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Abstract

Providing quality of service guarantees have become a critical issue during the rapid
expansion of the e-Commerce area. We consider the problem of finding the optimal
capacity allocation in a clustered Web system environment so as to minimize the cost
while providing the end-to-end performance guarantees. In particular, we consider
constraints on both the average and the tail distribution of the end-to-end response
times. We formulate the problem as a nonlinear program to minimize a convex
separable function of the capacity assignment vector. We show that under the mean
response time guarantees alone, the solution has a nice geometric interpretation.
Various methods to solve the problem are presented in detail. For the problem
with tail distribution guarantees, we develop an approximation method to solve the
problem. We also derive bounds and show that the solution is asymptotically optimal
when the service requirement becomes stringent. Numerical results are presented to
further demonstrate the robustness of our solutions under data uncertainty.
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1 INTRODUCTION

With the increasing bandwidth and connectivity associated with the Internet,
e-Commerce has become more and more popular. Many traditional services
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have been transformed or converted to Web-based services. In addition to be-
coming a cost effective solution for many traditional businesses, e-Commerce
is also creating new business opportunities. A variety of e-Commerce models
now exist, ranging from, for example, on-line shopping, on-line auction, on-line
reservation, on-line banking and on-line trading to customer relation manage-
ment, personnel management, etc. E-Commerce has become such a critical
component of many companies that guaranteeing performance and availabil-
ity has become essential. Thus, the design and development of e-Commerce
infrastructure (or more specifically, Web systems) should meet a two-fold chal-
lenge. On one hand, it must meet customer expectations in terms of quality
of service (QoS). On the other hand, companies have to control information
technology (IT) costs to stay competitive. It is therefore crucial to understand
the tradeoffs between costs and service levels so as to determine the most
cost-effective architecture and system configuration.

One of the most common architectures of Web service infrastructures is the
clustered system architecture, where requests are served by the system through
different clusters of servers, from the Web server cluster to the application
server cluster, and possibly to the database server cluster. In general, it is
possible for requests to be served by a subset of the clusters. Although ar-
chitecturally simple, the system is quite complex and large in general, with
multiple clusters of servers, each of which can have many components. A typ-
ical Web system is comprised of hundreds of nodes with tens of applications
running on them. Given the great complexity of the overall system, IT plan-
ners are constantly puzzled with questions regarding: how many servers to
place at each cluster in the current infrastructure; what layout can deliver the
best QoS; is there enough capacity available to support the expected business
opportunities and future growth.

Another important characteristic of today’s Web service environment is the
diversity of services that one system can support. Multiple classes of services
are commonly provided to multiple clients, all of which are time-sharing and
competing for the same set of resources. The service provider has contracts
to each individual client and agrees to guarantee a certain level of QoS for
each class of service. In addition, performance guarantees can be on the mean
end-to-end response times and/or on the percentage of time that the end-to-
end response times are above a given threshold. The intense competition in
e-Commerce has driven many companies to sign contracts that promise both,
that is, performance guarantees for both the mean and the tail distribution of
the end-to-end response times. Thus, we need to develop techniques and algo-
rithms to determine the most cost-effective capacity allocation in a clustered
system while providing guarantees on one or more end-to-end performance
measures.

In this paper, we study the cost-effective capacity planning problem in a clus-
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tered Web system with multiple classes of services under service level guar-
antees. We consider a general class of service guarantees that include both
the mean and the tail distribution of per-class end-to-end delay. We assume
that the cost of a given capacity allocation is a convex separable increasing
function of the capacity assignment vector. Such a cost function can be used
to handle many e-Commerce cost structures. For example, cost functions lin-
ear in the capacity assignment can be used to represent the case if the cost
structure is purely on the IT expenses. One can also choose cost functions to
be functions of the mean delay or the tail probability so as to represent the
profits or penalty related to the QoS contracts. We shall focus exclusively on
Web systems although the techniques developed here can be applied to more
general settings including networks.

Studies on resource allocation to deliver end-to-end performance are quite
limited. Most literature has focused on a single cluster and addressed either
scheduling or load balancing issues [9,10,7]. Recently, Menascé et al. [13] con-
sidered the problem of resource scheduling in e-commerce sites with the aim of
maximizing revenue; Liu et al. [12] considered the problem of both routing and
scheduling in the large-scale server farm environment in order to guarantee the
tail distribution of a single-tiered architecture.

We propose a nonlinear programming problem formulation and investigate its
structural properties. We show that under the mean response time guarantees
alone, the solution has a nice geometric interpretation and can be solved in
polynomial time. The problem with guarantees on the tail distribution of
response times is more complicated. We develop approximation methods which
can provide solution that is only away from the optimal solution by a constant
factor, independent of the service demands of the job classes at all tiers. We
also show that our algorithm can achieve asymptotic optimality when the
service requirement becomes stringent. The problem with both types of end-
to-end response time guarantees can then be solved easily. Numerical results
further show that the proposed methods are robust under data uncertainty.

The paper is organized as follows. In section 2, we present the problem and
the corresponding queueing network model. Sections 3, 4 and 5 focus respec-
tively on the problems with only mean performance guarantees, with only tail
performance guarantees, and the problem with both types of guarantees. Ro-
bustness of the solution under data uncertainty is then discussed in section 6.

2 The Problem

We consider the problem of capacity planning in multiple clustered Web archi-
tectures in the presence of multi-class performance constraints. The objective
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is to find the most cost effective capacity allocation while satisfying the dual
type of QoS requirements on both mean and tail distribution of the response
times for each class of service. Our approach is based on the use of queueing
network model and optimization methods to capture the e-Commerce service
process.

2.1 e-Commerce Service Environment

Today’s e-commerce service environment is quite complex. Typically it in-
volves multiple clusters of machines. Figure 1 illustrates such a 3-clustered
architecture for example. Each cluster handles a particular set of functions.
Front-end Web servers handle the serving of requests for static pages. Requests
for dynamic pages may require processing by the application server, some of
which further involve obtaining, or updating information from the database
server. The service of different requests may involve multiple visits to multiple
clusters in different order.

Fig. 1. A Three-Cluster Architecture

Several classes of requests can be served on each server. The service discipline
is either First-Come-First-Serve (FCFS) or Processor-Sharing (PS) depending
on the server type. FCFS service discipline may be required, for example, on
a database server when processing write transactions. The assumption of PS
service discipline is reasonable for a wide range of Web servers in practice. We
assume that the resource requirement of each job class at each server is well-
understood. This can be measured, for example, with certain instrumentation
on the various servers in a control environment.

The workload and the use of the e-commerce service resources depends upon
the navigational behavior of the Web clients which is characterized by Web
sessions consisting of a sequence of alternating transactions. For example, a
typical client scenario might consist of several browse, search requests, pos-
sibly followed by a buy transaction, in an iterative manner. In between the
transactions, there might be network delays or client-based delays (or think
times), which may be different for different sessions.
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2.2 Queueing Network Model

We use a general queueing network model to capture the e-Commerce service
environment described above. There are t = 1, · · · , T multiclass single-server
stations (or servers), one infinite-server queue (t = 0), and k = 1, · · · , K
(external) classes of requests. The server stations t = 1, · · · , T represent the
collection of Web servers, the infinite-server queue t = 0 represents the client
think times, and the job class represents the various types of user transactions
within a Web session.

We assume there are J different types of Web sessions, each representing
a different client navigational behavior (e.g. when there are multiple sites
co-hosted on the same system, then navigation for each different web site
corresponds to a different session type). User sessions of type j have exogenous
Poisson arrival rate αj, and begin with a class kj request, j = 1, . . . , J . Upon
the completion of a class k request, clients of session type j incur a random
think time dj at an infinite-server queue (labeled as t = 0), and either return

to the system as a class k′ request with probability p
(j)
k,k′ or exit the system

(thus complete the session) with probability 1−∑K
k′=1 p

(j)
k,k′. Let Λ

(j)
k denote the

aggregate rate of class k arrivals from session j. Then Λ
(j)
k =

∑
k′ Λ

(j)
k′ p

(j)
k′k +αj.

t1 2 T

alpha
c1 c2 cT

p
(j)
k,k′

Fig. 2. Queueing Network Model

Requests of class k visit the stations along route k which is a deterministic
sequence: t(k, 1), t(k, 2), · · · , t(k, Tk), where a class k job visits server station
t(k, l) at hop l, and Tk is the total number of hops on route k. Denote νt

k the
total (random) number of visits to station t by a class k request (

∑T
t=1 νt

k = Tk).

Let Λk :=
∑J

j=1 Λ
(j)
k . Then λt

k = νt
kΛk is the effective arrival rate of class k

requests to station t.

At each server station, there could be multiple servers. We assume each indi-
vidual server has a unit capacity and the total number of servers ct at station
t is yet to be determined. Let ~c = (c1, c2, · · · , cT ) be a capacity assignment
so that station t has capacity ct. For simplicity, we assume that all servers
that belong to station t work together and execute the incoming requests as
a single server. Assume the (nominal) service requirements of class k jobs at
station t are i.i.d. random variables St

k with mean mt
k = E [St

k]. We use the
term ’nominal’ because St

k has not taken into account the capacity ct at server
t which is a decision variable. If capacity ct is assigned to server t, then the
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service time for a class k job at station t is St
k/c

t (providing that station t
spends its total capacity ct on this job). The service discipline at each station
is either FCFS or PS. If station t serves under FCFS, we then assume that
the service requirements St

k are exponential with the same mean for all class
k jobs at station t. If station t serves under PS, we assume that the service re-
quiremens St

k of class k jobs at station t follow a general distribution including
heavy-tailed distributions.

It should also be emphasized that we choose to use the above Kelly-Type net-
work [8,4] setting in order to maintain a product-form solution. For more gen-
eral systems, experiments show that these solutions also work well, indicating
that product-form queueing network models can serve as good approximations
to capture the high-level queueing dynamics of real systems.

2.3 End-to-end Delay and Performance Guarantees

We define the end-to-end delay (or sojourn time) of a class k job, denoted by
Rk, as the total elapse time from the time it enters the system to the time it
exits the system. Let Rt

k(i) be the delay experienced by a class k request at

station t in its i-th visit, i = 1, . . . , νt
k. Then, Rk =

∑T
t=1

∑νt
k

i=1 Rt
k(i). We shall

consider the following two types of service guarantees:

E [Rk] ≤ Uk, for k = 1, . . . , K, (1)

and

P [Rk > Vk] ≤ εk, for k = 1, . . . , K. (2)

Constraint (1) guarantees the average end-to-end delay of class k jobs to be
no more than Uk, and constraint (2) guarantees that the probability that the
end-to-end delay of class k is greater than Vk is no more than εk

Let qt be the nominal server utilization at station t such that qt =
∑

k λt
km

t
k.

Then under capacity ct, the server utilization at station t will be ρt = qt/ct. In
order for the system to be stable, the minimum capacity assignment ~c must
satisfy:

ct > qt, for all t = 1, · · · , T. (Stability Condition) (3)

We assume that the cost structure is a separable increasing function of the
capacity assignment ~c = (c1, c2, · · · , cT ). That is, for all t = 1, · · · , T , ft(·) is a
convex increasing function. If capacity ct is assigned to server t, then a cost of
ft(c

t) will be incurred. The total cost of this assignment is simply
∑T

t=1 ft(c
t).

The problem is to minimize this total cost while satisfying one or both of
end-to-end delay guarantees.
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3 MEAN DELAY GUARANTEE

We first consider the problem with only mean delay guarantees (1).

Let N t
k(resp. Rt

k) denote the steady-state number (resp. response time) of class
k jobs at station t. Denote N t =

∑K
k=1 N t

k the steady-state number of all class
jobs at station t. Similarly, denote Nk the steady-state total number of class k
jobs in system and Rk the steady-state end-to-end response time (or sojourn
time) of class k jobs.

Based on the product form (see also [17] Section 6-8 of Chapter 11), we know
that the number of jobs at station t has the same distribution as that of
the corresponding M/M/1 queues. Moreover, a job belongs to class k with
probability ρt

k/ρ
t, where ρt

k = λt
km

t
k/c

t and ρt =
∑K

k=1 ρt
k. Hence,

E
[
N t

]
=

ρt

1 − ρt
, and E

[
N t

k

]
=

ρt
k

1 − ρt
.

Applying Little’s law, we can obtain the mean response time of class k jobs
at station t as follows:

E
[
Rt

k

]
=

E [N t
k]

λt
k

=
mt

k/c
t

1 − ρt
=

mt
k

ct − qt
. (4)

Based on Little’s law, the mean end-to-end delay for class k jobs is therefore

E [Rk] =
E [Nk]

Λk
=

∑
t E [N t

k]

Λk
=

∑
t

λt
kE [Rt

k]

Λk
=

∑
t

νt
km

t
k

ct − qt
. (5)

The problem of finding the minimum capacity such that the mean delay re-
quirement is guaranteed can be formulated as:

min
∑

t

ft(c
t) (6)

s.t.
∑

t

νt
km

t
k

ct − qt
≤ Uk, k = 1, . . . , K; (7)

ct > qt, t = 1, . . . , T. (8)

Condition (8) is exactly the stability condition. The capacity ct required by
each server t must be strictly greater than qt to have finite response time.
Assign a new variable xt, such that ct = qt + 1/xt. Then 1/xt is the extra
capacity (above the minimum requirement qt) that is allocated to server t.

Denote further wt
k =

νt
kmt

k

Uk
. Hence wt

k can be interpreted as the weight (or
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relative ratio) of the total required mean nominal service time for a class-
k job at server t (in all visits) to its required mean end-to-end delay upper
bound Uk.

Now the problem is simplified to the following:

(M) min
∑

t

gt(x
t)

s.t.
∑

t

wt
kx

t ≤ 1, k = 1, . . . , K, (9)

xt ≥ 0, t = 1, . . . , T, (10)

where gt(x
t) ≡ ft(q

t + 1/xt) = ft(c
t). Note that we have relaxed the strict >

to ≥ in (8) so that the feasible region is compact. It is obvious xt = 0 will
never be the optimal solution.

The problem becomes to minimize the total cost which occurs due to the extra
system capacity 1/xt. It is naturally to assume function ft is non-decreasing
for each t. Therefore, gt is a non-increasing function. Moreover, in the rest
of this section, we assume gt is convex function. It is easy to see that this
assumption is satisfied if ft is convex. However, this is not necessary. This
assumption is also satisfied for some well-known concave cost function: for
example, ft(c

t) = ln(ct).

For notation simplicity, denote ~x = (x1, . . . , xT ) and and ~wk = (w1
k, . . . , w

T
k )

for k = 1, ..., K. Let Polyhedron+( ~w1, ..., ~wK) be the polyhedral set [3] defined
by ~w1, ..., ~wK on the positive quadrant RT

+, that is,

Polyhedron+( ~w1, ..., ~wK) := {~x ∈ RT
+ | ~wk · ~x ≤ 1, k = 1, . . . , K }.

Clearly Polyhedron+( ~w1, ..., ~wK) defines the feasible region of (M), which is a
closed convex set.

It’s important to observe that because the objective function in (M) is mono-
tone non-increasing in each variable, the optimal solution must lie on the
’north-eastern’ frontier of the convex feasible region. We call such frontier as
the efficient frontier. We then have

Proposition 1 The optimal solution to (M) must be on the efficient frontier
of Polyhedron+({ ~w1, . . . , ~wK}).

Notice that this is slightly counter-intuitive comparing with the general con-
vex optimization problems where the optimal solutions are very often interior
points.
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For a given vector set Ω = { ~wk, k = 1, ..., K}, we say that a subset Ω1 =
{ ~w`, ` ∈ S} with S ⊂ {1, ..., K} is the critical set of Ω, if Ω1 is the minimum
cardinality set such that, for any ~wk ∈ Ω, there exist scalars {α`}`∈S such that

~wk ≤
∑
`∈S

α` ~w`,
∑

α` = 1, α` ≥ 0, ∀ ` ∈ S.

Clearly Polyhedron+(Ω) is a subset of Polyhedron+(Ω1). On the other hand,
for any ~x ∈ Polyhedron+(Ω1), we have

~wk · ~x ≤
∑
`∈S

α` ~wk · ~x ≤
∑
`∈S

α` = 1.

Hence,

Polyhedron+(Ω) = Polyhedron+(Ω1).

This means that the constraint ~wk · ~x ≤ 1 corresponding to ~wk can be derived
from the constraints corresponding to the critical set {~w`, ` ∈ S}. Therefore,
we can ignore the constraints corresponding to the vectors ~wk, if it is domi-
nated by a convex combination of vectors in the critical set. Therefore,

Proposition 2 The optimal solution to (M) is determined by the critical set
{ ~w`, ` ∈ S}.

Property 2 can also be illustrated by Figure 3. Consider the T -dimensional
space, where point wk corresponds to vector ~wk = (w1

k, . . . , w
T
k ), , k = 1, ..., K.

If a point wk is not on the ’north-eastern’ frontier of Convex Hull(w1, ..., wK),
then it will be dominated by a convex combination of other w’s who are on
the frontier, thus it will not play a role in determining the optimal solution
to (M). In the context of the original problem, when allocating server capaci-
ties, one or more classes of jobs satisfying the mean end-to-end response time
constraint could imply another class of jobs’ mean response time constraint
be automatically satisfied. In this case, the mean response time constraint for
the latter job class is less stringent, and can be derived from the constraint
for the former job classes. Here, the vertices of the convex hull correspond to
the class of jobs whose response time constraints are more stringent, and can
not be derived from the constraints for other job classes.

After simplifying the formulation, let’s turn to how to find the optimal solu-
tions to the problem. The optimization problem (M) is a separable convex pro-
gramming problem with linear constraints. Note that it has been shown in [5]
that such a separable convex programming problem with linear constraints
can be converted into a linear program and solved in polynomial time.
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w2

w2

w3

w`

wk

Objective Function

x1

x2

Fig. 3. Convex Hull (w1, ..., wK).

4 TAIL DISTRIBUTION GUARANTEE

In this section, we consider the capacity planning problem with the tail dis-
tribution guarantee constraint (2).

The problem can be formulated as:

(T) min
∑

t

ft(c
t)

s.t. P [Rk > Vk] ≤ εk, k = 1, . . . , K; (11)

ct ≥ qt, t = 1, . . . , T.

The tail distribution of the end-to-end delay P [Rk > x] can be quite com-
plicated. Bounds on the tail asymptotics of maximum daters (time to empty
the network when stopping future arrivals) for FCFS Jackson networks were
considered in [1,2]. For the general Kelly-type network under service disci-
plines such as Processor Sharing, the tail asymptotics of the end-to-end delay
is still an open question. Furthermore, in practice, the threshold Vk’s in the tail
performance guarantees in (11) are often limited to some prespecified finite
levels, thus such asymptotics may not apply. For simplicity, we shall consider

as approximation that Rk
d
=

∑T
t=1

∑νt
k

i=1 Rt
k(i), where Rt

k(i)’s, i = 1, . . . , νt
k are

i.i.d. replicas of the steady-state response times Rt
k of a single server queue

(corresponding to server t) with capacity ct and arrival rates λt
k, k = 1, . . . , K,

independent of other server queues. Denote

Gt
k(c, y) = P

[
Rt

k ≤ y|ct = c
]
.

For a capacity allocation vector ~c = (c1, c2, · · · , cT ), P [Rk > Vk] is the convo-
lution of Gt

k(c
t, y) with respective to y for all t = t(k, i), i = 1, . . . , Tk, along

the route visited by class k jobs.

10



Under the above simplifications, problem (T) then becomes a non-linear pro-
gram. However, the convolution is a very complicated function which makes
the non-linear problem hard to solve. We therefore search for good approx-
imating solutions. In this paper, by approximating the constraint (11), we
derive upper and lower bounds and give a near optimal solution to problem
(T). Indeed, under some assumptions on the distribution function Gt

k, the
solution is proven to be asymptotically optimal.

4.1 A Lower Bound

Denote K(t) the set of job classes that visit server t. Let T (k) denote the set
of servers that a class k job visits. Recall that Tk denotes the total number of
hops on the route for class k jobs, where Tk =

∑T
t=1 νt

k, with νt
k denoting the

total (random) number of visits to server t in the route.

The following lemma is straightforward based on the fact that

Rk =
∑
τ

ντ
k∑

i=1

Rτ
k(i) ≥ Rt

k(i)
d
=Rt

k.

Lemma 3 For an arbitrary k = 1, ..., K, if the end-to-end delay Rk satis-
fies (11), then

P
[
Rt

k > Vk

]
≤ εk, ∀1 ≤ k ≤ K, 1 ≤ t ≤ T. (12)

Lemma 3 basically says that if the tail distribution guarantees on the end-to-
end delays are satisfied then these guarantees will be satisfied for the delay
at each server. Therefore, replacing constraint (11) by (12), we can obtain a
lower bound for problem (T) which is stated as follows.

Theorem 4
∑

t ft(c
t
∗) is a lower bound on problem (T), where ~c∗ = (ct, t =

1, ..., T ), and

ct
∗ = max

k∈K(t)
min{c : Gt

k(c, Vk) ≥ 1 − εk}. (13)

4.2 A Feasible Solution and Upper Bound

The solution ~c∗ obtained by (13) may not be feasible to (T) as it does not
guarantee the tail distribution requirement on the end-to-end delay. To derive
a feasible solution for (T), we first define the random variable Rt,n

k to be the
summation of n independent copies of Rt

k and assume the following.
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Assumption 5 For each class k, if

P
[
Rt,Tk > Vk

]
≤ εk, for each t ∈ Tk, (14)

then
P [Rk > Vk] ≤ εk. (15)

Assumption 5 is satisfied if for any fixed class k, all Rt
k’s are comparable in

the stochastic ordering sense [15], 1 ≤ t ≤ T . We say that X and Y are
comparable in the stochastic ordering sense ≤st if either X ≤st Y or Y ≤st X.
Indeed, in this case, for each fixed class k, there is a bottleneck server τ
such that the response time Rτ

k stochastically dominates the others. Then

Rτ,Tk
k stochastically dominates Rk =

∑
t

∑νt
k

i=1 Rt
k(i). Hence P

[
Rτ,Tk

k > Vk

]
≤ εk

implies immediately inequality (15). For example, if for any fixed class k, Rt
k’s

are all exponential or are all of Weibull distribution with the same shape
parameter, then they are stochastically comparable. Also, if for any fixed class
k, the nominal service times St

k’s for t = 1, ..., T , are identical in distribution,
then one can show using coupling arguments [16] that Rt

k’s are stochastically
comparable.

Define Gt,n
k (c, y) to be the n-th convolution of Gt

k(c, y) with respective to y,
and then

Gt,n
k (c, y) = P

[
Rt,n

k ≤ y|ct = c
]
. (16)

The following theorem gives a feasible solution to problem (T).

Theorem 6 Suppose Assumption 5 holds. Let ~c∗ = (c∗1, · · · , c∗T ) where

c∗t = max
k∈K(t)

min{c ≥ qt : Gt,Tk
k (c, Vk) ≥ 1 − εk}. (17)

Then ~c∗ is feasible to problem (T), and
∑

t ft(c
∗t) is an upper bound for prob-

lem (T).

PROOF. It is easy to see that for each t,

P
[
Rt,Tk > Vk

]
≤ εk, for all k ∈ Kt, (18)

This is equivalent to (14). Then (11) follows under assumption 5.

4.3 Asymptotic Optimality

In this section, we discuss the effectiveness of the solutions we proposed in
Section 4.1 and 4.2. Recall that St

k denotes the nominal service requirement
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random variable for class k at server t. First we make the following simplifying
assumption:

Assumption 7 For each class k and each server t,

P
[
Rt

k > y
]
∼ P

[
St

k

ct − qt
> y

]
. (19)

Note that (19) is only an approximation. In the case of M/G/1 PS queue with
subexponential service times, the above assumption has been shown [6] to
be asymptotically true for large y when F t

k has a heavier tail than e−
√

y. Here
F t

k(y) = P [St
k ≤ y]. Denote further the complementary of F t

k to be F t
k = 1−F t

k ,
and the inverse function of F t

k to be

ϕt
k(ε) = arg min

y
{F t

k(y) ≤ ε}.

For the asymptotic analysis to make sense, we assume that the support of F t
k

is (0,∞). Therefore,
ϕt

k(ε) → ∞ as ε → 0.

Under assumption 7, we then have Gt
k(c, Vk) = F t

k ((c − qt)Vk) , and the lower
bound in (13) can be written as

ct
∗ = qt + max

k∈K(t)
ϕt

k(εk)/Vk. (20)

Similarly, denote F t,n
k to be the n-th convolution of F t

k, the complementary

F t,n
k = 1 − F t,n

k , and the inverse function of F t,n
k (y):

ϕt,n
k (ε) = arg min

y
{F t,n

k (y) ≤ ε}.

Then we can simplify the upper bound in (17) as

c∗t = qt + max
k∈K(t)

ϕt,Tk
k (εk)/Vk, (21)

Assumption 8 For each k, t,

lim sup
y→∞

F t,Tk
k (y(1 + δ))

F t
k(y)

< 1, for any δ > 0. (22)

Lemma 9 For each k, t, if there exists 0 ≤ κ0 < ∞, and 0 < κ1 ≤ ∞, such
that

lim sup
y→∞

F t,Tk
k (y)

F t
k(y)

= κ0, (23)

13



and for any δ > 0,

lim sup
y→∞

F t
k(y(1 + δ))

F t
k(y)

≤ 1

κ0 + κ1

. (24)

then, Assumption 8 holds.

PROOF. Please refer to [11].

Remark 10 Suppose F t
k’s are subexponential. Then κ0 = Tk. If (24) holds

for κ1 = ∞, then assumption 8 is always true. If κ1 is finite, then (24) will be
eventually violated as the number of servers Tk gets larger. For a large class of
subexponential distributions with moderate heavy tails such as lognormal and
Weibull distributions, (24) holds for κ1 = ∞ and therefore assumption 8 is
true for any Tk.

Both exponential and Weibull distributions satisfy Assumption 8. For expo-
nential distribution, one can directly verify (22), although Lemma 9 does not
apply. The subexponential Weibull family with shape parameter 0 < β < 1
satisfies Assumption 8, with κ0 = Tk, and κ1 = ∞. However, Assumption 8
does not hold for Pareto family.

Proposition 11 If Assumption 8 holds, then for each 1 ≤ k ≤ K, 1 ≤ t ≤ T ,

ϕt,Tk
k (ε)/ϕt

k(ε) → 1 as ε → 0, (25)

PROOF. Please refer to [11].

Combine Proposition 11 with (20) and (21), it follows immediately that

Theorem 12 If Assumptions (5-8) hold, then the solutions obtained by (13)
and (17) are asymptotically optimal in the sense that for each t,

c∗t/ct
∗ → 1 as εk → 0 for all k.

In fact, for the above theorem to hold, it only requires the minimum εk to go
to 0, which is stated as follows.

Corollary 13 Suppose Assumptions (7-8) hold. The solutions obtained by
(13) and (17) are asymptotically optimal in the sense that for each t,

c∗t/ct
∗ → 1 as min

k
εk =: ε0 → 0.
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PROOF. Please refer to [11].

Note that Pareto distribution does not satisfy the Assumption 8, and the
asymptotic results do not hold. However, the ratio of the bounds obtained in
the previous sections is bounded by a constant factor as ε0 goes to zero. That
is,

Corollary 14 For Pareto service times that F t
k(y) = y−at

k, 0 < at
k ≤ 2, we

have
lim sup

ε0→0
c∗t/ct

∗ ≤ 21/a,

where a = mink,t a
t
k.

4.4 Example: Exponential Case

We consider the case for which the response time at each server Rt
k is exponen-

tial distributed, that is, F t
k(y) = e−y/mt

k . Denote γn(ε) to be the inverse of the
Gamma tail distribution function with parameter (n, 1). Then ϕt

k(ε) = mt
kγ1(ε)

and ϕt,n
k (ε) = mt

kγn(ε). We then have

c∗t = qt + max
k∈Kt

vt
kγTk

(εk), c∗t = qt + max
k∈Kt

vt
kγ1(εk),

and

c∗t/ct
∗ ≤ max

k∈Kt

qt + vt
kγTk

(εk)

qt + vt
kγ1(εk)

,

where vt
k = mt

k/Vk denotes the weight (or relative ratio) of the mean nominal
service time to its required (1 − ε)-percentile upper bound Vk on the end-to-
end delays for class k jobs at server t. That is, the ratio of the upper bound
over the lower bound is bounded by a constant depending only on T and ε.

In addition, because Assumptions 5 - 8 are satisfied for the exponential case,
the asymptotic results we obtained in previous section holds.

Corollary 15 For each class k, if the response times {Rt
k, 1 ≤ t ≤ T} are

i.i.d. exponentially distributed, then the solution obtained by (17) is asymptot-
ically optimal.

5 MEAN AND TAIL GUARANTEES

To satisfy both constraint (1) and (2), the minimum required capacity is ob-
tained by solving the following problem.
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(C) min
∑

t

gt(x
t)

s.t. E [Rk] ≤ Uk, k = 1, . . . , K

P [Rk > Vk] ≤ εk, k = 1, . . . , K

xt ≥ 0, t = 1, . . . , T

where 1/xt = ct − qt is the extra capacity (above the minimum requirement
qt) that is allocated to server t, and Rk is a function of xt, t = 1, . . . , T .

Again the tail distribution constraints make the problem difficult. Using sim-
ilar bounding techniques on the tail distribution constraints as we did in sec-
tion 4, we can obtain upper bound on the optimal solution by solving

(C1) min
∑

t

gt(x
t)

s.t.
∑

t

wt
kx

t ≤ 1, k = 1, . . . , K

0 ≤ xt ≤ 1/Bt
F , t = 1, . . . , T,

where Bt
F = max

k∈K(t)
min{c : Gt,Tk

k (c, Vk) ≥ 1 − εk} − qt;

or we can obtain a lower bound on the optimal solution by solving

(C2) min
∑

t

gt(x
t)

s.t.
∑

t

wt
kx

t ≤ 1, k = 1, . . . , K

0 ≤ xt ≤ 1/Bt
L, t = 1, . . . , T,

where Bt
L = max

k∈K(t)
min{c : Gt

k(c, Vk) ≥ 1 − εk} − qt.

Based on Theorem 6, 4 and 12, the following theorem is immediate.

Theorem 16 Under Assumption 5, the following hold:
i). Any feasible solution to (C1) is feasible to (C);
ii). The optimal solution to (C) is feasible to (C2), and the optimal solution

to (C2) provides a lower bound for the solution to (C);
iii). Under Assumption 7-8, the optimal solutions to (C1) and (C2) x∗ and

x∗ are asymptotically optimal in the sense that x∗t/xt
∗ → 1 for each t

as εk → 0 for all k.
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6 Robustness

One practical concern is that the mean service time requirements mt
k are usu-

ally obtained through some measurement and prediction mechanism. Errors
are very common in the measurement and predictions. Therefore one would
like to allocate the capacity in such a way that not only the total capacity is
minimized but most of the end-to-end response time constraints are still sat-
isfied when the input parameters vary slightly from the predicted ones. That
is, the solution is required to be robust under data uncertainty. For simplicity,
we only show the robustness results for the case where only mean end-to-end
response time constraints are considered.

In Section 3, we notice that the constraints on those non-bottleneck classes
are less likely to be violated than the bottleneck classes when the service time
requirements have some uncertainty, and the number of bottleneck classes
are less than T . Therefore, when the number of servers is small, we expect
the optimal solution to problem (M) to be quite robust. To demonstrate this
fact through numerical example, we consider the estimate ŵt

k is uniformly dis-
tributed in [wt

k(1−∆), wt
k(1+∆)], where wt

k is the true value. Here ∆ measures
the degree of uncertainty of the prediction on wt

k. Table 6 gives the average
(over 100 samples) number of violated constraints under different K, T , and ∆
when the true input parameters are (ŵt

k) but the capacity allocated based on
the optimal solution of the problem (M) with the predicted parameters (wt

k).
The robustness of the solution is quite satisfactory because all values in Ta-
ble 6 are small. This implies that if we use the solution of (M) to allocate the
capacity, then only very few classes will exceed their mean end-to-end delay
thresholds even if the parameter could be 25% away from what we predict.

Table 1
100 Clusters (K = 100)

∆

T
5% 10% 15% 20% 25%

4 0.79 0.89 1.15 1.45 1.7

8 1.05 1.2 1.43 1.66 1.94

12 1.49 1.64 1.86 2.1 2.39

16 1.48 1.71 1.99 2.22 2.51

20 1.48 1.76 1.98 2.25 2.68

Table 2
4 Classes (T = 4)

∆

K
5% 10% 15% 20% 25%

40 0.78 0.91 1.09 1.21 1.36

80 0.83 1.03 1.26 1.45 1.74

120 0.9 1.08 1.29 1.61 1.94

160 0.75 0.93 1.13 1.52 1.9

200 0.82 1.04 1.3 1.75 2.22

Tables 1&2: Average Number of Violated Constraints under Data Uncertainty

By looking into the value of the tables along each row and/or column, we can
observe how the average number of violated constraints are affected by ∆, T

17



and K. When the uncertainty level ∆ or the number of servers T increases,
slightly more classes will experience unexpected long end-to-end delay. How-
ever, the total number of classes in the system K does not have much impact
on the number of classes whose mean response time constraint is violated.

Table 3 gives the relative difference of the optimal objective values of the
problems with input parameters (wt

k) and (ŵt
k). It shows that the total cost

does not change much when planning under parameter (wt
k) or (ŵt

k).

∆

T
5% 10% 15% 20% 25%

4 0.23% −0.07% −0.71% −1.5% −2.65%

8 0.12% −0.01% −0.34% −0.88% −1.58%

12 0.06% −0.01% −0.68% −0.97% −1.3%

16 −0.4% −0.49% −1.19% −0.66% −1.78%

Table 3
Relative changes of the optimal cost under perturbation K = 100

7 Conclusion

We have investigated a resource allocation problem in a clustered system en-
vironment delivering end-to-end performance guarantees. Specifically, we con-
sidered service guarantees on both the mean and on the tail distribution of
the end-to-end response times for each class of requests. For the problem with
mean delay guarantees alone, we present a nonlinear program formulation
and provide a nice geometric interpretation of optimal solution structure. For
the problem with tail distribution guarantees, we develop an approximation
method to solve the problem. Under suitable assumptions, we gave a constant
factor bound for the solution and also showed that it is asymptotically optimal.
These assumptions are quite general, and are easily satisfied by a collection of
common problems. Numerical results further demonstrated the solutions are
robust under data uncertainty.

Although these results were established with the restriction to Poisson arrivals
and feed-forward Kelly-type networks, they can be applied as good approxi-
mations to capture the high-level queueing dynamics of more general systems.
Future research can focus on more general arrival processes and general net-
work types.
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