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ABSTRACT
This paper provides an overview of the Blue Matter application de-
velopment effort within the Blue Gene project that supports our
scientific simulation efforts in the areas of protein folding and
membrane-protein systems. The design philosophy of the Blue
Gene/L architecture relies on large numbers of power efficient
nodes (whose technology is derived from the world of embedded
microprocessors) to enable packing of many such nodes into a
small volume to achieve high performance. In order for an applica-
tion to exploit the potential of this architecture, the application must
scale well to large node counts. Because the scientific goals of the
project entail simulating very long time-scales, up to microseconds,
strong scaling of a fixed size problem to these large node counts is
a requirement. In pursuit of this objective we have considered a va-
riety of parallel decompositions and explored ways to exploit and
map algorithms onto the two primary high performance intercon-
nects provided by the Blue Gene architecture, the 3D-torus network
and the collective network. Our current version of the applica-
tion continues to speed up through 4096 nodes and is being used
for studies of a protein/lipid system (for which some results have
already been published) and for protein folding/unfolding simula-
tions.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—Biol-
ogy and Genetics; D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel Programming

General Terms
Algorithms, Performance

Keywords
Parallel Programming, N-body Simulations, Biomolecular Simula-
tion, Molecular Dynamics

Figure 1: Schematic view of the ASIC that forms the build-
ing block for the Blue Gene/L system. Off-chip connections,
including those to the DDR memory, torus network, and collec-
tive network are shown at the bottom of the figure.

1. INTRODUCTION
From its inception at the end of 1999, the Blue Gene project has had
an application effort to support its scientific goal[1] of using large
scale simulation to improve our understanding of protein folding
mechanisms and other biologically important phenomena. That ap-
plication effort has always looked for ways to exploit features of the
machine architecture as part of the effort to improve performance
and scalability.

The scientific goals of the Blue Gene project require biomolecular
simulations of modestly sized systems (10,000–100,000 atoms) for
long time scales (hundreds of nanoseconds to microseconds) and
because the philosophy of the Blue Gene/L hardware design has
been to use massive numbers of power efficient CPUs to achieve
high performance, the Blue Matter[9] application effort is required
to be able to demonstrate strong scaling of fixed size problems to
large node counts. Results obtained from the exploitation of proto-
type Blue Gene/L hardware for production scientific use in the sec-
ond half of 2004 were recently published[16] and additional work
is being initiated as more hardware becomes available.

2. BLUE GENE/L SYSTEM OVERVIEW
Blue Gene/L[10] is a massively parallel supercomputer developed
at the IBM T.J. Watson Research Center in collaboration with Lawrence



Livermore National Laboratory. In contrast to other current mas-
sively parallel supercomputers, the building block of BG/L is not
derived from the fastest (and highest power density) technology
available, but rather from the world of embedded microprocessors.
Except for off-chip double data rate (DDR) memory and link chips
that enable the partitioning of the machine, all of the functional-
ity for a BG/L node is contained on a single ASIC chip shown
schematically in Figure 1. This chip operates at a clock frequency
of 700 MHz and has two PowerPC 440 CPUs with associated dual
floating point units. An on-chip L3 cache comprising 4MB of
DRAM is typically only 30 cycles away from registers on L1/L2
cache misses. All of the circuitry for the communications networks
is also on this chip and the companion link chip. The core BG/L
machine is comprised of two classes of nodes, compute nodes and
I/O nodes. The I/O nodes are not counted when sizing the compute
capacity of BG/L; they only act as the gateway for communication
to the external world and the ratio of I/O nodes to compute nodes
can be varied.

BG/L has five networks, two of which are of particular interest to
the application developers: the torus network and the collective net-
work. The three-dimensional torus has links between each node
and its six neighbors while the collective network enables low la-
tency broadcast and reduction operations as well as providing the
path for I/O to external devices. Applications communicate with
the outside world via I/O nodes; these are additional BG/L nodes
that are connected to the collective network (but not the torus net-
work) and also have a Gigabit Ethernet connection to the outside
world.

Two modes of operation are supported by the system software[14]:
(1) “coprocessor mode” which runs a single MPI task on each com-
pute node, and “virtual node mode” which runs two MPI-tasks on
each compute node. The compute nodes run a specialized Compute
Node Kernel (CNK) that supports a subset of posix calls and only
allows a single thread of execution on each CPU. The I/O nodes
run a port of PowerPC Linux.

3. BIOMOLECULAR SIMULATION
Biomolecular simulation can be used to obtain insights into micro-
scopic phenomena that may be unavailable from physical experi-
ments[12, 1]. However, like all simulations, their usefulness de-
pends on the validity of the models used and careful validation of
observables computed from simulations against experimental data
is essential.

One of the most commonly practiced forms of biomolecular sim-
ulation is molecular dynamics[2]. Molecular dynamics is an in-
stance of n-body simulation in which the dynamical evolution of
a system of particles is computed by successively computing the
forces on each particle, numerically integrating the classical equa-
tions of motion to obtain updated positions and velocities for each
particle, and then repeating the cycle by recomputing the forces on
each particle based on the updated positions. The models used to
compute the forces on each particle are known as “force fields” in
the context of biomolecular simulation.

The classes of interactions typically included in a force field are
enumerated in Table 1. These include forces between covalently
bonded particles such as bond stretches between pairs of atoms, an-
gle bends defined by a triple of particles, and torsions defined by a
quartet of particles. In addition, non-bonded forces such as electro-
statics and van der Waals (typically modeled, along with hard core

repulsion, by a Lennard-Jones 6-12 potential) are also included.
Current practice in biomolecular simulation involves the use of pe-
riodic boundary conditions. The bonded and Lennard-Jones inter-
actions are weak enough at large distances that they are just set to
zero beyond some cut-off distance, often using a smooth cut-off
function and the periodic boundary conditions can be treated using
a minimum image convention in which for each particle in the cen-
tral cell, the force will be computed with the nearest image (either
in the central cell or in one of the 26 adjoining cells) of every other
particle within the cut-off distance. However, the same finite range
cut-off treatment applied to the long-range electrostatic forces can
lead to unphysical behavior[4] and requires the use of a different
technique.

The potential energy of a system of point charges (where the system
is electrically neutral) with periodic boundary conditions can be
written as

′∑
{n}

N∑
i, j

qi q j

|rij + n|
(1)

where qi is the charge on the i th particle and n belongs to the set
of lattice vectors {l u + m v + n w} where l,m, and n are integers
and u, v, and w are the lattice basis vectors. The ′ on the first
sum indicates that when n = 0, the terms in the double summation
with i = j should be excluded. This sum is only conditionally
convergent; that is, the value of the sum depends on the summa-
tion order. The Ewald summation technique[2] and related tech-
niques rewrite the potential sum as a pair of summations; one in
real space consisting of a summation of “screened” electrostatic
potential terms that is unconditionally convergent and the second, a
sum that is expressed as a sum of Fourier transformed terms (this is
often called the “reciprocal space” sum). The most commonly prac-
ticed techniques for handling electrostatics with periodic boundary
conditions, particle-mesh methods such as Particle-Particle-Particle
Mesh Ewald (P3ME) technique[6], approximate the actual charge
distribution by a set of weights on a uniformly spaced mesh. This
allows use of the Fast Fourier Transform (FFT) in carrying out the
necessary computation which is a convolution of the charge distri-
bution with a kernel chosen to give good accuracy with the uniform
mesh approximation used for the charge distribution.

4. COMPUTATIONAL CHALLENGES
In order to support the goal of using simulation to access longer
time scales routinely, the Blue Matter application has to provide
good scalability to thousands of nodes for fixed size problems. Key
challenges exist in the areas of load balancing and global data de-
pendencies. Load balancing challenges arise in the context of com-
puting finite-ranged non-bond real-space interactions. Global data
dependencies manifest themselves through the 3D-FFTs used in
carrying out the convolution required by the P3ME technique.

To address load balancing, we have been carrying out explorations
of different parallel decompositions, progressing from the straight-
forward to the more complex. The first decomposition investigated
was an example of a “replicated data” decomposition[17] in which
we used the fast hardware collective network on BG/L to globalize
the positions of all the particles in the system and then used ei-
ther the collective network or the torus network to perform a global
floating point reduction of all the forces on each particle. In ef-
fect we had two global arrays, one of positions and one of forces,
which allowed us to distribute the computation of all interactions
arbitrarily across the entire machine. This made load balancing



Force Class Description and Examples Communication
Bonded Forces between covalently bonded molecules–includes bond

stretches, angle bends, and torsions.
Limited range within a covalently
bonded molecule (typically within a
graph distance of four)

Real Space Non-bond Lennard-Jones: UL−J (r) = 4 ε
[(

σ
r
)12

−
(
σ
r
)6

]
, cut-off

electrostatics, real space interaction portion of Ewald and re-
lated techniques

Limited range in simulation space

Reciprocal Space Fourier space portion of long range electrostatic forces
treated by the Ewald summation technique or related
Particle-Particle-Particle-Mesh (P3ME) technique

global communication required for com-
putation of 3D-FFTs

Table 1: This table summarizes the different classes of forces that must be computed in molecular dynamics, provides some examples
in each class, and specifies the communication or data dependency characteristics of each class. The bonded and real-space non-
bond forces have data dependencies that are local in simulation space and hence can take advantage of an appropriate domain
decomposition to achieve locality of communication. The computation of the reciprocal or Fourier space contribution to the force
on a particle requires knowledge about the position of every particle in the system. This global data dependency comes about
through the computation of the convolution of the charge distribution with the kernel required to solve for the effects of the long
range electrostatic forces in a system with periodic boundary conditions. In the case of the Particle-Particle-Particle-Mesh (P3ME)
technique used in this work, the convolution is computed by first approximating the actual charge distribution by weights on a
regular mesh, then computing the convolution through use of a forward and inverse FFT.

very simple, but our scalability was limited to 1024 nodes by the
performance of the global floating point reduction. For the position
globalization, we were able realize 90% of the hardware bandwidth
in the collective network via an optimized MPI collective devel-
oped for Blue Gene/L[3].

While communications issues determine the ultimate scalability of
the application, total time to solution for many configurations of
machine partition and system size is strongly influenced by floating
point performance. The dual floating point unit on the Blue Gene
ASIC chip allows the issue of SIMD-style instructions on appro-
priately aligned pairs of double precision numbers[18]. In library
routines such as a highly optimized serial FFT implementation[13]
and selected linear algebra kernels[5], very high efficiencies have
been achieved using compiler intrinsic functions. On selected ker-
nels of special interest to molecular dynamics, good results have
also been obtained via C++ source code restructuring[8]. These
kernels include vectors of reciprocal square roots and vectors of
reciprocals as well as vectors of special functions. Although the
dual floating point unit can be viewed as a two element vector unit,
the five cycle latency in the floating point pipeline actually makes
it advantageous to have ten data independent streams of computa-
tion in play. The compiler challenges involved in identifying these
streams of computation and efficiently scheduling instructions to
keep data resident in the floating point registers as well as address-
ing the alignment requirements imposed by the dual floating point
unit in generic numerical codes continue to a topic of research and
development activity.

5. CURRENT WORK AND RESULTS
Our current exploration involves a variant of a “volume” decom-
position in which the three dimensional simulation domain is di-
vided into volume elements that are mapped directly onto BG/L
nodes so that locality in simulation space is equivalent to locality
on BG/L’s 3D-torus network. In this case we achieve load balanc-
ing for the real-space interactions by first assigning the interaction
between two atoms (or groups of atoms) to be carried out on the
node containing the point (in simulation space) that lies midway
between the two interacting atoms (or groups) as shown in Figure 2
and associating a cost with that position. Then we carry out suc-

cessive orthogonal bisections of simulation space in such a way as
to give equal loads in each section[15]. This process of orthogo-
nal recursive bisection (ORB) is carried out until there are enough
sections so that we can associate each volume section with a BG/L
node and locality is preserved. The position broadcast and force
reduction can now be local operations on the torus network since
positions only need to be broadcast to nodes containing portions of
simulation space within half the cutoff distance of the originating
atom or atoms. Of course the quality of the load balance will de-
crease with time, but measurements indicate that the degradation is
slow enough to allow the simulation to proceed for many time steps
before a regeneration of the mapping is necessary.

Although we are running in co-processor mode, we can make use
of both cores to allow a limited amount of overlap between commu-
nication and computation. Because the real-space non-bond com-
putations and the reciprocal space operations can proceed indepen-
dently, we overlap them by off-loading the real-space non-bond op-
erations (which are pure computation) to the second CPU while
carrying out the communications-intensive reciprocal-space oper-
ations on the first CPU. This “dual core” mode of operation gives
significant improvements when the real-space and reciprocal-space
operations take comparable amounts of time.

Figure 3 shows the scalability of the major components of a time-
step for a system with 43,222 atoms comprising a protein, Rhodopsin,
embedded in a lipid membrane with water surrounding it. Except
for the real space non-bond data, the measurements were made in
dual core mode with the real space and reciprocal (k) space opera-
tions overlapped. The real space measurements were made in sin-
gle core mode because trace data is not available from the second
core.

It remains to describe the reciprocal space operations that are com-
mon to both of the decompositions discussed above. The P3ME
method as implemented in Blue Matter requires two 3D-FFTs for
each iteration. A 3D-FFT can be computed by the “row-column”
method involving successive evaluations of 1D-FFTs along one
axis followed by a transpose of the data to permit one dimensional
transforms of the data along another axis. To minimize commu-



(a) Interaction Centers

(b) Spatial Decomposition

Figure 2: Figure (a) illustrates the relationship of the particle
positions (large dots) and the interaction centers (small dots)
in simulation space. The interaction centers are placed at the
mid-point between each pair of particles that fall within the
cut-off radius. A dashed circle with radius equal to the cut-
off radius chosen is drawn around one of the particles. Static
or “structural” load balancing is carried out by using optimal
recursive bisection to partition the simulation volume into sub-
volumes that contain approximately equal computational bur-
dens. The computational burden of a sub-volume is computed
by summing the computational burden of each interaction cen-
ter contained within that sub-volume. Figure (b) gives a view
of the spatial decomposition showing the broadcast zones for
two nodes superimposed on the spatial decomposition of the do-
main onto all nodes (two-dimensional view for simplicity). The
nodes that contain areas of simulation space within Rb of the
volume element assigned to Node A are shown with one kind
of hatching while those nodes that contain areas of simulation
space within Rb of the volume element assigned to Node B are
shown with another type of hatching. The region of overlap be-
tween these two areas is shown with cross-hatching. The broad-
cast radius Rb > Rc/2 where Rc is the cutoff radius. The in-
teraction between a particle stored on Node A and a particle
stored on Node B can be computed on any of the nodes in the
overlap (cross-hatched) region.
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Figure 3: Scalability of major components of a time-step for
the Rhodopsin system. The data were taken in dual core mode
except for the “Real Space” data which had to be taken in single
core mode because the trace facility only works on “Core 0”
and in dual core mode the real space non-bond interactions are
handled on “Core 1”.
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Figure 4: Performance measurements of the execution time for
the volumetric 3D-FFT[7] running on MPI and on low level
communications interfaces derived from the BG/L Advanced
Diagnostics Environment[11].

nication, typical distributed 3D-FFT implementations use a “slab”
decomposition in which the three dimensional FFT mesh is parti-
tioned along a single mesh coordinate axis so that each node has a
“slab” of the entire FFT mesh. This allows use of an optimized 2D-
FFT on each node and a single transposition of the data followed by
a series of 1D-FFTs. For our application, typical FFT sizes range
from 643 to 1283 which means that a distributed 3D-FFT using the
“slab” decomposition would not scale beyond 128 nodes for a 1283

FFT. Since our target is scalability to thousands of nodes, another
approach had to be taken.

At each phase of the “row-column” method, there are a large num-
ber (N 2 for a 3D-FFT of dimensions N × N × N ) of indepen-
dent 1D-FFTs to be computed. Distributing these 1D-FFT com-
putations over the nodes in the system would allow scalability of
the 3D-FFT to much larger node counts, but at the cost of three
communications-intensive transpose operations rather than one. With
efficient use of the torus network on Blue Gene/L, we have been
able to demonstrate an extremely scalable distributed 3D-FFT im-
plementation[7]. As Figure 3 shows, the time required to carry out
the reciprocal-space operations begins to become the limiting fac-
tor for an iteration at the highest node counts.



The current MPI-based implementation of the 3D-FFT takes ad-
vantage of a highly optimized MPI ALLTOALLV implementation
developed for BG/L[3]. This MPI collective, which is function-
ally equivalent to a collection of point-to-point messages between
all of the nodes, is used in the implementation of the distributed
data transpose required by the 3D-FFT. For the transpose, in most
regimes, the execution time is limited by the bisectional bandwidth
of the machine, therefore a fixed size FFT will speed up as p2/3

where p is the number of nodes and we assume that the nodes are
arranged in a cubical array. However, at the limits of scalability for
the FFT, where individual messages may contain only a single com-
plex number, the software and hardware overheads associated with
sending a single packet become important and we have investigated
whether the use of lower-level interfaces can improve performance.
Figure 4 compares the execution time obtained for 643 and 1283

FFTs using MPI and using low level (hardware packet) interfaces
derived from communications routines developed for hardware per-
formance testing and diagnostics[11]. The data show that at very
high node counts, the implementation using low level interfaces
currently outperforms the MPI-based implementation.

6. SUMMARY
We have provided an overview of the Blue Matter molecular simu-
lation application that was developed in support of and in conjunc-
tion with the Blue Gene science program. As part of that effort we
have developed a new variant of spatial decomposition for n-body
simulations that permits effective load balancing of real space inter-
actions and which is compatible with a three-dimensional mesh/torus
connected machine. To address scalability challenges encountered
in correctly treating long range electrostatic interactions with peri-
odic boundary conditions, we have demonstrated a distributed 3D-
FFT that, for the sizes required for our application, continues to
scale well to many thousands of nodes. These developments have
allowed us to achieve sub-ten millisecond time steps on a 43K atom
membrane protein system using a 4096 node Blue Gene/L partition
which enables running microsecond simulations in less than two
months. Scientific results have already appeared resulting from this
work and further scientific studies are underway on additional sys-
tems of fundamental biological interest.
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