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Abstract

Power and thermal constraints are proving to be limiting factors for computer system performance. Conventional
approaches estimate a design power and cooling limit based on consumption for a specific, worst-case workload
while operating at a nominal frequency. The system is then constrained to operate at or below this frequency
even for workloads that have lower power and cooling requirements. As a consequence real workloads pay a
performance cost for operating at a design point defined by the worst-case workloads.

In this work, we propose Dynamic Processor Overclocking as a way of reducing the performance impact of the
chosen design point for workloads that have sufficient slack in their power and cooling requirements. Dynamic
Processor Overclocking utilizes the Dynamic Voltage and Frequency Scaling (DVS) capabilities of processors
to obtain increased performance in power-constrained systems. While DVS has been widely studied in recent
years, solutions exploiting it have focused on saving energy. In contrast, our proposal incorporates DVS for
performance enhancement.

The paper focuses on the evaluation of the effectiveness of Dynamic Processor Overclocking using the SPEC
CPU2000 benchmarks as a representative set of programs. We identify the workload characteristics that impact
the benefit obtained from overclocking. We also investigate the relationship between the severity of the power
constraints and application characteristics that determine the overclocking benefits. Our work presents a new
approach to improving performance in power-constrained systems, and the insight and methodology required for
analyzing its effectiveness for interesting workloads.

1 Introduction

The last twenty years have seen a steady increase in the performance of computer systems at a cost efficiency un-

matched by any other industry. But the increasing capacity and density of components in the systems has resulted

in a steady growth in power supply and cooling requirements. This growth in power and cooling requirements

has now reached a point where power and thermal constraints are barriers to further efficient growth of computing

performance.

A computer system or a component may be power-limited by:
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� Power delivery: a limit in the amount of power that can be supplied to a module or system. This limitation

can occur because of factors such as a limit in the capacity of the wires that feed current to the module, or

the maximum current a specific voltage regulator design can deliver without a hazardous voltage drop.

� Power dissipation: a limit in the rate at which power (in the form of heat) can be removed from a system.

This limitation is directly connected with the characteristics of the cooling system (e.g., thermal resistance

and capacity of the heatsink, and airflow through the system).

In the case of a component such as a processor chip a power-delivery limitation can be from a limitation of

the DC supply or voltage regulator module (VRM) providing the power to the chip; and a power-dissipation

limitation may be from a cost-efficient heat-sink and fan design and how it matches to the Thermal Design

Point (TDP) specification for the processor. The peak processor power consumption (and heat) is related to peak

switching activity in the processor. So the conventional approach to ensure that a chip meets the constraints is to

fix the frequency of the chip (and the voltage needed to support it) at a value low enough to limit the switching

power to a value that meet the constraints. Alternatively, the power and cooling systems are designed for specific

capacities tied to an estimate of the switching activity for the chip operating at a target frequency (and voltage).

However, the switching activity and associated power consumption are highly workload dependent. Appli-

cations that cause intense core activity either from a high degree of instruction-level parallelism (e.g., high in-

structions retired per cycle) or higher speculative execution tend to have higher core power consumptions than

those that do not. At the chip-level, high level of on-chip cache activity can also increase power consumption. As

a consequence it is impossible to adopt a workload-agnostic approach for determining the power consumption

even at a fixed frequency.

1.1 Power-Constraints Impede Performance

Chip vendors typically test their chips at a desired operating frequency for a special (set of) worst-case work-

load(s) that they expect no practical workload can match in terms of power consumption, appropriately de-rate

the power consumption for realistic workloads and provide the de-rated number to system designers building

the cooling and power supply sub-systems. However, most workloads fall short of the vendor-specified power

consumption, but have to pay the price in performance by using the fixed performance level (frequency) that is

guaranteed to be safe by the vendor specifications. This fact has been known for quite a while, as it is reflected by

the popularity of static overclocking solutions that run the chips at frequencies higher than qualified by the chip
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vendor. The limitation in performance for real workloads is equally applicable when system designers have to

optimize (lower) their cooling and power supply designs for cost considerations and have to then statically pick

a lower operating frequency to meet the constraints.

1.2 Dynamic Processor Overclocking to Boost Performance

In this paper, we advocate an adaptive approach to reduce the performance impact seen by real workloads when

limited to operate at a frequency determined from worst-case workloads. Our proposal is to utilize voltage

and frequency scaling capabilities of processors to boost application performance through Dynamic Processor

Overclocking (DPO). Dynamic voltage scaling (DVS) technology was initially adopted in processors designed

for embedded devices such as IBM PowerPC 405LP [1], and Intel PXA (Xscale) processors [2]. The technology

was used for energy savings in battery operated environments.

Even as variations of the technology moved to larger system environments as with the Intel PentiumM [3]

for laptops and the IBM PowerPC 970[4, 5] in desktop and server systems, current systems exploit DVS to

mainly save power when the system utilization falls below pre-specified thresholds. The newly announced Intel

Montecito [6, 7] processor adopts a dynamic approach to processor clocking similar to what we advocate, but

managed by an embedded microcontroller, Foxton, in the processor.

With Dynamic Processor Overclocking, the system boosts the processor frequency to values higher than the

nominal whenever the power/cooling constraints are not violated. For workloads that are not operating at the

cooling/power supply limits this can often result in real performance increase. The focus of this paper to evaluate

the benefits of Dynamic Processor Overclocking and establish the relationship between the workload and related

system characteristics which determine the benefits.

The rest of the paper is organized as follows. The following section gives a brief overview of some related

work. Section 3 provides a broader description of our DPO proposal. Following that, we give a brief overview

of our experimental platform based around the Intel Pentium M processor and our evaluation methodology for

analyzing DPO’s performance impact. We then go over the results of our evaluation and end with the conclusions

in Section 6.

3



2 Related Work

There have been a number of efforts over the years examining the implementation and effectiveness of dynamic

voltage and frequency scaling for saving power in embedded systems [8, 9, 10, 11, 12, 13]. Performance-oriented

explorations include attempts to quantify and/or reduce the performance loss encountered in an energy-saving

adoption of DVS. In contrast, our approach targets performance increase from DVS in a power-constrained

environment. Some of the newer works that look at power management and its impact on performance in a

non-embedded-systems context include the following.

Miyoshi, et al., introduce the concept of critical power slope which can be used to identify the energy efficient

operating points in a system [14]. Although Miyoshi applies critical power slopes for determining which oper-

ating points to use to save energy, the same technique can be extended to cover situations when the processing

frequency is increased to increase performance.

Felter, et al, examine the possibility of maximizing performance in the presence of reduced, fixed power

budgets by dynamically changing the allocation of power between the processor and memory [15]. For example,

during memory intensive phases, more power can be allocated to the memory subsystem and less to the processor.

Kotla, et al., instead use dynamic program classification and scheduling techniques to adjust the frequency and

voltage of a system to minimize the power consumption for existing performance [16]. Ghiasi, et. al., introduces

an operating systems scheduler which dynamically places tasks on the processor which most closely matches the

application’s ideal frequency setting [17] in a multi-processor system with heterogeneous-frequency processors.

Both rely on performance counter-based prediction to guide decision making.

Uht and Vaccaro’s TEAPC uses a feedback control system to adapt to changes in system temperature by de-

creasing or increasing the frequency of the processor clock but makes no attempt to exceed the nominal frequency

in situations where the temperature remains below their threshold under full CPU load [18].

Weissel and Bellosa also use a feedback control system to develop an energy efficient scheduler, but instead

adapt to changes in the composition of the instruction mix [19]. They develop a matrix in which the rates of

memory requests and instructions per cycle map to a frequency.

Lee and Skadron develop a performance counter-based temperature model which can model system tempera-

ture while an application is running [20]. Such a model could be used to guide changes in frequency similar to

TEAPC.

Annavaram, et al., use energy per instruction to guide processor configuration in a four-processor system [21].
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A program with a high degree of thread-level parallelism can show a speed-up when run on a system consisting of

four low frequency cores rather than a single high frequency core. Although this work does focus on performance

improvement, it is applicable only to situations in which the degree of thread-level parallelism varies and the

number of available processors can be dynamically varied.

3 Dynamic Processor Overclocking

Although manufacturing technology and circuit design considerations both limit processor clock speed, increas-

ingly the first-order limitation for a particular processor family on a specific platform is power. System vendors

set the nominal clock frequency of the processor in a system by using a worst-case test of the machine’s power,

even thought there are many programs that could run at higher clock frequencies without crossing this power

limit. This slack in the power consumption for many workloads creates an opportunity to extract more perfor-

mance for these workloads by dynamically increasing the processor clock beyond the nominal value dictated by

the worst-case test. This paper studies both (a) when is it possible to run at a higher clock speed without exceeding

the power limits, and (b) the value of doing so. Using the processor performance counters to measure execution

events of the applications, we identify the characteristics that determine the extent of performance benefits from

higher clock frequencies and those characteristics that cause the application to become power-limited.

3.1 Definition

Dynamic Processor Overclocking (DPO) increases the processor frequency to values that are within its range of

correct execution but which exceed the power limitation imposed on the processor by the system environment.

It does so dynamically using the standard mechanisms that are increasingly provided by the power management

features of modern microprocessors, and it increases the clock speed only when the power consumed by running

the current workload remains below the defined power limit. For many programs and workload mixes, this means

that the processor often runs at a higher than nominal frequency since the executing work requires less power

than the worst-case workload used to set the nominal frequency.

Figure 1 illustrates the behavior of a system using dynamic processor overclocking with two possible frequency

settings, ��� and ��� , such that ���	�
��� . The top two graphs show that the power constraint is exceeded during

portions of the system timeline when the processor uses only ��� but never when it uses only �� . The third graph

depicts the behavior when the processor dynamically chooses between ��� and ��� by picking the higher value of
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��� whenever the power is low enough and ��� otherwise.

Figure 1: Example of Dynamic Processor Overclocking
.

3.2 Possible Implementations

For a DPO implementation, it is important to correctly determine when it is safe to overclock the processor. This

requires some idea of the current power consumption – either a good real-time power feedback or real-time access

to good proxies for power. The proxies could be a direct proxy, such as the current consumed by the processor

or indirect proxies such as reasonable extrapolations of processor power from certain dedicated performance

counter data.

A DPO implementations may be either in-band or out-of-band. An in-band implementation requires the soft-

ware running on the processor to have access to the real-time power feedback or its proxies. An out-of-band

implementation could be either completely in hardware or with additional firmware support. It is easier to im-

plement strong timing guarantees in an out-of-band implementation, improving the reliability of the dynamic

processor overclocking mechanism. Such an implementation also avoids the complexity of changing or getting

the owners to change a number of different operating system implementations. Montecito’s Foxton microcon-

troller is an example of an out-of-band hardware implementation for dynamic frequency adaptation [7].
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4 Evaluation Setup

4.1 Processor and system board

To study the value of DPO, this paper uses a real machine rather than simulation. The specific platform studied

here is a Pentium M-based system running Windows XP. The 90 nm Pentium M processor “Dothan” has a 32 KB

primary instruction cache, 32 KB primary data cache, and a 2MB, 8-way unified secondary cache [3]. The

processor has programmable performance counters to track events such as the number of instructions decoded or

memory references during program execution.

The processor supports dynamic voltage and frequency scaling and with drivers developed by us we can

adjust the processor frequency between its full operating range of 600 MHz to 2.0 GHz and the corresponding

supply voltage range of 0.988 V to 1.34 V; during frequency transitions, the processor stalls for up to 10 � s.

The dynamic voltage and frequency adjustment allows the system to operate throughout a range of power and

performance levels. The processor chip is paired with an Intel 855GME chipset and 512 MB of DDR SDRAM

memory on a Radisys uni-processor motherboard [22].

4.2 Power Measurement

The hardware discussed in this section allows us to measure and record the power consumption of the processor,

which is then used to determine what speed the processor can use for the current phase of execution.

We added a sense resistor between each voltage regulator module (VRM) and the processor and placed data

acquisition probes to monitor processor supply voltage and current levels. Figure 2 shows the system under test

and the ribbon cables that connect the probe points to the data acquisition system. We collect and analyze power

data on a separate computer to avoid interference with workloads executing on the system under test. A National

Instruments data acquisition system samples current and voltage values and interfaces with a Pentium III system

that executes a custom program in LabView software to capture the data in a trace file.

4.3 Performance Measurement

In addition to application execution time, we monitor performance events throughout execution for each bench-

mark. We developed software for performance data collection that first configures event counters and sets the

processor’s frequency and voltage and then spawns the benchmark under test. During benchmark execution, the
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Figure 2: Experimental platform: processor under test with sense resistors and data acquisition probes

Counter Name Description
DCU MISS OUTSTANDING Number of cycles for outstanding misses to the data cache

RESOURCE STALLS Number of cycles with resource-related stalls
L2 LD L2 cache loads: count prefetched and demand loads
L2 LD L2 cache loads: count demand loads only

INST RETIRED Number of instructions retired (used for IPC)
INST DECODED Number of instructions decoded

L2 RQSTS Number of requests for the L2 cache
BUS TRAN MEM Number of completed memory transactions

Table 1: Performance Counters

software reads performance counter values with the RDPMC instruction at approximately 15 ms intervals (lim-

ited by the resolution of the timer mechanisms in Windows XP) and then generates an output file of timestamps

and counter values.

The Pentium M performance registers hold two performance counter values. Some counters use additional

bits to specify variations of the data collected, such as including or excluding prefetched lines in a cache access

count [23]. We executed the benchmark suite multiple times to capture events for a total of eight performance

counter types. Table 1 lists the performance counters used in this study. The collection of counters provides a

view of processor activity, memory pressure, and efficiency for each benchmark.
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4.4 Workloads

We characterized the full suite of SPEC CPU2000 benchmarks, both integer and floating-point applications [24]

for this dynamic processor overclocking study. We used the “reference” input set with the runspec script

supplied by the SPEC organization to run each benchmark in the suite with appropriate options and input files.

Some programs, such as gzip, are executed multiple times with different input files. In those cases, we follow

the SPEC standard of summing the individual runs to produce a total result for the benchmark. The study uses

highly optimized binaries compiled for execution on Windows XP.

4.5 Methodology

The experiments reported here use two selected frequencies of 1.8 GHz and 2.0 GHz. These are available, well-

defined frequencies on the Dothan part that are easy to select. They are sufficiently far apart to have a noticeable

power difference, assuming the appropriate voltage scaling, as well as a measurable effect on the performance

of programs that are sensitive only to the clock speed of the processor. But they are close enough together to

represent a realistic overclocking across a range of processors and processor families.

Since the machine used in the experiments is based on commercially available parts, we have direct access to

information about its design limits. However, for the purposes of some of the experiments that we describe, we

determined a power limit using a worst-case methodology. We assume that 1.8 GHz is the nominal frequency and

the 2 GHz is the overclocking frequency. A highly optimized version of the Linpack benchmark run at 1.8 GHz

provides a value for the assumed processor power limit. The peak power from the worst-case Linpack test of

16.5 W is the power limit used in much of our analysis of dynamic processor overclocking although we report

some results with higher and lower power limits.

For each run, the instrumentation gathers 1000 processor voltage and current samples per second. System

software adjusts the frequency to the desired value, configures the performance counters, and creates a process

that will run the benchmark with the highest user-level priority. This software is also responsible for gathering

performance samples of instructions executed and elapsed cycles every 15 ms. It also raises the voltage of a

general purpose I/O pin (marker) to indicate the power instrumentation that a managed application is running.

The voltage of the marker pin will be lowered once the application signals its completion.

Using the marker signal, post-processing software combines the out-of-band power traces and the in-band

performance traces into traces with the elapsed time in milliseconds since the marker was raised, the number of
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instructions in the interval and the power in Watts for the given window. Since both input traces have different

sampling rates, this process uses linear interpolation to obtain performance sub-samples that map to the corre-

sponding power samples. The result is a performance-power trace, where each sample represents a window of

execution, which is identified by a dynamic instruction count id, incremental time in milliseconds, incremental

performance event count, and processor power consumption. To estimate the benefit of DPO, we compare the

performance-power trace obtained at 1.8 GHz, with that obtained at 2.0 GHz. We go through both traces using

the instruction id as the correlating index. So for each chunk of instructions, we select the 2.0 GHz frequency if

the power consumed by those instructions is under the power limit at 2 GHz and 1.8 GHz otherwise. The result

is a indication of the time it would take to execute those instructions in a DPO environment. If the frequency is

different than the frequency used in the previous interval, we add a penalty of 10 us to account for the change

in frequency. This process is repeated for each chunk of instructions in the trace, at which point we obtain the

duration of the application.

For the purposes of this study, the post-processing approach has a number of advantages. It does not require

additional extensions to Windows XP in the form of other device drivers. It allows the experimental environment

to collect performance counter information for explanatory and analysis purposes rather than trying to use it to

determine the power. Moreover, the emulation and post-processing approach provides information about the

limiting case as it provides a frequency setting based on perfect knowledge of which frequency can be chosen for

each sample. With post-processing we are able to consider a larger range of scenarios, including some that may

exceed the power limits of the experimental platform. Finally, post-processing reduces the amount of variability

and eliminates one potential source of experimental error.

5 Results of Dynamic Processor Overclocking

The Pentium M processor was designed with power consumption in mind, so it can operate very close to its

peak frequency without violating most systems’ peak power limits. We studied a number of different peak power

limits and analyzed performance counter and power information to identify the characteristics which determine

system behavior for DPO. We consider the performance gain at different power constraints as well as the amount

of time spent at 2.0 GHz for each power limit.

In the discussion that follows, no differentiation is made between SPECCPU2000 integer and floating point

benchmarks except in certain situations in which it is necessary to do so to explain the differences in results.
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5.1 Results for a Fixed Power Budget of 16.5 W

To understand the advantage of DPO, we used our post-processing code to impose a power limit of 16.5 W. As

indicated previously, we selected this value because it is the maximum power consumed by a highly optimized

version of Linpack [25], while running at 1.8 GHz. Selecting this value allows us to explore the advantage of

dynamic selecting a higher frequency (2.0 GHz) when the applications do not apply a heavy burden on the power

and cooling system. Linpack is commonly used as a worst case for power as its function daxpy tends to produce

a high simultaneous switching activity in most components of the processor.

Figure 3: Classification of SPEC CPU 2000 applications based on their speed-ups from Dynamic Processor
Overclocking with a 16.5 W peak power limit.

Figure 3 shows the speed-up achieved by using DPO with a 16.5 W power limit. The benchmarks are broken

down into three broad classes. The benchmarks in the leftmost class, swim through perlbmk, show less than a

4% speed-up. The center class covers the benchmarks with greater than a 4% speed-up and less than a 9% speed-

up. The benchmarks in the rightmost class see speed-ups greater than 9%. These results indicate that for all

applications, except swim, it is possible to gain some performance by using dynamic overclocking. In particular,

a system in which the nominal frequency is limited to 1.8 GHz by Linpack, DPO improves performance by a

small amount.
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Figure 4: Fraction of the total run that used the 2.0 GHz frequency with a power limit of 16.5 W.

Figure 4 provides a partial explanation for the results shown in Figure 3. It highlights the fact that most

benchmarks are able to spend a significant amount of time at 2.0 GHz even with a power constraint of 16.5 W.

Applications which spend less time at 2.0 GHz are power-limited. Each category introduced by Figure 3 is

analyzed in more detail in the following subsections.

Tables 2 and 3 present the core and memory performance of the SPEC CPU 2000 benchmarks according

to micro-architecture metrics. These tables also show the relative ranking of each benchmark, which will help

understand the benefit obtained from an increase in frequency.

5.1.1 Low benefit from DPO (below 4%)

Eight benchmarks show little benefit from using DPO at 16.5 W. These benchmarks can be divided into non-

power-limited and power-limited programs.

The non-power-limited benchmarks – swim, lucas, equake, mcf, and applu – spend 99% or more

of their execution time at 2.0 GHz, but show little performance gain. These benchmarks exhibit a number of

distinct characteristics which separate them from the power-limited group. They typically have a high values for

BUS TRAN MEM/cycle and RESOURCE STALLS/cycle. At the same time, swim, equake, and mcf all have
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Table 2: Relative ranking of the SPEC CPU 2000 benchmarks in terms of architecture performance events.
DCU M O RESOURCE INST INST

STALLS RETIRED DECODED
per cycle per cycle per cycle per cycle

art 2.29 mcf 0.876 sixtrack 1.41 crafty 1.67
mcf 1.17 swim 0.845 crafty 1.35 gzip 1.49
swim 1.12 applu 0.795 perlbmk 1.33 sixtrack 1.44
fma3d 1.1 art 0.792 mesa 1.28 perlbmk 1.41
equake 0.89 equake 0.788 vortex 1.21 mesa 1.33
apsi 0.84 lucas 0.703 wupwise 1.19 parser 1.32
applu 0.55 ammp 0.677 gap 1.12 bzip2 1.27
ammp 0.52 apsi 0.671 galgel 1.12 twolf 1.25
mgrid 0.47 fma3d 0.634 gzip 1.1 vortex 1.23
vpr 0.46 mgrid 0.604 eon 1.06 wupwise 1.23
galgel 0.38 facerec 0.518 parser 1.01 gap 1.2
wupwise 0.3 sixtrack 0.48 mgrid 0.97 eon 1.17
vortex 0.28 wupwise 0.463 bzip2 0.95 galgel 1.13
gzip 0.27 galgel 0.455 cc1 0.91 vpr 1.13
bzip2 0.27 gap 0.443 twolf 0.9 cc1 1.09
cc1 0.27 vpr 0.44 facerec 0.9 mgrid 0.97
lucas 0.21 twolf 0.422 vpr 0.75 facerec 0.9
parser 0.19 parser 0.338 ammp 0.74 ammp 0.79
facerec 0.19 vortex 0.336 apsi 0.69 apsi 0.7
twolf 0.18 bzip2 0.311 lucas 0.58 lucas 0.58
gap 0.09 eon 0.309 fma3d 0.55 fma3d 0.57
perlbmk 0.04 mesa 0.277 applu 0.44 equake 0.44
crafty 0.03 gzip 0.271 equake 0.42 applu 0.44
sixtrack 0.01 cc1 0.266 art 0.36 art 0.38
mesa 0.01 crafty 0.134 swim 0.18 mcf 0.24
eon 0 perlbmk 0.097 mcf 0.16 swim 0.18

a high number of DCU MISS OUTSTANDING/cycle. These characteristics constrain the benchmarks so that

they show sub-linear performance enhancements when the frequency is raised 10% from 1.8 GHz to 2.0 GHz.

This result is consistent with those from an earlier study by Kotla et al. [26].

The benchmark mgrid is slightly power-limited and is considered separately from both the non-power-limited

and power-limited groups. It spends 17% of its time at 1.8 GHz. Despite the fact that it spends the remainder of

its time at 2.0 GHz, the non-power limited portions do not scale linearly with frequency because of high DRAM

activity, which is on its critical path. L2 LD demands/cycle match BUS TRAN MEM/cycle, which suggests

most L2 LD demand accesses see the DRAM latency because not many L2 requests are satisfied in L2. It also

has fairly high RESOURCE STALLS/cycle.

Power-limited benchmarks display different characteristics. galgel spends 39% of time at 2GHz for only

2.36% improvement. It has a high instruction throughput combined with high L2 activity which explain its high

13



Table 3: Relative ranking of the SPEC CPU 2000 benchmarks in terms of architecture performance events.
L2 LD L2 LD L2 RQSTS MEM RQSTS

demand
per cycle per cycle per cycle per cycle

art 0.0914 art 0.0565 art 0.0572 swim 0.0122
gzip 0.0438 gzip 0.0301 gzip 0.0305 equake 0.0116
galgel 0.0389 twolf 0.0223 twolf 0.0248 lucas 0.0109
mcf 0.036 galgel 0.0193 galgel 0.0227 mgrid 0.0108
twolf 0.0314 mcf 0.0184 vpr 0.0195 mcf 0.0095
equake 0.0259 vpr 0.0182 mcf 0.0185 applu 0.0094
swim 0.0253 ammp 0.0125 cc1 0.0152 fma3d 0.0076
mgrid 0.0229 parser 0.0121 swim 0.0147 art 0.0068
vpr 0.0223 swim 0.0119 vortex 0.0144 wupwise 0.0064
parser 0.0191 equake 0.0108 parser 0.0131 facerec 0.0061
cc1 0.0189 cc1 0.0107 ammp 0.0128 gap 0.0050
ammp 0.0171 mgrid 0.0105 apsi 0.0128 apsi 0.0039
vortex 0.0143 apsi 0.01 mgrid 0.0121 vpr 0.0033
apsi 0.0138 vortex 0.0092 equake 0.0112 galgel 0.0033
wupwise 0.0126 bzip2 0.0082 bzip2 0.0105 ammp 0.0032
facerec 0.011 fma3d 0.0052 crafty 0.0098 bzip2 0.0029
bzip2 0.011 lucas 0.005 lucas 0.0088 vortex 0.0029
fma3d 0.0103 crafty 0.0046 applu 0.0068 parser 0.0020
lucas 0.01 facerec 0.0045 facerec 0.0061 cc1 0.0019
applu 0.01 wupwise 0.0045 fma3d 0.0061 mesa 0.0011
gap 0.0051 applu 0.0044 wupwise 0.005 gzip 0.0009
crafty 0.005 gap 0.0026 perlbmk 0.0047 perlbmk 0.0006
perlbmk 0.004 perlbmk 0.0025 gap 0.0039 sixtrack 0.0002
mesa 0.0014 mesa 0.001 mesa 0.0018 crafty 2.62E-05
sixtrack 0.0013 sixtrack 0.0005 sixtrack 0.0006 twolf 5.49E-06
eon 0.0004 eon 0.0002 eon 0.0005 eon 2.295E-06

power consumption. It had the second highest rates of L2 REQUESTS/cycle and L2 LD/cycle. perlbmk shows

a nearly linear speed-up for the time it spends at 2.0 GHz, but it spends only 36% of time at 2 GHz for 3.81%

improvement. It has a very high INST RETIRED/cycle and INST DECODED/cycle with few resource and data

cache unit stalls. These results indicate that it makes very efficient use of the pipeline.

Power-limited benchmarks obviously would benefit from a larger power budget. If the power budget were

unlimited, galgel would show a speedup of 6.61% and perlbmk would show an almost linear speedup of

9.44%.

It is worth noting that the low benefit category is dominated by floating point benchmarks. Only two integer

benchmarks appear in this class – mcf in the non-power-limited category and perlbmk in the power-limited

category.
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5.1.2 Moderate benefit from DPO (between 4% to 9%)

Fourteen benchmarks fall into the moderate benefit class. These are again separated into non-power-limited and

power-limited subclasses.

The non-power-limited benchmarks are similar to the non-power-limited benchmarks for the low benefit class,

but generally do not have extreme characteristics or have their performance limited in fewer ways. Some bench-

marks have moderately high RESOURCE STALLS/cycle – fma3d, facerec, wupwise, and gap – which

limit their performance. fma3d and art both have moderately high RESOURCE STALLS/cycle and high

DCU MISS OUTSTANDING/cycle but are able to achieve moderate speedups despite this. In particular, art

makes effective use of the L2 cache, thus reducing the number of memory requests. Finally, cc1, parser,

ammp, bzip2, vortex, vpr, and apsi are able to gain partial benefit from the higher frequency because as

they have a relatively lower number of DCU MISSES OUTSTANDING/cycle and/or a lower number of RE-

SOURCE STALL/cycle.

bzip2, parser, and cc1 spend less time at 2.0 GHz than the other members of this subclass and could

instead be considered as partially power-limited benchmarks. They are, on average, able to achieve an additional

0.47% to 1.1% if provided with unlimited power.

The power-limited benchmarks are characterized by a high number of INST DECODED/cycle. Both crafty

and gzip show a roughly linear improvement in performance. crafty spends only 54% of time at 2 GHz, but

gains a 5.72% improvement. gzip spends only 63% of time at 2 GHz for a 6.68% speedup. If power were

unlimited, crafty would achieve a 10% speed-up, while gzip improves its performance by 9.37%.

5.1.3 High benefit from DPO (above 9%)

Only four benchmarks show a speed-up of greater than 9% for DPO at 16.5 W, two floating point benchmarks,

mesa and sixtrack, and two integer benchmarks twolf and eon, spend all but a small fraction of their

time at 2.0 GHz and achieve nearly linear speed-ups with the increase in effective frequency. They are not

power-limited due to lower number of both INST DECODED/cycle and L2 RQSTS/cycle. They also suffer little

impact from the latency of accessing higher levels of memory hierarchy at 2.0 GHz because they have a low

number of low DCU MISS OUTSTANDING/cycle and BUS TRAN MEM/cycle.
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Figure 5: SPEC CPU 2000 performance using Dynamic Processor Overclocking (DPO) with different power
limits.

5.2 Impact of Power Budget On Speed-up

Figure 5 shows the speedup which can be gained when DPO is run with different power budgets. Each segment

within a column shows the incremental speed-up over the lower power budget. For example, the benchmarks

swim, lucas, equake, mcf and applu showed little speed-up and were not power-limited at 16.5 W. They

actually gain most of their performance benefit with a power budget of only 14.5 W. At the other extreme,

galgel requires a power budget of 19 to equal its maximum speed-up when running at 2.0 GHz with an

unlimited budget. In fact, six benchmarks receive a significant performance improvement with a larger power

budget – gzip, crafty, parser, perlbmk, bzip2, galgel – but the remainder see only a small or no

speed-up. In particular, gzip, perlbmk, and galgel have the property that their performance gain is directly

proportional to the relaxation of the imposed power limit.
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5.3 Summary

Our results show that the benefits of Dynamic Processor Overclocking (DPO) are closely linked to extent of

power constraint on the system and the characteristics of the application. Our analysis is presented in two phases.

First, we examined the impact for a specific processor power budget determined as the peak power consumed

by a power-intensive workload (Linpack) at the maximum operating frequency (greater than the nominal). This

helped us examine in detail the relationships between the application characteristics and dynamic processor

overclocking in the context of a power constraint. Next, we examined the impact of the value of the power

constraint by examining the benefits for multiple budgets. Our conclusions from both can be summarized as

follows:

� The application characteristics that determine the extent to which a workload can benefit from overclock-

ing are related to how efficient the application makes use of the memory hierarchy and processor pipeline.

Applications that are impacted by the higher latency of the higher levels of the memory hierarchy and

encounter resource stalls when using the pipeline are limited in how much benefit they get out of over-

clocking, e.g. swim, lucas, equake, applu, mcf.

� As a corollary of the above, applications that are not constrained by the memory hierarchy characteristics

or by resource limitations in the processor pipeline are best suited to take advantage of overclocking, e.g.

eon, twolf, mesa and sixtrack.

� However, in addition to the above application characteristics the extent of the system-imposed power con-

straint has a profound impact on the benefit gained from overclocking. For example, gzip, crafty,

perlbmk and galgel need significantly relaxed power constraints to attain their true benefit from over-

clocking. These applications are characterized by heavy use of the processor pipeline (high rate of decoded

instructions) and the memory hierarchy (high rate of cache requests, not limited by latency of the hierar-

chy) that increase their power requirements. So while, these could scale their performance with higher

frequencies they require additional power margins because of their heavy usage rate leading to higher

power consumption.
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6 Conclusions

We propose the use of Dynamic Processor Overclocking for boosting application performance in power-constrained

systems. Dynamic Processor Overclocking (DPO) uses the DVS capabilities of a processor to obtain increased

performance for an application by increasing the processor frequency when there is a slack with respect to the

power constraint. In contrast to existing systems that use DVS solely for energy savings we adopt a DVS-based

solution focused on performance improvement. Our work provides the first evaluation of a DVS-based solution

for performance improvement. We evaluated the benefits of Dynamic Processor Overclocking with the SPEC

CPU2000 benchmarks on a Pentium M-based platform for a modest exploitation in frequency increase of 11.1%

(from 1.8 GHz to 2 GHz). The range of performance improvement ran from 0% to 10.1%. With application

performance analysis using the processor performance counters, we are able to identify the application character-

istics that determine the extent of performance improvement. We also show the relationship between the level of

power constraint and the performance impact. Our work quantifies the value of DPO to tackle the performance

limitations imposed by power constraints and provides an analysis approach for estimating the benefits of this

solution for any new application.
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