.
c(t, s|t′) = c(t, spa(t)), the expected cost of choosing test t
can be written as

EP (s,t|t′)c(t, s|t′) =
∑

t,spa(T )

P (spa(T ), t|t′)c(t, spa(t)). (9)

The remaining part of this paper will focus on the condi-
tional entropy cost. Let A(T, Spa(T )|t′) denote the first

term in Eqn. (8). This is the cross entropy between the
posterior probability of T and its parents, and the con-
ditional probability of T given its parents. The second
term in Eqn. (8) is simply a negative conditional entropy,
−H(T |t′).
Challenge: since observations of test outcome correlate
the parent nodes, the exact computation of the poste-
rior probabilities in both entropy terms in Eqn. (8) is in-
tractable. We can certainly use a existing approximation
method to compute the marginal conditional probabilities
P (spa(T ), t|t′) and P (t|t′). But a more efficient approach
is possible if we exploit the belief propagation infrastruc-
ture, as described in the next section.

4 Belief Propagation for Entropy
Approximation (BPEA)

Let us consider the problem of computing conditional
marginal entropies:

H(Xa|e) = −
∑

xa

P (xa|e) log P (xa|e)(10)

where P (xa|e) =
∑

x\xa

P (x|e),

where x\xa are variable nodes not in xa. The trick is to
replace the marginal posterior P (xa|e) with its factorized
BP approximation, and make use of the BP message pass-
ing mechanism to perform the summation over xa. We call
this process Belief Propagation for Entropy Approximation
(BPEA).

Pick any node X0 from Xa and designate it as the root
node. We modify the final message passed to X0 as fol-
lows:

m′
a→0(x0) := −

∑

xa\x0

b̃a(xa) log b̃a(xa). (11)

Here, b̃a(xa) is the unnormalized belief of Xa, i.e.,
b̃a(xa) = σba(xa), where σ =

∑
xa

b̃a(xa) is the normal-
ization constant that makes the belief sum to 1.

To get the marginal conditional entropy, we need to sum
over the root node X0 and normalize properly.

h̃(Xa|e) :=
∑

x0

m′
a→0(x0) (12)

h(Xa|e) :=
h̃(Xa|e)

σ
+ log σ. (13)

The proof of correctness is simple and is skipped due to
space. It follows immediately that BPEA is exact whenever
BP is exact.

The normalization constant σ is already computed during
normal BP iterations. The computation of b̃a(·), m′

a→i, and
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Figure 1: Factor graph of the fault diagnostic Bayes net.

h̃(·) can all be piggy-backed onto the same BP infrastruc-
ture, and therefore does not impact its overall complexity.
Furthermore, due to the local and parallel message update
procedure in BP, we can compute the marginal posterior
entropies of multiple families in one single sweep. This is
an important advantage in the active probing setup.

It is also easy to show (details omitted due to space restric-
tions) that the approach is extendable beyond the entropy
computation, to an arbitrary cost function decomposable
over families (see Lemma 3). The c(t, spa(t)) cost function
replaces the negative logarithm in Eqns 10 and 11.

5 Application: Fault Diagnosis in Computer
Networks

Suppose we wish to monitor a system of networked com-
puters. Let S represent the binary state of N network el-
ements. Si = 0 indicates that the element is in normal
operation mode, and Si = 1 indicates that the element is
faulty. We can take Si to be any system component whose
state can be measured using a suite of tests. If the system
is large, it is often impossible to test each individual com-
ponent directly. A common solution is to test a subset of
components with a single test probe. If all the test compo-
nents are okay, the test would return a 0. Otherwise the test
would return 1, but it does not reveal which components
are faulty.

We assume there are machines designated as probe sta-
tions, which are instrumented to send out probes to test the
response of the network elements represented by S. Let
T denote the available set of probes. A probe can be as
simple as a ping request, which detects network availabil-
ity. A more sophisticated probe might be an e-mail mes-
sage or a webpage-access request. In the absence of noise
a probe is a disjunctive test. More generally, it is a noisy-
OR test [14]. The joint PDF of all tests and network nodes

forms the well-known QMR-DT model [11].

P (sj) = (αj)sj (1 − αj)(1−sj), (14)

P (ti = 0|spai
) = ρi0

∏

j∈pai

ρ
sj

ij (15)

P (s, t) =
∏

i

P (ti|spai
)
∏

j

P (sj). (16)

Here, αj := P (sj = 1) is the prior fault probability, ρij is
the so-called inhibition probability, and (1−ρi0) is the leak
probability of an unaccounted-for faulty element. The inhi-
bition probability is a measurement of the amount of noise
in the network. Fig. 1 shows a factor graph representation
of our model.

As discussed in Section 3, we adopt the active prob-
ing framework for fault diagnosis, sequentially selecting
probes to minimize the conditional entropy. In previous
work, a single-fault assumption was made, which effec-
tively reduced S to one random variable with N+1 possible
states. In general, however, multiple faults could exist in
the system simultaneously, which requires the more com-
plicated condition entropies given in Eqn. (8).

We deal with the two entropy terms separately. For
H(T |t′), we may use approximation methods such as BP
or GBP to calculate the belief b(t|t′), which can then be
used to directly compute H(T |t′). (Note that the summa-
tion over values of T is simple since T is binary-valued.)
To calculate A(T, SpaT

|t′), we use the entropy approxima-
tion method (BPEA) as described in Section 4. Because
BP message updates are done locally, we can compute
A(T, SpaT

|t′) for all unobserved T nodes during a single
application of BP. Thus, picking the next probe requires
only one run of the BPEA approximation algorithm.

For each candidate probe, we designate the probe node T
itself as the root node. The modified messages are:

b̃t(t, spaT
) := P (t|spaT

)
∏

j∈paT

nj→t(sj). (17)

A(T, SpaT
|t′) is a cross entropy term. Hence we do not

take the log of b̃ during BPEA, but rather take the logarithm
of the known probabilities P (t|spaT

). This simplifies the
normalization step described in Eqn. (13) to:

A(T, SpaT
|t′) =

Ã(T, SpaT
|t′)

σ
,

where σ =
∑

t,spa(T ) b̃t(t, spaT
).

6 Empirical Results

We conduct our experiments on network topologies built
by the INET generator[17], which simulates an Internet-
like topology at the AS-level. Our dataset includes a set of



networks of 485 nodes, where the number of probe stations
varies from 1 to 50.

The connection between probe nodes and network nodes
are generated with two goals in mind: detection and di-
agnosis. A detection probe set needs to cover all network
components, so that at least one probe has a positive prob-
ability of returning 0 when a component fails. A diagnosis
probe set needs to not only cover all components, but also
be able to distinguish between faulty componets. Optimal
probe set design is NP-hard for either detection or diagno-
sis. For the datasets used here, we first use a greedy ap-
proach to obtain a probe set that covers all network compo-
nents, then augment this set with additional probes in order
to guarantee single-fault diagnosis. Interested readers may
find a detailed discussions of probe set design for diagnosis
Bayesian networks in [15, 16].

In our experiments, we measure the effects of prior fault
probability α and inhibition probability ρ on approxima-
tion and diagnostic quality. We compare the approximate
entropy values and the quality of the selected probe set
against the ground truth, which is obtained via the junc-
tion tree exact inference algorithm. In subsection 6.3, we
also summarize how the type of network may effect compu-
tational efficiency. Since all measurements depend on the
particular set of probe outcomes, we repeat all experiments
on 10 different samples of the Bayes net.

We use the diagnostic quality of the probe set to determine
when to stop the probe selection process: when the reduc-
tion in entropy (Eqn. (??)) for the past 5 iterations is no
more than 0.00001, the selection process is deemed to con-
verge. Otherwise we continue until all probes have been
picked.

6.1 Approximation accuracy

First, we look at approximation accuracy. Recall that at
each time step of the active probing process, we obtain a
vector of approximate entropy values, one for each candi-
date probe T . We average the relative error between the
approximate values and the exact values for all candidate
probes, and further average over all time steps and sam-
ples. Let M denote the total number of probes, n the num-
ber of selected probes, hij the approximate value for probe
j at the ith time step of probe selection, and Hij the corre-
sponding exact values. We compute

R(h,H) :=
1
n

n−1∑

i=0

1
M − i

M−i∑

j=1

|hij − Hij |
|Hij | . (18)

This experiment is conducted on the detection network
with 10 probe stations augmented with single-node probes.
Fig. 2(a-b) contains plot of the average, the minimum, and
the maximum approximation errors, taken over 10 samples
of probe outcomes. Relative error values are shown sepa-
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Figure 2: Approximation and diagnostic quality measure-
ments on a augmented detection network, plotted against
inhibition probability (ρ), and shown at different prior fault
probabilities (α).

rately for the two entropy terms in Eqn. (8). A(T, SpaT
|t′)

is calculated using BPEA, whereas H(T |t′) is obtained di-
rectly from the BP beliefs b(t|t′). From the two plots, we
can see that the approximation error is lower at lower lev-
els of the prior fault probability. For both values of prior
fault probability, and for all levels of inhibition probabil-
ity, the errors do not exceed 2% on average. At the max-
imum, the approximation error does not exceed 10% for
A(T, SpaT

|t′), and 20% for H(T |t′).
On the other hand, there does not seem to be a certain
relationship between approximation quality and inhibition
probability. The BPEA approximation for A(T, SpaT

|t′)
is slightly better at lower inhibition probabilities. But BP
approximation seems to do better at higher inhibition.

6.2 Diagnostic quality

The quality of diagnosis is taken to be the reduction in con-
ditional bit entropy of the state of the network elements.
That is, if t′ represents the observed outcomes of the fi-
nal set of selected probes, we measure H(S) − H(S|t′) =
−∑

s P (s) log2 P (s)+ +
∑

s P (s|t′) log2 P (s|t′) .

Fig. 2(c) plots the diagnostic quality of approximate and
exact algorithms obtained on the previously mentioned
augmented detection network. Note that, for both levels
of prior fault probability and at all levels of inhibition, the
two algorithms are practically indistinguishable in terms of
diagnostic quality. Fig. 2(d) looks at the size of the final
probe set (i.e., the number of probes selected when the ac-
tive probing process is deemed to converge); here again,
the two algorithms have identical behavior.
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6.3 Implementation and speed

We use the junction tree inference engine in Kevin Mur-
phy’s Bayes Net Toolbox [13] for Matlab to obtain exact
singleton posterior probabilities. The approximate method
is implemented on top of the belief propagation C++/mex
code developed by Yair Weiss and Talya Meltzer. We speed
up the approximation active probing process by re-using
beliefs from previous iterations of BP.

Fig. 3(a) plots the average, maximum, and minimum num-
ber of BP iterations that we save through re-using mes-
sages. The x-axis denotes the type of network used. The
label diag represents the diagnosis network with 1 probe
station, and the rest are detection networks with various
numbers of probe stations. Note that, on average, re-using
messages shortens the BP convergence time by 40-50 iter-
ations. This amounts to substantial savings in computation
time over the entire active probing process.

Fig. 3(b) compares computation time of the approximate
method to the exact method. On average, the approxi-
mate method turns out to be slower. Closer examination
of the results show that, for most probe selection steps, BP
converges under 10 iterations, which puts the approximate
method ahead of the exact method. However, for a few of
the probes, BP may take several hundred iterations to con-
verge. Thus the average time requirement (per probe selec-
tion) of the approximate method is about 2 seconds longer
than the exact method. However, keep in mind that, for net-
works with larger tree-width, the exact method is simply
not feasible. Hence, in general, the approximate method is
our only choice.

7 Related Work

The most-informative test selection was previously ad-
dressed in various work on diagnosis, decision analysis,
feature selection in machine learning, and related areas.
Given a cost function, a common decision-theoretic ap-
proach is to compute the expected value-of-information [8]

of a candidate test, i.e. the expected cost of making a de-
cision after observing the test outcome; using entropy as a
cost function yields most-informative test selection. Value
of information analysis (and particularly most-informative
test selection) was considered in the context of model-
based diagnosis [3], probabilistic diagnosis [14] and ap-
plied to many practical domains [15]. Previous research
has addressed computational complexity of selecting a set
of most-informative tests instead of a single test [7]. How-
ever, none of the previous approaches seem to address the
efficiency of computing single-test information gain in a
generic Bayesian network.

The most-informative test selection problem is quite simi-
lar to the optimal coding problem[2]. There is, however, an
important difference. In the coding domain, one may sep-
arate source coding (compressing S) from channel coding
(adding redundance to improve decoding accuracy). Fault
diagnosis, on the other hand, has to deal with a combi-
nation of the two, which manifests itself in the nature of
available tests (described by the conditional probabilities
P (Ti|Spa(i))). We may have no control over the source
coding function, but we can still select the smallest, most
informative subset of tests.

In the context of probing, i.e. disjunctive testing, optimal
test selection is very similar to the group testing problem
[4]. Given a set of Boolean variables representing objects
that can be in two possible states (i.e. sick vs. healthy pa-
tients, failed vs. OK nodes), the objective of group testing
is to find all ’failed’ objects by using a sequence of disjunc-
tive tests. Particularly, sequential test selection is known as
adaptive group testing [4]. There is also a direct connec-
tion between adaptive group testing and Golomb codes [6].
Note that group testing assumes no constraints on the test
selection (i.e., any subset of objects can be tested together),
while in Bayesian networks the tests can be only selected
from a fixed set. Even in a less restrictive case of probe
selection we are still constrained by the network topology.
Constrained group testing (and coding in general) appears
to be more complicated, particularly for theoretical analy-
sis, than its unconstrained version.

8 Conclusions

We propose an entropy approximation method based on
loopy belief propagation, and examine its bahavior on the
application of active probing for fault diagnosis in a net-
worked computer system. The level of approximation error
is found to vary with the level of noise. However, even
with non-zero approximation errors, the diagnosis qual-
ity is practically identical to that obtained from the exact
method. BPEA approximation takes slightly longer than
the exact method on small networks. But it can handle
much larger networks for which exact junction tree infer-
ence is infeasible. This highlights a promising direction for



active probing and fault diagnosis, and for entropy approx-
imation on Bayesian networks in general.
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Appendix

Lemma 1. Proof: From Eqn. (1) we get
H(X) = −∑

x P (x)
∑n

i=1 log P (xi|pai) =
−∑n

i=1

∑
xi,pai

P (xi,pai) log P (xi|pai) =∑n
i=1 H(Xi|Pai).

Lemma 2. Proof: H(X|T, t′) = H(X, T |t′) − H(T |t′) where
H(T |t′) = −∑

t P (t|t′) log P (t|t′), and

H(S, T |t′) = −
∑

s,t

P (s, t|t′) log P (s, t|t′)

= −
∑

s,t

P (s, t|t′) log P (s, t, t′) +
∑

s,t

P (s, t|t′) log P (t′)

= −
∑

s,t

P (s, t|t′) log P (s, t, t′) + log P (t′). (19)

The last term in Eqn. (19) is independent of T and can be replaced
by const. Since by lemma’s condition, pa(Ti) ⊆ S, the joint
P (s, t, t′) is factored as

P (s, t, t′) = P (t|spa(t))
∏

j

P (t′j |spa(j))P (x).

Note that the above condition is essential since in general
P (s, t, t′) may not factorize, and no further simplifications would
be possible. However, under this condition, the first term in
Eqn. (19) can be written as
∑

s,t

P (s, t|t′) log P (s, t, t′) =
∑

s,t

P (s, t|t′) log P (t|spa(t))

+
∑

s

P (s|t′) log P (x)
∏

j

P (t′j |spa(j)).

Again, the last term above does not involve T . The first term can
be simplified as

∑
spa(t),t P (spa(t), t|t′) log P (t|spa(t)). Hence,

H(S|T, t′) = −
∑

t,spa(t)

P (spa(t), t|t′) log P (t|spa(t)) +

∑

t

P (t|t′) log P (t|t′) + const.

Lemma 3. Proof: EP (s,t|t′)c(t, s|t′) =
∑

s,t P (s, t|t′)c(t, s|t′) =∑
s,t P (s, t|t′)c(t, spa(t)) =

∑
spa(t),t P (spa(t), t|t′)c(t, spa(t)).

Approximation Quality of the Greedy Strategy

Recall that we have a set {S1, . . . , SN} of binary variables rep-
resenting the state of N elements, and the goal is to decode this
state using tests.

For simplicity, we will only consider the case when tests corre-
spond to deterministic disjunctions, i.e., all inhibition probabili-
ties and the leak probability are zero. Thus an outcome of a test
splits the state space into the states consistent with the outcome
and those that are not.

If any combination of the elements can be faulty, the system
can, in principle, be in any one of 2N possible states. How-
ever, the effective state space of a test T involving n elements
contains 2n “states,” each corresponding to 2N−n states in the
original state space {0, 1}N . If the prior probability of fault is
α, then the probability of such partial assignment s ∈ {0, 1}n

is P (s) = αn1(1 − α)n−n1 , where n1 is the number of faults
(1’s) in s (and assuming that faults are independent). Test T splits
this effective state space into two sets, corresponding to outcome
0 (with probability mass (1 − α)n) and outcome 1 (with proba-
bility mass 1 − (1 − α)n) respectively. States within each set are
indistinguishable by T .

A natural alternative to selecting the most informative test, is to
pick the test that gives the most “balanced” partition of the cur-
rent state space S∗. Initially, when all states are indistinguishable,
S∗ = {0, 1}N . Let P (S∗ | T = 0) be the probability mass of
states in S∗ consistent with outcome 0 of test T . Similarly define
P (S∗ | T = 1) for outcome 1. At every step, the next test is
taken to be argminT

∣∣P (S∗ | T = 0) − P (S∗ | T = 1)
∣∣. After

the outcome of T becomes known, we discard the states in S∗

inconsistent with this outcome.

The same greedy strategy was used by Dasgupta [?] in the con-
text of actively learning a concept by adaptive queries, and by
Kosaraju et al. [?] in a general setting.



We show that this balance-based strategy is equivalent to the strat-
egy based on choosing the most informative test. First we need to
define the cost of a solution.

Cost of diagnosis Both greedy strategies produce a tree with leaf
nodes corresponding to possible states, and non-leaf nodes cor-
responding to tests, assuming that tests are informative enough
to distinguish among the states (otherwise leaves correspond to
distributions over subsets of states). The cost c(s) of diagnos-
ing leaf s in the set of leaves S is the number of tests on the
path from the root to s. The cost of a tree D is given by
c(D) =

∑
s∈S P (s)c(s), the expected cost needed to diagnose

a leaf chosen according to P .

Equivalence Let S∗(t) be the set of states in S consistent with
outcomes t of tests selected so far. For a test T , let U be the
set of leaves in S∗(t) consistent with outcome 0 of T . Also let
n0 = |U |, n1 = |U |, and n = |S∗(t)| = n0 + n1.

To simplify the argument, assume that all weights in S∗(t) are
equal; the argument readily holds for any set of weights.

The information gain is then maximized by T minimizing
1
n

∑
i∈{0,1} ni log ni. The most balanced split in this case is the

one minimizing |n0 − n1|. Both functions are shown below. The
V-shaped curve is the (dis)balance of a split with the correspond-
ing n0. The smooth flat curve is the conditional entropy of the
state given the result of the split (and all previous splits). The re-
maining curve shows the ratio max{n0, n1}/ min{n0, n1}, an-
other equivalent splitting criteria. It is clear that the functions
achieve their minimum at the same point.

n/2 n − 1

n

1

Both Dasgupta [?] and Kosaraju et al. [?] showed that the balance-
based scheme results in a tree whose cost is within a factor of
log(1/ mins P (s)) from optimal, where mins P (s) is the prob-
ability of the least probable state in S. Furthermore, Kosaraju et
al. [?] showed that a slight reweighting (needed if P is exponen-
tially unbalanced), results in a tree whose cost is within a factor
of O(log N) from optimal, for any P . Thus a tree D obtained by
the greedy algorithm satisfies C(D) ≤ O(log N)C(D∗), where
c(D∗) is the optimal cost.

As follows from the equivalence, the greedy algorithm that
chooses the most informative split also results in a tree whose
cost is within a factor of O(log n) from optimal.

Kosaraju et al. [?] also claimed that the guarantees hold for an al-
gorithm that only approximates the most balanced partition. As-
sume without loss of generality that P (S∗|T = 0) ≥ P (S∗|T =
1), or in our case n0 ≥ n1. The results says that if the best bal-
ance ratio P (S∗|T = 0)/P (S∗|T = 1), or in our simple case,
n0/n1, is approximated within a constant multiplicative factor,
then the O(log N) approximation guarantee holds.

Let the most balanced split be {x∗, n − x∗}; without loss of
generality, x∗ ≥ n/2. Assume that the approximate split is
{x∗ + a, n − x∗ − a} for some 0 < a ≤ n − 1 − x∗. We
want to upper bound the ratio:

(x∗ + a)/(n − x∗ − a)

x∗/(n − x∗)
= 1 +

an

x∗(n − x∗ − a)
.

Now x∗ ≥ n/2, and n−x∗−a ≥ 1 since a ≤ n−1−x∗. Thus
the ratio is bounded by 1 + 2a, which is constant if a is constant.

It remains to show that good approximations of the conditional
entropy result in small a’s. Note that any approximation of the
conditional entropy is within a multiplicative factor of roughly
1 + (log n)−1. Indeed, we have

x log x + (n − x) log(n − x)

x∗ log x∗ + (n − x∗) log(n − x∗)
,

which is maximized when x is maximized and x∗ is minimized,
or x = n − 1 and x∗ = n/2, implying the upper bound.

The plot below shows the approximation ratio for the conditional
entropy. Each curve corresponds to a particular exact split x∗

starting from n/2; here n = 1000. For every x∗, we plotted the
approximation ratio as a function of approximate split x = x∗+a.
Notice that the worst case ratio is roughly 1.1, as expected. Also
notice that if the approximate value is sufficiently close to the ex-
act value, the curves are well approximated by lines (with larger
exact values being harder to approximate). Thus for good approx-
imations, the approximation ratio for conditional entropy trans-
lates roughly “linearly” into a. Thus, according to the result of
Kosaraju et al. [?], we should expect a O(log N) approximation
ratio even if entropies are only approximate.
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State spaces Note that if all combinations of faults are possible,
a simple information-theoretic argument shows that we need at
least N tests to uniquely distinguish between these states, which
is as inefficient as testing each element directly. Of course, we can
stop the diagnosis when the conditional entropy is sufficiently low
(i.e., when we have an almost deterministic distribution on some
subset of states), and then output the most likely state. This way
we can often approximate the state with significantly fewer tests.

Another common approach is to assume an upper bound on the
number of faults. For example, if we have prior fault probabilities
αi = P (Si = 1), the expected number of faults is

∑N
i=1 αi

(assuming that faults are independent); hence if αi = α for all i,
this number is αN . By Markov’s inequality, the probability that
the actual number of faults is more than αNc is at most 1/c for
any c ≥ 1, thus we can typically assume that the state space S is
the set of all subsets of at most αNc elements, for appropriate c.


