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Abstract

We propose an approach for modeling and analysis of operational risks in financial institutions.
The importance of understanding and mitigating operational risks had been gaining a growing at-
tention recently (1) and led to the necessity for providing systematic foundations for modeling such
risks. In this paper, we propose a methodology for modeling operational risk based on business
process models. By connecting the generation of a probabilistic network with the business process
model, this approach enables changes in the operational risk model whenever different aspects of the
business process in the financial institution changes. In addition, this can enable progress toward
continual operational risk management, by automatically changing the parameters of the business
process model based on monitoring the business process performance and cascading the change in
the operational risk model, thereby synchronizing the model changes with the corresponding business
process changes. We demonstrate this methodology with some examples including IT related risk,
infrastructure and outsourcing related risks.

Keywords: Operational risk management, business processes, operational losses, risk modeling, prob-
abilistic networks.

1 Introduction

The growing interest in operational risk management has been driven by a variety of factors, including
recent high profile incidents such as those that occured in Barings Bank and the introduction of new
regulations requiring businesses to measure and manage operational risk, such as the New Basel Capital
Accord, known as Basel II (1). A prevailing definition of operational risk is given by the Basel Committee
on Banking Supervision as ”the risk of loss resulting from inadequate or failed internal processes, people
or systems or from external events” (2). Financial institutions are endeavoring to develop approaches to
measure, assess, monitor and manage their operational risks. This paper focuses on modeling approaches
to assess and quantify operational risks.

Current approaches to operational risk modeling have to a large extent based on (a) statistical
modeling of rare events and extreme value theory (3) (4), (5), (6)and (b) Bayesian networks (8). Com-
mercial software is also available based on these techniques (see for example, (9) and (10)). In the
statistical approach, operational loss events are collected in a loss database which is used to determine
and fit appropriate frequency and severity distributions for loss events. These distributions are used
in Monte-Carlo simulations to predict future operational loss distributions. This approach is useful for
measuring operational risks and is a commonly used approach for economic capital allocation which
is one of the key requirements for Basel II compliance. A key issue with the statistical approach is
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that limited data is available on operational risk events and enterprises are seeking to address that
either by initiating collection of loss event data and creation of operational risk loss databases based on
intra-enterprise risk events and/or by using external loss databases from software vendors such as SAS,
FitchRisk etc. Statistical approaches are however of limited utility for operational risk management
since they do not provide insight as to how different factors relating to people, systems and processes
can be modified to control and manage operational risk. Causal models such as Bayesian networks are
useful in this context to assess and predict the effect of different causal factors on the overall opera-
tional risk. A technical issue with the Bayesian network approach is that the inferencing problem in
Bayesian networks is in general a computationally hard problem, i.e. NP-hard problem, which implies
that the computational effort grows exponentially as a function of input parameters such as risk events
etc. (12), (13). Researchers are addressing this by developing more efficient algorithms for inferencing
in Bayesian networks. A more fundamental limitation of this approach is that there is no systematic
method known to construct these networks linked to business processes of a financial institution and
hence require considerable effort to develop and maintain these models since the business processes and
its supporting infrastructure comprised of people, systems etc. undergo constant change.

In this paper, we propose an alternative approach for operational risk modeling based on automati-
cally developing a probabilistic network based on a description of the operational business processes in
an enterprise, knowledge of its underlying resources, physical and logical infrastructure and the risks
contained therein and subsequently solving the network. The advantage of this approach is that all
enterprises seek to map and model their business processes. By connecting the generation of the proba-
bilistic network with the business process model, this approach enables changes in the operational risk
model whenever different aspects of the business process in the financial institution changes. In addition,
this can enable progress toward continual operational risk management, by automatically changing the
parameters of the business process model based on monitoring the business process performance and
cascading the change in the operational risk model, thereby synchronizing the model changes with the
corresponding business process changes. This methodology can further be used as a basis to evaluate
different countermeasures for operational risk control and mitigation. A general methodology for risk
control consists of three steps: identification of risks, quantitative analysis of identified risks and the
construction of a plan to control the risks, given a risk tolerance level. The first step involves identifying
the causes of operational risk, then estimating the frequency and severity of risk events. The second step
includes analyzing various identified risk events and their impacts on business operations by a sound
quantitative approach that will reveal the distribution of loss. It is at this step that different models
enter. In the third step dominant risk events are identified and the cost-effectiveness of various risk
countermeasures are estimated, on the basis of which an optimized risk control strategy is determined.

In Section 2 of the paper, we describe the overall proposed approach and provide a problem for-
mulation. Sections 3 and 4 provide approaches for addressing task specific and flow specific risks and
the operational risk computation methodology. Section 5 provides illustrative examples and describes
how this method can be used for assessing countermeasures for operational risk management. Section
6 describes specific issues in using the proposed method for modeling outsourcing risk and illustrates
it with an example. In Section 7, we make some concluding remarks and provide directions for further
work.

2 Proposed Methodology

The meta-model underlying our proposed approach is outlined in Figure 1. In general, a business process
can be defined using combinations of constructs, such as processes, sub-processes, tasks (alternatively
referred to as activities), resources, forking/decisions, merge/joins, etc. Using these constructs, the
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Figure 1: Meta-model for Operational risk modeling

process can be modeled in different layers of granularity in a hierarchical manner. We can incorporate
the notion of operational risks with business processes. Operational risk events such as failure of an IT
infrastructure component, natural disaster etc. can impact the business process resources. In general,
risk events can also potentially impact activities or processes or even cause direct financial losses - for
example employee fraud. The reader is referred to (2) for a categorization of different types of risk
events. Risk events are described by an associated frequency distribution and severity distribution (for
example, duration of an outage resulting from a risk event). Risk events may also have root causes
associated with them. Operational risk can be managed by applying risk controls, countermeasures
and mitigants. In the next subsection, we describe a formulation of this model with the objective of
quantifying the operational risks. Figure 2 describes a simple business process for illustrative purposes
that will also be used later in this paper to illustrate our methodology (this is a simplified version of
a Broker / Dealer process). This sub-process has six tasks. Sending information to the custodian and
clearinghouse requires a communication gateway which has a risk of failure. The number of transactions
per unit of time (hour) is uncertain, but can be described by some probability distribution. A fixed
revenue is generated for every completed transaction.

2.1 Formulation

The essential elements of our operational risk model are
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1. Events E1, E2, . . . , EK which may cause failures. We consider the occurrence of failures during
some fixed time period (say a month or a year). Event Ei, 1 ≤ i ≤ K occurs Li times during
a period of interest, where Li is a random variable which distributed according to a probability
distribution FL,i(l), l ∈ N, independently for all i: FL,i(l) = P(Li = l). Each time an event Ei

occurs, its severity is also a random variable Di with the probability distribution FD,i(t), t ≥ 0.
The severity can for instance represent the duration of a resource failure or even potentially the
financial impact of specific risks like fraud.

2. A set of tasks, denoted henceforth as T1, T2, . . . , TN .

3. A set of resources, denoted henceforth as r1, r2, . . . , rJ .

We assume that in normal state all the tasks Ti, 1 ≤ i ≤ N are continually operated. The cost
is incurred if one or several tasks are interrupted. In particular, we associate costs C1, C2, . . . , CN

with non-execution of tasks T1, T2, . . . , TN . Precisely, we mean that each Ci is a random function
Ci : R+ → R+. The value Ci(t) represents the cost of not operating task Ti for t time units. The
probability distribution of Ci is denoted by FC,i(x, t), t ≥ 0. Thus

FC,i(t) = P(Ci ≤ x|duration of failure of task Ti = t).

A typical case of this is linear costs: Ci(t) = Cit for some random constants Ci. This is a realistic
assumption when operational losses depend on the number of transactions that have not been processed,
which is a typical case. But in general, this can take any functional form, such as a step function. In
the linear case FC,i(x) represents the probability distribution of the cost of not operating task Ti for
one time unit.

The three sets {Ei}, {Ti}, {ri} represent three layers of a network which we represent as a directed
graph. The node set of this graph is the union {Ei} ∪ {Ti} ∪ {ri}. There is a directed edge from event
Ei to resource rj if and only if the adversary event Ei causes a disruption of the resource rj . Construct
an K × J matrix E where (i, j) entry is one if the occurrence of the event Ei disrupts the resource rj

and zero otherwise. In other words the corresponding entry is one if there is a directed link from Ei into
rj and zero otherwise. em

i represents an m-dimensional unit vector with unity in i-coordinate. Also,
let em denote the m-dimensional vector of all ones. sgn(x) is the standard sign function that takes the
value 1 or −1 depending on whether x is positive or negative and sgn(x) = 0, x = 0. When this function
is applied to a matrix, it is applied to every element in the matrix. Then for every event Ei we can
represent the collection of resources affected by event Ei as

r(Ei) , (eK
i )tE .(1)

In particular r(Ei) is a J-dimensional zero/one vector with j-th entry equal to unity iff resource rj is
affected by event Ei. We also think of r(Ei) as a subset of {r1, . . . , rJ}.

Similarly, we construct a directed link from ri to Tj if the disruption of the resource ri causes non-
execution of task Tj . We denote by R a J × N zero/one matrix with (i, j)-th entry equal to one if
resource ri causes non-execution of task Tj (there is a directed link from ri to Tj) and zero otherwise.
Then for every resource ri the collection of affected tasks can be written as

T (ri) , (eJ
i )tR(2)

Then we may combine (1) with (2) to conclude that for every event Ei the collection of tasks not
executed if the event Ei occurs is

T (Ei) = sgn[(eK
i )tER].(3)
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The function sgn is utilized since the vector (eK
i )tER contains multiplicities – a given event can affect

a given task via many resources. In addition

T = sgn[ER],(4)

gives the matrix whose (i, j)-th component is unity if event i affects task j, and is zero otherwise. We
thus summarize our derivations as follows.

The three layers {Ei}, {Ti}, {ri} of our network as well the directed links between them, frequency
F , severity (duration) D and the cost functions C constitute our Causal Network for Operational risk
based on the business process.

3 Computation of operational losses

With the model constructed in the previous section, our next goal is to compute the risk exposure,
given the primitives of the model. Specifically, our goal is to compute the probability distribution of
the operational losses. While the model seems on the surface to be quite complex, it turns out that the
required computations can be performed using fairly efficient computational procedures involving linear
algebraic operations and convolution operation on probability distributions. This is particularly true
in a special case when cost functions Ci(t) are linear: Ci(t) = Cit. Thus, throughout this subsection
we assume that this is indeed the case. Then formula (4) implies that if an operational risk event Ei

occurs once and has a duration of D time units, then the overall operational losses are found as∑
j∈T (Ei)

CjD.

The occurrence of Ei event Li times with durations Di
1, D

i
2, . . . , D

i
Li

leads to cost∑
j∈T (Ei)

Cj

∑
1≤k≤Li

Di
k,

and the overall cost is found as

Ctotal ,
∑

1≤i≤K

(
∑

1≤k≤Li

Di
k)(

∑
j∈T (Ei)

Cj),(5)

Applying independence of the random variables involved, we obtain expected overall operational loss as

E[Ctotal] =
∑

1≤i≤K

E[Li]E[Di]
∑

j∈T (Ei)

E[Cj ].

For computational purposes it is usually convenient to represent the expression above in matrix form.
Thus let L,D denote the diagonal matrices corresponding to vectors (E[Li]), (E[Di]) respectively, and
let C denote the vector with components E[Cj ]. Then we may write the total cost in matrix form as

E[Ctotal] = (eK)tLDTC,(6)

where the matrix T was defined in the previous section. Thus we obtain a very simple matrix form
solution for the expected operational losses corresponding to our model.

Yet, the expectation is in many cases not a very relevant quantity, especially in the operational risk
context. We need to determine the overall operational loss distribution that can be used to infer the
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likelihood P(Ctotal > x) of the overall cost Ctotal exceeding a threshold x. These tails probabilities then
can be used for finding an appropriate level x for which the exceedence probability P(Ctotal > x) is
acceptably small (based on internal risk policies, or Basel Accord recommendations). Finding the tail
probabilities for the expression (5) is a straightforward application of convolution operations, and the
pseudocode for this is given in Fig ???

3.1 Computation of the loss function

The computation is carried out in the following steps.

Step 1. Compute T (Ei) using Eq.(3) - the collection of tasks (j = 1, . . . , N) not executated if event
Ei, i = 1, . . . ,K occurs.

Step 2. Compute the probability distribution for the sum of durations of all event i occurrences,

P(Di = n) =
∑
l≥0

P(Li = l)P(
∑

0≤k≤l

Di
k = n|Li = l),

where
∑

0≤k≤l D
i
k = n is the probability distribution for the sum of durations of l occurrences of

event i given by the l-fold convolution of P(Di = n).

Step 3. Compute the probability distribution for the sum of durations of all event occurrences that
cause non-execution of task j,

P(Dj = n) = P(
∑

i:j∈T (Ei)

Di = n),

which is obtained by convolution of the random variables Di s.t. j ∈ T (Ei).

Step 4. Compute the loss distribution due to non-execution of task j, which is given by

P(Sj = nCj) = P(Dj = n).

Step 5. Rescale or resample the loss distribution P(Sj = nCj) for all j. Choose ∆C > 0 such that
kj = Cj/∆C, j = 1, . . . , N, are integers. Then define

fj(m) ,

{
P(Sj = m∆C) = P(Sj = nCj), m = nkj ,
0, o.w.

Step 6. Compute the loss distribution due to non-execution of all tasks given by the convolutions of
fj(m), j = 1, . . . , N , i.e.,

P(Stotal = m∆C) = f1(m) ∗ f2(m) ∗ · · · ∗ fN (m).

Note that alternative methods could be used for Step 5.
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3.2 Computation of the losses in transform domain

It is at times useful to solve for the distribution of random quantities in transform domains. In a special
case when the cost function Cj is not only linear but deterministic, the corresponding Laplace trans-
form equation for Ctotal comes out again to be quite simple due to the simple linear structure of the
equation and independence assumption on probability distributions. We introduce the moment gener-
ating function of our random quantities: gL,i(z) =

∑
l≥0 zlP(Li = l), gD,i(z) =

∫∞
0 eztdFD,i(t), gC,i =∫∞

0 eztdFC,i(t). We assume that each cost rate Cj takes a deterministic value cj and for simplicity we
let

c(i) =
∑

j∈T (Ei)

cj .

Recall the following property of moment generating functions: if X is a continuous random variable
with transform fX(z) and c is a constant, then cX has a transform fcX(z) = fX(cz). Using standard
properties of moment generating functions, we obtain

gCtotal
(z) =

∏
1≤i≤K

gL,i

(
gD,i(c(i)z)

)
.

When Cj is not however a deterministic function, there is, unfortunately, no simple formula for the
moment generating function. In this case the probability distribution of Ctotal needs to be computed
directly.

4 Operational risks in business processes

It is possible that the cost functions Cj are not given directly, but rather come up from structural
properties of the underlying business process. For example, if a server is not available for some time
period several types of transactions (order completion, price quote checks, etc.) may not be completed
depending on the applications deployed on the server, resulting in losses. These losses can be a com-
bination of different types of losses depending on the type of processes the server is supporting. For
example, the loss corresponding to failure of order completion is equal to revenue loss corresponding to
the product not purchased. As another example, account opening process is associated with a stream of
tasks like taking data, checking validity of the personal information, entering the data into the database,
etc. Should there be a problem with any of these tasks the entire flow is interrupted.

In this subsection, we model explicitly the types of losses arising from various workflow processes.
The computations are again fairly straightforward and are a combination of convolution and matrix
algebraic operations. Business process modeling tools such as WBI Modeler provide a convenient
framework for implementation of this approach.

We adopt exactly the model of the previous subsection, except for now we have a more detailed way
for modelling the cost functions Cj . In particular, in addition to events Ei, tasks Ti and resources ri,
we introduce the notion of a workflow. A workflow Fj is associated with a particular ordered sequence
of tasks T j

1 , . . . , T j
n(j). The sequence of workflows is denoted by F1, F2, . . . , Fw. Each workflow is also

associated with an arrival rate λj . This is the rate with which the flow passes through the system. To
each pair of flow Fj and task T j

i which is a part of the flow Fj , we associate a queue (also referred to as a
virtual buffer) B. We enumerate all the buffers as B1, B2, . . . , Bn. In particular, n =

∑
1≤j≤w n(j). We

generate an n-dimensional vector λ, representing the external arrivals to the business process as follows.
If buffer Bi corresponds to the first buffer of its flow Fj (that is the buffer corresponds to the task T j

1 ),
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then the entry is λj , otherwise the entry is zero. For example say we have two tasks T1, T2 and two
flows F1, F2 with rates λ1, λ2. First flow F1 goes through T1 then T2. Second flow goes through T2 only.
Then we have 3 buffers B1, B2, B3 corresponding to pairs (F1, T1), (F1, T2) and (F2, T2) respectively.
The corresponding vector λ is (λ1, 0, λ2).

In addition we generate an n×n routing matrix P = (pi,j). Each entry pi,j represents the proportion
of flow from buffer Bi which is routed into buffer Bj . If all of the flow to queue i is routed to queue
j, then pi,j = 1, else it is the fraction of flow of a particular class to queue i that is routed to queue j.
In our earlier example, the flow from buffer B1 goes entirely into buffer B2, and the flow from buffer
B3 exits the network. So the corresponding matrix has values p1,2 = 1 and pi,j = 0 for all the other
values 1 ≤ i, j ≤ 3. However, if only half of the flow from buffer B1 goes into buffer B2, then p1,2 is
set to 1/2. It is sometimes the case that a single flow on the output generates several input flows. For
example an online purchase completion generates one task corresponding to record the transaction in a
database, one task corresponding to generate the shipment instance and one task corresponding to send
an email notification to the buyer (and whatever additional transactions/tasks). In this case assuming
that the buffer B1 corresponds to task online purchase, and the buffers B2, B3, B4 correspond to record,
generate shipment and email notification, respectively, then the corresponding entries in the matrix P
are p1,2 = p1,3 = p1,4 = 1.

How do we associate cost with our model? There are two typical cases corresponding to whether
the cost is associated to a particular task or to the whole flow. We consider these cases separately as
they lead to somewhat different modeling constructs.

4.1 Buffer and task specific cost structure

To each queue Bi we associate a cost rate ci. An example of this case is - A task for processing securities
that incurs a cost for processing each and produces a revenue. For simplicity, we assume that ci takes
deterministic (non-random) value. Thus the cost is a linear deterministic function of time. ci indicates
the cost per unit of time when the workflow passing through the queue Bi is interrupted. For example,
if the flow Fj associated with queue Bi was interrupted for τ time units then the incurred cost is ciλjτ
(note the dependence on λ since the cost is really associated with the volume of tasks which were not
processed during time interval of length τ , and this is given by λjτ). We let C denote the diagonal
n× n matrix with ci-s on diagonal.

In case cost is naturally associated with entire task and not specifically buffers corresponding to a
task, we instead construct a diagonal N × N matrix C̄, with diagonal elements corresponding to cost
rate per the corresponding task, where N is the number of tasks. Let also T denote the N × n matrix.
We let the (i, j)-th component of T be one if task i contains buffer j and zero otherwise. It can be
established using standard linear algebraic analysis, that the total flow passing through queue Bj is the
j-th component of the (n × 1) vector [I − P t]−1λ, where I is the n × n identity matrix. This matrix
representation of the flow passing through buffers is often used in queueing network literature in the
analysis of queueing traffic flows passing through the buffers of processing stations, (see for example
(11)). Then the total cost per unit of time ”flowing” through buffer Bj is the j-th component of the
vector C[I − P t]−1λ. When the cost is associated with a task, total cost ”flowing” through any task Ti

per unit of time is then the i-th component of the vector C̄T [I − P t]−1λ.
We now can tie this construct with our operational risk modeling framework. If a certain task Ti

is interrupted for τ time units then the incurred cost is τ times the i-th component of T C[I − P t]−1λ
(C̄T [I − P t]−1λ for task specific cost structure). We write this as (eN

i )tT C[I − P t]−1λτ ((eN
i )tC̄T [I −

P t]−1λτ), where eN
i is the N -dimensional unit vector with unity in i-th position and zero everywhere else.

Recall our notation for the frequency Li and the frequency distribution FLi of event Ei, the duration

9



Di and the duration distribution FDi(t) of event Ei, and R = {r1, . . . , rJ} - the list of resources.
Recall also the matrices E and R connecting these constructs. We note again, that given an event
Ei the collection of tasks affected by this event is sgn((eK

i )tER). Then if the duration of a particular
event Ei is equal to Di = τ , then the total associated cost is given by sgn((eK

i )tER)T C[I − P t]−1λτ
(sgn((eK

i )tER)C̄T [I − P t]−1λτ). We now define

C(Ei) = sgn((eK
i )tER)T C[I − P t]−1λ(7)

for buffer specific costs and

C(Ei) = sgn((eK
i )tER)C̄T [I − P t]−1λ(8)

for task specific costs. Then the total cost is found as in (5) to be

Ctotal =
∑

1≤i≤K

C(Ei)
∑

1≤j≤Li

Di
j .(9)

Just like (6) the total expected cost can be represented purely in matrix form. As in the previous
subsection let L and D be the diagonal matrices of expected frequency and duration of adversary
events, respectively. Then

E[Ctotal] = etLD sgn(ER)T C[I − P t]−1λ,(10)

for buffer specific costs and

E[Ctotal] = etLD sgn(ER)C̄T [I − P t]−1λ,(11)

for task specific costs.

4.2 Flow specific cost structure

Suppose now costs are associated with flows Fj , 1 ≤ j ≤ w. In addition we assume that the routing
matrix P consists of zeros and ones only. Physically, this corresponds to the case when the entire flow
from one buffer flows either into some other buffer or leaves the system. In particular, the branching,
merging, joint and forking constructs are not allowed. The reason is that in the presence of such
constructs the notion of a particular flow is not well defined as the flow can be partitioned into several
flows or be a joint of several flows. Then it is not clear whether cost can be associated with flows in
any meaningful way.

Suppose a cost rate cj is associated with a flow Fj . Let C be the corresponding diagonal matrix.
Construct an N × w matrix F where (i, j) entry is one if flow Fj contains task Ti and zero otherwise.
Construct also a w-vector λ̄ with i-component equal to λi. That is λ̄ is simply the vector of flow
rates corresponding to the given collection of flows. Note the difference with λ where the flow rates
were associated with buffers. Now, if a particular task Ti is interrupted for τ time units then the
corresponding cost is found as eiFCλ̄τ . Then the cost associated with a particular event Ei with
duration τ is found as

C(Ei) = sgn((eK
i )tERF)Cλ̄τ.

Then the total cost is again as in (5)

Ctotal =
∑

1≤i≤N

C(Ei)
∑

1≤j≤Li

Di
j .(12)
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The corresponding matrix representation of the expected cost is then

E[Ctotal] = etLD sgn(ERF)Cλ̄.(13)

Whether the cost is associated with a task, buffer or a flow depends on the underlying structure of the
risk model. Often the cost is incurred when a particular sequence of tasks (flow) is not executed. In this
case it makes sense to associate costs with flows. In other cases, however charges are incurred when a
particular resource or task in the network is not operating (for example charges associated with service
level agreements in an outsourcing context). In this case it makes sense to associate costs with tasks.
Note, that we could associate costs with resources as well, the derivation being pretty much the same,
thus the details are omitted.

5 Illustrative Examples

We have developed a prototype for operational risk modeling using WBI Modeler. This is a general
tool for Business Process Modeling that enables the modeling of business processes using combinations
of predefined constructs. Some of the key constructs are defined below:

• Process: This is a group of tasks and other processes, thus enabling hierarchical decomposition of
a business process into lower level processes and tasks.

• Task: This describes an activity in the business process and can have multiple characteristics
such as costs, time to completion, task logic, resources required to execute the task etc. A
business process describes an orderly flow between the tasks within it and is represented by
directed connections between tasks.

• Information Artifacts: These describe items that will flow through the process at different stages.

• Forking / Decisions: A fork is the branching of an incoming connection to multiple outgoing
connections. An incoming token is replicated for each outgoing branch. A decision is like a fork
except that the selection of the outgoing branch is conditional either on the result of an expression
(an if-then-else type of decision) or on a random selection. A decision may have multiple outgoing
connections for each incoming connection.

• Merge / Join: This is the converse of branching, where multiple input flows come together to
pursue a common output flow. In joining, tokens arriving through the multiple flows all have to
arrive before the common output connection is triggered (AND-logic). In merging, the output
flow is triggered whenever a token arrives through any of the input connections (OR-logic).

• Resource: Entities which tasks require to perform their function and these can be perishable or
non-perishable. Resources can be assigned calendars describing their availability, e.g. an employee
with availability of 9am-5pm, Monday-Friday except holidays. Resources can have various costs
associated with them such as cost per quantity or units of measure.

• Loops: This specifies a repetitive invocation of some other process. The types of repetitions are
analogous to the FOR loops, WHILE-DO loops and DO-WHILE loops found in various program-
ming languages.

A screenshot of this prototype is shown in Figure 3.
We now illustrate the approach proposed in the earlier sections using the simple Broker-Dealer

process described in Figure 1, Section 2. Our goal is to quantify the operational risk - the probability
distribution of lost revenues.
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Figure 3: Operational risk modeling prototype using WBI Modeler
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5.1 The distribution of losses resulting from a singular event

In order to perform the lost revenue (cost) analysis we need to identify the elements of the 3-layers
of our operational risk model architecture. For our first example assume that there is only one type
E of adversary event: communication gateway interruption. Assume that the duration of the typical
interruption can take two values: D = D1, with probability (w.p.) p1 (event I) and D = D2, w.p.
p2 = 1− p1 (event II). The associated unique resource for our model is r–”communication gateway”.
There is only one task T which may be interrupted by failure of the resource r. It is generically
referred to as ”Transaction” task. Interrupting task T for τ time units results in losses described as
lost revenues. The revenue flow per unit of time is assumed to be distributed as a Poisson random
variable with parameter λa and the revenue per unit of time is H dollars in commission. We first ignore
the issue of frequency of interruptions (random variable L in our model formulation) and assume that
interruption happens exactly once. In other words we estimate the losses due to a single interruption
event. The amount of losses C due to communication gateway interruption D is then computed as
follows.

P (C = Hn) =
2∑

i=1

pi exp(−λaDi)(λaDi)n/n!, n = 0, 1, · · ·(14)

P (C > Θ) =
∞∑

n>Θ/H

P (C = Hn)(15)

E(C) = HλaE(D) = Hλa

2∑
i=1

piDi(16)

Assuming λa = 10000/day, H=$ 10, p1 = p2 = 1/2, D1 = 1/8, D2 = 1/16,Θ = $12000, the
numbers are: P (C > Θ) = 0.459, E(C) = $9375. This completes the task of computing the probability
distribution of the losses due to the resource interruption, but more can be done. For example, we
would like to understand what types of events are most likely to be responsible for large losses? It is
not hard to see that the first type has a more dramatic effect, simply because its duration is twice as
large and probability of occurring is the same. But the difference is quite significant as the following
computations show.

To identify the event(s) that give rise to P (C > Θ) > 0.90. We refer to the Figure 4. Given Θ =
$12000, P (potential losses due to event I > Θ) = 0.92, P (potential losses due to event II > Θ) ≈ 0.
So in this simple example only event I gives rise to potential losses that exceed the threshold $12000
with over 90% probability, while the second event is relatively insignificant at this threshold.

5.2 Distribution of losses over a time period

We now consider a more complicated model where we take into account the frequency of communication
failures during a specific time interval of interest (month or a year), consider a more complicated outage
distribution and simultaneously address the issue of countermeasures which can be adopted which will
reduce the typical frequency and duration of down-times (service interruptions). Assume that during a
year service interruption can occur k times with probability pk,

∑
k pk = 1. Each occurrence causes a

“down” period of D which has a Gamma distribution with parameters α, λd, ie. D ∼ Gamma(α, λd).
The arrival of trade orders is again modeled as a homogenous Poisson process with rate λa, each of
which brings in commission fee of H dollars.
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Figure 4: Tail probability P (C > Θ) of the potential losses caused by event I and event II. Horizontal
axis is the threshold Θ in the unit of dollars.

P (LI = Hn) =
∑

k

pkP (L(D1) + · · ·+ L(Dk) = Hn)

=
∑

k

pkE[P (L(D1) + · · ·+ L(Dk) = Hn|D1, · · · , Dk)]

=
∑

k

pkE[exp(−λa

k∑
i=1

Di)(λa

k∑
i=1

Di)n/n!](17)

Eq. (17) is obtained by noticing that L(D1), · · · , L(Dk) are independent Poisson random variables with
mean λaD1, · · · , λaDk conditioning on D1, · · · , Dk. Since

∑k
i=1 Di has a gamma distribution with

parameters αk and λd whose density function is f(u) = e−λdu(λdu)αk−1λd/(αk − 1)!, Eq. (17) can be
further simplified:

R.H.S(17) =
∑

k

pk

∫
e−λau(λau)n

n!
e−λdu(λdu)αk−1λd

(αk − 1)!
du

=
∑

k

pk
(n + αk − 1)!
n!(αk − 1)!

λn
aλαk

d

(λa + λd)n+αk
(18)

Let λa = 10000 per day, H = $10. There are three types of events: event I, II, III. Losses due
to each type of event has a distribution given in Eq. (18). Now, we assume that countermeasures (for
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Figure 5: Probability distribution of losses C in one cycle, in the unit of dollars.

example server upgrade or introducing multiple servers in place of one) can reduce the probability of
multiple events as well as the duration of “down” period per occurrence. The corresponding parameters
are summarized in Table 1.

Table 1: Parameters for three types of events. P = (p1, p2, · · · ).

no countermeasures with countermeasures
P α λd P α λd

event I (0.9, 0.1) 5 5 (0.95, 0.05) 3 4
event II (0.5, 0.3, 0.2) 3 5 (0.7, 0.2, 0.1) 2 5
event III (0.4, 0.3, 0.2, 0.1) 3 6 (0.5, 0.4, 0.1) 2 6

The distribution of losses (L) is a convolution of losses (LI , LII , LIII) due to the three types of
events, ie.

(19) P (L = Hn) =
∑

n1+n2+n3=n

P (LI = Hn1)P (LII = Hn2)P (LIII = Hn3)

The distribution of losses L is presented by Fig. 6. Clearly with counter measures, the distribution
of losses shifts to smaller amount. In particular, the 90% percentile changed from $456030 to $286810.
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Figure 6: Probability distribution of losses in two scenarios: with countermeasures (blue) vs. without
countermeasures (red). The vertical lines correspond to the 90% percentiles.

5.3 Allocation of Countermeasure Resources

Our proposed model suggests a direct way for creating countermeasures to mitigate the operational risk,
provided that the impact of countermeasures is known (reduced time to recover systems, lower frequency
of adversary events, etc.) However, often the number of possibilities for allocating the budget for coun-
termeasures can be quite substantial and budget limitations prevent mitigating all the possible adversary
events. Thus it is desirable to have an automated procedure for computing the optimal allocation of
countermeasure resources subject to the budget constraints. This problem can be formalized as the
optimization problem subject to the linear (budget) constraints. Our decision variables are η1, · · · , ηd:
the proportions of total budget that is allocated to control adverse events 1, · · · , d, η1 + · · · + ηd = 1.
Let C(η1, · · · , ηd) be the cost after countermeasure with allocation proportion η1, · · · , ηd. The problem
reduces to:

(20)
min

ηi ≥ 0, η1 + · · ·+ ηd = 1
g(C(η1, · · · , ηd))

where g(·) is an objective function determined by our criteria. For instance, we may take g()̇ to be the
expectation: E[C(η1, · · · , ηd)]. To obtain the distribution of C(η1, · · · , ηd), we need information on the
effect of countermeasures on reducing the impact caused by respective adverse events.

We now demonstrate how optimal counter-measure can be determined by our model. We consider
again the broker/dealer process, assuming λA the arrival rate of orders and H the value of each order.
Assuming two types of independent adverse events I, II whose probability of number of occurrence
are P0 = .95, P1 = .05, P2 = 0 for the type I events and P0 = .92, P1 = .06, P2 = .02 for the type
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II events. Each occurrence has a duration follows Gamma distribution with various means. Assume
counter-measures can be taken for I, II to reduce the mean duration of respective occurrence while
P0, P1, P2 remains the same. The more money spend on the counter-measures, the less is the mean
duration of each occurrence afterwards. The Tables 2, 3 has a summary of these counter-measures.

Table 2: Various counter-measures with expenses and mean durations after the corresponding counter-
measure on adverse event I enforced.

Expense 0 0.25H 0.45H 0.65H 0.8H H
Mean duration(day) 2

3
2
4

2
5

2
6

2
7

2
9

SD of duration(day)
√

2
3

√
2

4

√
2

5

√
2

6

√
2

7

√
2

9

Table 3: Various counter-measures with expenses and mean durations after the corresponding counter-
measure on adverse event II enforced.

Expense 0 0.22H 0.5H 0.83H
Mean duration(day) 2

4
2
5

2
7

2
10

SD of duration(day)
√

2
4

√
2

5

√
2

7

√
2

10

Here we adopt the objective function to be the 99% percentile of value-at-risk (VaR). Assume
λA = 106 per day and H = $106. The Fig. 7 is the plot of VaR vs. counter-measures expenses. Notice
the far upper-left point corresponding to the case of ”as-is”. We make two observations from this plot.
First, subject to a given budget for counter-measures expenses, we can clearly identify the optimal
allocation of the resources to control adverse events I, II. For instance, if the budget is $800, 000, then
the optimal combination will be the one with minimum VaR whose total expenses is less than the
budget, as illustrated by the figure. The optimal choice in this case is: allocating 0.25H = $250, 000
to control risk due to event I and 0.5H = $500, 000 to control risk due to event II. Second, we can
draw an efficiency curve along the boundary of the points in the scatter plot, the points on the steepest
descent boundary correspond to the most efficient combinations of counter-measures in the sense of the
ratio of reduced VaR to total expenses.

5.4 Multiple adversary events, resources and tasks. Network example

The overall network structure of the broker/dealer model discussed in the previous subsections is fairly
primitive: one resource and one task. We now enrich the model somewhat and again refer to Figure 2.
We assume that successful completion of the overall transaction described on this figure consists of the
tasks represented by the rectangles starting with the task ”Calculate Net Proceeds from the Trade”
and ending with the task ”Complete Settlement”. In the terminology of Subsections 4.1 and 4.2 we
have a workflow process F1 associated with this set of tasks. Typically all of these tasks require some
resources. Assume here that only three resources are engaged. The first resource r1 is referred to
simply as ”server” and is required by the first task ”Calculate Net Proceeds ...”. The second resource
r2 is communication gateway associated with the task ”Send Information to ...”. The last resource
r3 is a database required by the last task ”Confirm Trade Details”. In addition, suppose there is a
different workflow F2 corresponding to some ”Account Status Change” process which only consists of
the existing task ”Send Information to Custodian and Clearinghouse”, which requires communication
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Figure 7: Value-at-Risk (VaR) after different combinations of counter-measures are taken.

gateway resource r2. Successful completion of the flow F1 of tasks brings C1 = 10 dollars of revenue.
The flow of tasks F2 does not bring revenue, but non-completion of this flow induces cost C2 = 2. The
arrival rates for the flows F1, F2 are assumed to have Poisson distribution with parameter λ1 = 10000
per day and λ2 = 20000 per day, respectively. The corresponding column vector of arrival rates is
λ = (λ1, λ2)t. To complete the model we need to identify the types of adversary events and their impact
on resources. We assume two types of adversary events: power outage E1 which affects all of the three
resources, and security breach E2 which affects only communication gateway resource r2. Event E1

(E2) has a deterministic duration D1 = 2 (D2 = 5) time units and frequency given by a probability
vector p1 = (.5, .3, .2) (p2 = (.7, .3)). Namely, power outages will not occur during the period of interest
with probability 0.5, and will occur once and twice with probabilities 0.3 and 0.2 respectively. Similar
explanation for p2. Thus the expected power outage frequency is E[L1] = .3 + 2× .2 = .7 and expected
security breach frequency is E[L2] = .3.

This completes the description of 3-layer elements of the model and now we proceed to computations.
First we identify the matrices connecting adversary events to resources, tasks and flows. The matrix E
is 2 × 3 since we have two adversary events and 3 resources. Matrix R connecting resources to tasks
is 3× 6 since we have six tasks, and the matrix F connecting tasks to flows is 6× 2 since we have two
flows. The diagonal matrices of durations D, frequencies L and costs C are all 2×2. The corresponding
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entries of these matrices are

E =
(

1 1 1
0 1 0

)
, R =

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

, D =
(

2 0
0 5

)
,

F =



1 0
1 0
1 0
1 1
1 0
1 0

, L =
(

.7 0
0 .3

)
, C =

(
10 0
0 2

)
, λ =

(
10000
20000

)

We now apply formula (13) to obtain the total expected cost.

Ctotal = etLD sgn(ERF)Cλ =
(
1 1

) (
.7 0
0 .3

) (
2 0
0 5

)
×

× sgn
[ (

1 1 1
0 1 0

) 1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




1 0
1 0
1 0
1 1
1 0
1 0


] (

10 0
0 2

) (
10000
20000

)

= 460, 000.

This completes the computation of the expected overall cost for the broker/dealer example. The
probability distribution can be also obtained using formula (9) in a straightforward way, but the com-
putations are very involved and we omit them.

6 Modeling Outsourcing Risk

The earlier sections in this paper were primarily devoted to modelling operational risk when the corre-
sponding cost structure had a simple linear form. Of course in reality this is not always the case and the
cost associated with operational failures can have a more complicated form. In this section we consider
an example of computing operational risk with a more complicated cost structure and illustrate them
with examples. An important motivation in this regard is assessment of outsourcing risk, which is an
important component of the overall operational risk. As financial institutions are outsourcing several
aspects of their operations, in particular information technology services, they are required to assess
and manage operational risks from outsourcing (15). Moreover, financial institutions are expected by
regulators to have appropriate Business Continuity plans for its critical outsourced activities (7). Out-
sourcing arrangements are typically managed using Service-Level Agreements (SLA). Consider the case
where a financial institution outsources its IT infrastructure to a IT service provider. The SLA contain
charges related to operational failures of the hardware configuration. Some typical costs in SLA’s in-
clude penalty charges C1 = c1 if the total outage D1 during a fixed time period (say a month or a year)
exceeds a specified threshold d∗1. For example, an SLA may charge c1 = 3 points (with some equivalent
dollar amount) if the total outage duration exceeds d∗1 = 100 minutes during a 3-month period. If the
total outage duration is less than d∗1 then the incurred cost (charges) is C1 = 0. Another typical cost
in SLA’s is the maximum duration of any particular outage. Specifically, if any of the hardware units
fails for more than d∗2 time units during the same time period, then a charge of C2 = c2 is applied, and
if all of the outages had duration shorter than d∗2 then no charges are incurred.
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6.1 Max/sum type piece-wise linear cost of SLA

In this subsection we give a complete treatment of the model with max/sum type cost function just
described. In order to complete the details of the model, we need to identify the elements of the 3 layers
of our operational risk architecture: risk events, resources and tasks. We consider a fairly simple such
model so that we may concentrate on the non-linearity aspect of the operational losses. Thus we assume
that there exists two types of resources: Nnew ”new” and Nold ”old” resources. There are two types of
risk events: the new resources are impacted by the event Enew,i, i = 1, . . . , Nnew ”new hardware unit
fails”, and the old resources are impacted by the event Eold,jj = 1, . . . , Nold ”old hardware unit fails”.
The frequency Lnew and the duration Dnew of events E1 is given by their corresponding probability
distributions FLnew and FDnew .

Since the cost function is not linear, the development in the previous section cannot be applied. Yet
we can still compute the probability distribution of the losses directly from our threshold assumptions
on the cost structure. It turns out that a particularly convenient approach is using Laplace transforms.
We first compute the Laplace transform gD(s) of the overall duration of the failures Dtotal of all the
units. We decompose it as the sum of Dtotal,new and Dtotal,old corresponding to the total duration of
outages corresponding to new and old type hardware units respectively. The Laplace transform of each
is found as follows.

gDtotal,new
(s) = (gLnew(gDnew(s)))Nnew

gDtotal,old
(s) = (gNold

Lold
(gDold

(s)))Nold .

And the overall duration of the failure is found as gDtotal
(s) = gDtotal,new

(s)gDtotal,old
(s). The probability

distribution of the cost corresponding to the total failure, which only takes values 0 and c1 is then found
as follows. The cost c1 is incurred with probability P(C1 = c1) = P(Dtotal > d∗1) which is found as a
sum of the coefficients of the polynomial gDtotal

(s) which correspond to powers exceeding d∗1; and no
cost is incurred with probability

P(C1 = 0) = 1− P(Dtotal > d∗1).

We now demonstrate this using a numerical example. In our example, we set d∗1 = 100, c1 = 3,
d∗2 = 50 and c2 = 2. We have Nnew = 3 new resources and Nold = 2 old resources. We assume that
Lnew = 1 and = 2 with probabilities .05 and .03 respectively, and Lrmnew = 0 with the remaining
probability .92. The duration is assumed to be Dnew = 10 minutes and 55 minutes with probabilities
.9 and .1 respectively. Respectively, assume that Lold = 1 and = 2 with probabilities .15 and .10
respectively, and Lold = 0 with the remaining probability .75. The duration is assumed to be Dnew = 15
minutes and 60 minutes with probabilities .7 and .3 respectively. We find

gDnew(s) = .9s10 + .1s55

gDold
(s) = .7s15 + .3s60

gLnew(s) = .92 + .05s + .03s2

gLold
(s) = .75 + .15s + .1s2

gDtotal
(s) =

(
.92 + .05(.9s10 + .1s55) + .03(.9s10 + .1s55)2

)3
×

×
(
.75 + .15(.7s15 + .3s60) + .1(.7s15 + .3s60)2

)2
.

We have performed MATLAB based computations of the these polynomials (they are based on a straight-
forward application of the convolution ”conv.m” command). Using these polynomials we found that the
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probability of incurring a charge P(C1 = c1) is 3.95%. We also found that the probability of incurring a
charge due to failure one of the old hardware units is 2.96% while the probability of incurring a charge
due to a failure of one the new units is only 0.12%.

We now compute the probability distribution of the second cost type C2. We denote by Dmax,new,j, 1 ≤
j ≤ Nnew(Dmax,old,j, 1 ≤ j ≤ Nold), the maximum duration of an outage of any of the new (old) hardware
units. Then

P(C2 = 0) =
( ∏

1≤j≤Nnew

P(Dmax,new,j ≤ d∗2)
)( ∏

1≤j≤Nold

P(Dmax,old,j ≤ d∗2)
)

=
( ∑

n≥0

P(Dnew < d∗2)
nP(Lnew = n)

)Nnew
( ∑

n≥0

P(Dold < d∗2)
nP(Lold = n)

)Nold

= gNnew
Lnew

(P(Dnew < d∗2))g
Nold
Lold

(P(Dold < d∗2)).

This formula then can be used directly for computing the probability P(C2 = 0) of no charges incurred.
For our numerical example we find that P(Dnew < d∗2) = P(Dnew < 50) = .9, P(Dold < d∗2) = P(Dold <
50) = .7 We have already computed the moment generating functions of Lnew and Lold. Using this

P(C2 = 0) = (.92 + .05× .9 + .03× .92)3(.75 + .15× .7 + .1× .72)2 = .79,

and

P(C2 = c2) = P(C2 = 2) = 1− P(C2 = 0) = .21.

6.2 A more complicated SLA cost structure

In the original treatment of CLS problem of hardware failure with piece-wise constant cost function,
we take a summation over individual hardware component’s breakdown time. In reality these hardware
components maybe supporting the same business process and the same cost (the cost of downtime)
is incurred when one or several components fail. Thus our previous approach suffers potentially from
overcounting problem as downtime of different components maybe overlapping. Under certain condi-
tions the overlapping of breakdown period might not be negligible, therefore we take a further look
at this problem and compute more accurately the cost of downtime under some additional modeling
assumptions. Since the overlapping is inherently a dynamical problem, we need to propose a non-static
model and we propose the use of finite state Markov processes, as the simplest model which encompasses
dynamics and uncertainty at the same time.

Suppose there are H hardware components supporting one business process. Suppose these com-
ponents operate independently, each one alternates within states ”normal” and ”failure”. Assuming
the length of ”normal” and ”failure”, follows respective exponential distribution with rate λi, µi, i =
1, . . . ,H, further assume the length of ”normal” and ”failure” period independent. In the derivations
below we obtain the expression for probability distribution of ”normal” S0(T ) time for the entire sys-
tem during a time period T . This can be used for computing the probability distribution of the cost
associated with SLA. For example if the cost is c dollars when the total ”failure” time exceeds d time
units during time period [0, T ] and 0 dollars otherwise, then, just as in previous subsection, the proba-
bility distribution of the cost is c with probability P(S0(T ) > d) and 0 with the remaining probability
1− P(S0(T ) > d).

In order to compute the distribution function P(S0(T ) ≤ s), s ≥ 0, introduce Xt = (X1(t), · · · , XH(t))
– the indicator for the H components’ status at time t where Xi(t) = 0 if the ith component is in ”nor-
mal” condition and otherwise Xi(t) = 1. Clearly Xt is a Markov process with finite state space. In fact,
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it can be described as a birth-death (BD)process. The system is ”failure” at time t if Xt has at least
one component equal to 1.

We further assume λi = λ, µi = µ, i = 1, · · · ,H, ie. H identical components. This assumption
simplifies notation of Xt in our discussion but still illustrates the main idea. In this case the number of
components in ”failure” follows a Markov process, denoted by Xt (a little abuse of notation). The state
space is {0, 1, · · ·H}. The transition rate of the BD process is easily obtained: qi,i+1 = (H−i)λ, qi,i−1 =
iµ, i = 1, · · · ,H. We assume the initial state being 0, ie. there is no failed components at the beginning.
To obtain the distribution of occupation time of state 0 in a finite time interval [0, T ], we use the
technique of ”uniformization”. This techniques essentially construct an independent Markov process
with the same state space, but the mean time spent in each state has an exponential distribution with
same rate ν, which we choose to be ν = H(λ + µ). The new process in addition allows a fictitious
transition into same state i, the transition probability is:

(21) Pi,i = 1− (H − i)λ + iµ

ν
, Pi,i+1 = (H − i)λ/ν, Pi,i−1 = iµ/ν

The original Markov process’s transition probability P ∗
i,j(t) is

∞∑
n=0

Pn
i,je

−νt (νt)n

n! . Let S0(T ) be the total

occupation time of state 0 in [0, T ] with initial state X(0) = 0. That is S0(T ) is the total ”normal” time
during [0, T ] - the quantity of interest. We use the uniformized version of {Xt, t ≥ 0} and conditioning
on N(T ), the number of transitions by time T .

(22) P (S0(T ) ≤ s) =
∞∑

n=1

e−νT (νT )n

n!
P (S0(T ) ≤ s|N(T ) = n)

Notice [0, T ] is partitioned into (0, X(1)), (X(1), X(2)), · · · , (X(n), T ) where X(i) are the ordered arrival
time of n transitions by T . The lengths of these intervals Y(i) = X(i) − X(i−1), i = 1, · · · , n + 1 with
X(0) = 0, X(n+1) = T are exchangeable. Therefore, assume k transitions are into state 0, ie. k entries
of Y1, · · · , Yn+1 corresponding to occupation of state 0, then S0(T ) equals the sum of these entries,
which has the same distribution as Y1 + Y2 · · · + Yk = X(k) due to ”exchangeability”. It’s known that

P (X(k) ≤ s|N(T ) = n) =
n∑

i=k

(
n
i

)
(s/T )i(1− s/T )n−i. This leads to

(23) P (S0(T ) ≤ s|N(T ) = n) =
n∑

k=1

P (k − 1, n− 1)
n∑

i=k

(
n

i

)
(s/T )i(1− s/T )n−i

where P (k, n) is the probability of having k transitions into state 0 out of the n transitions. P (k, n) can
be derived from a system of recursion relationships as follows. Let Pi(k, n) be the probability of having
k transitions into state 0 given n transitions and the last visited state is i. Conditioning on the state j
visited by the (n− 1)th transition, we have:

P (k, n) =
H∑

i=0

Pi(k, n) 0 ≤ k ≤ n(24)

Pi(k, n) = Pi(k − 1, n− 1)Pi,i +
∑

j∈{i−1,i+1}

Pj(k, n− 1)Pj,i i, j ∈ {0, · · · ,H}(25)

The initial values are: P0(1, 1) = P0,0, P1(0, 1) = P0,1, P0(1, 2) = P0,1P1,0, P1(1, 2) = P0,0P0,1, P0(2, 2) =
P 2

0,0. Combining Eq. (25), (24), (23), (22), we obtain the P (S0(T ) ≤ s). In practice, the summation of
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Eq. (22) is truncated at sufficiently large n. This completes the expression for the distribution of the
total ”normal” time during [0, T ] as well as the probability distribution of the SLA cost.

In case the distribution of normal and failure times does not have an exponential form, coming
up with the analogous expression is not tractable. But by way of approximation we can compute the
average (expected) normal time during a time period [0, T ] when T is large using the theory of renewal
processes. Denote by X, Y the period of ”normal” and ”failure” of one component, and φX(s), φY (s)
their moment generating functions. Let P (T ) be the probability that the component is in ”normal” at
time T , and its moment generating function is φ(s). By results of alternating renewal theory, we have

(26) φ(s) =
1− φX(s)

s(1− φX(s)φY (s))

P (T ) is obtained by inverting moment generating function of φ(s). For the system of H independent

components, the probability of being in ”normal” at time T is
H∏

h=1

Ph(T ) where Ph(T ) is the probability

obtained from Eq. (26) for the hth component. By ergodic property of stationary stochastic processes we
have that the average normal time during [0, T ] is asymptotically Ph(T ), provided that T is sufficiently
large.

The expression for the total normal time just obtained, while simple, is of limited use since it is
only applicable for large time periods [0, T ] and the ergodic theory is, unfortunately, of limited use for
controlling the accuracy of approximations.

7 Concluding Remarks

We have described a framework for operational risk modeling in this paper, based on a description
of the business process in a financial institution, its human, physical and logical infrastructure and
the risks contained therein. This methodology is advantageous for operational risk assessment and
management, compared to existing approaches, since changes to the business process operational models
can automatically get translated to changes in the operational risk models.

We believe researchers have only started to look at the operational risk management area and
there exists a wide scope for further research. A taxonomy needs to be developed that can associate
operational risk event types with potential root causes and relate them to controls and countermeasures
that can be deployed to better manage the operational risk. Current libraries of operational risk events
only contain information on historical losses. These need to be enriched with information relating to
root-causes. Furthermore, benchmarks need to be gathered for risks related to different root-causes.
Firms model operational losses based on information contained in loss databases to determine the loss
distribution, from which the capital allocation is identified by computing the appropriate quantile. The
modeling fallacies need to be researched for high confidence level quantiles accompanied with sparse
data, which is the typical case for operational risk events. The utilization of quantitative analysis
methods as a decision support mechanism for real-time or near real-time operations is a rich area that
merits research attention. This could pave the way for discovering operational risks and managing them
in a pre-emptive mode thus avoiding operational losses, rather than being limited to observing loss
events and laying aside capital to manage operational risks.
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