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Abstract

In this article we present a method for drawing inference about the process of losses expe-
rienced in relation with operations of a business. For example, for a bank such losses could be
related to erroneous transactions, human error, fraud, harassment lawsuits or a power outage.
Information about frequency and magnitude of losses is obtained through search of a number of
sources, such as printed or Internet based publications related to Insurance and Finance. The
data consists of losses that were discovered in the search; it is assumed that the probability of
a loss to appear in the body of sources and be discovered increases with its magnitude. Our
approach is based on simultaneous modeling of the process of losses and the process of data
base construction. This approach is illustrated based on data related to operational risk losses.

Introduction

Consider a business (a bank, for example) that is interested in estimation of risks of a given type
that it is facing. For example, banks are recently very interested in estimation of their exposure to
so called operational risk that includes all risks except those related to markets and credit (some
people consider this definition too general, but it is good enough for our purposes). We have at our
disposal a database that contains description of operational losses suffered by various companies
over a number of years; these losses are generally large and entries related to the bank of interest
itself are extremely rare (otherwise the bank would not have stayed in business long enough to
worry about risks!). This data base is in the initial phase of construction and is thus known to be
incomplete: one can safely assume that it only refers to a small fraction of losses suffered by various
businesses. The process of compiling the data base is typically focused on a certain set of sources;
we will assume that only losses that appeared or might have appeared in this set of sources are
relevant. Our main problem of interest is how to use such a database to gain information about
the stream of losses facing the bank. One of our main points in addressing this problem is that for
successful inference one must be able to model the process of compiling the data base - otherwise, as
illustrated below, there is no objective way to characterize the process of losses. A summary of the
Operational Risk issues can be found in the January 2002 issue of the Risk journal; in particular,
see Alexander (2002).

1. The basic approach

We shall approach this problem in three stages. Our initial goal is to develop methods for
characterizing the stream of losses related to operations observed worldwide and their magnitudes;
this involves drawing inferences about the hidden population of losses that are not represented in
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the data base. Subsequently, we will try to estimate what fraction of these losses is related to
financial institutions; finally, we will estimate the parameters of the stream of operations related
losses for a specific bank. The derived model is useful in several respects. First, it can be used
by the bank to reserve capital needed to cover operational losses for a given period. Second, it
can be used by insurance companies to assess the risk related to the bank and establish premiums.
Though todays banks are mostly self-insured with respect to operational losses, there are reasons
to expect that in the future many of them will prefer to handle this type of losses through insurance
companies.

Estimation of properties of hidden populations has been considered in the literature in con-
junction with such areas as Demography (e.g., population size estimation, see Rosenberg et al.
(1995)), Software Reliability (estimation of the number of software defects hidden in the code, see
Littlewood (1989)), or Non-destructive Evaluation (inference about hidden defects, see Meeker et
al. (1996)). The corresponding techniques are referred to in the statistical literature as size-biased
sampling. What makes the present problem special is its strong actuarial aspect: the questions
that are asked in this context are very much different from those asked in the areas mentioned
above, and these questions, in turn, determine the tools used in the statistical analysis. In essence,
we are considering here a situation faced by every ”young” branch of insurance when the data is
sparse and expensive to collect, and the risks are poorly understood. It appears that the present
day literature related to Actuarial Science does not provide an agreed upon statistical methodology
for establishment of a new area. In this work, we will attempt to formulate a framework that could
lead to such methodology.

Our basic assumptions are as follows:

• The process of losses is homogenous Poisson with rate λ events per year

• The underlying distribution of loss magnitudes is described by some density f(x) that belongs
to one of the families that are typically used to describe distribution of losses. For examples,
Pareto, Weibull or Lognormal families can be considered good candidates.

• If a loss of magnitude x occurs, its probability of being discovered in the process of compiling
a data base is p(x), where p is a monotone function increasing from 0 to 1 with x. In essence,
we demand that p(x) satisfy the properties of a cumulative distribution function (cdf); in
fact, we will use some of the cdf’s stemming from applications that model growth to play the
role of p(x). In what follows we will refer to this function as the Discovery Probability Curve
(DPC).

We note that in more complex applications the rate λ and parameters of the distribution of
losses and the DPC will depend on a set of factors, as will be discussed in Section 6.

Consider the basic set of data shown in Appendix A. This data corresponds to losses compiled
from public sources (news reports). A total of 226 cases were collected. For every case, the data
gives the amount of loss in Deutsche Marks (DM) and the degree of relevance to the Banking
Industry.

In our initial analysis we subdivided the data randomly into two parts, the learning sample
and the test sample, as shown in the table. All the methods discussed below were first applied to
the learning sample, and then validated on the test sample. In this article, however, we only show
results for the overall sample. In Figure 1 we show the observed losses on the Weibull probability
plot. The Weibull cdf F (x) and density f(x) are given by the extreme value distribution,

F (x) = 1− exp{−(x/b)c}, f(x) = (c/b)(x/b)c−1exp{−(x/b)c}, x > 0 (1.1)
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and the estimated parameters of the law are ĉ = 0.32 and b̂ = 4.9 × 107. From Figure 1 it
appears as if the distribution is consistent with the Weibull (ĉ = 0.32, b̂ = 4.9 × 107) law except
that the smaller losses are missing, presumably because it is difficult for such losses to get into the
set of sources and to be discovered.

On a closer look, however, such a simplistic explanation is hardly satisfactory. Suppose that
the population of losses is indeed distributed in accordance with the above Weibull law. Then the
fraction of operational losses below DM 1,000,000 in the overall population is estimated to be only
0.25, which does not make sense.

However, the fact that the Weibull probability plot is linear in the upper tail suggests that the
upper tail of the distribution may indeed be Weibull (albeit with different parameters) and, with
a suitably chosen and practically plausible DPC p(x) we might get results that are consistent with
the data in Appendix A.

To illustrate this point let us switch to logarithmically transformed data; in what follows we
will work with the observations y = ln(x). If the losses xi are distributed in accordance with (1.1)
then the cdf and density of log-losses are

F̃ (y) = 1− exp{−exp[(y − u1)/u2]}, f̃(y) = u−1
2 exp{−exp[(y − u1)/u2] + (y − u1)/u2} (1.2)

(here and in what follows the ”tilde” symbol will refer to quantities associated with log-losses).
It is easy to see that

u1 = ln(b), u2 = 1/c. (1.3)

Now let us define the DPC in terms of a logistic curve:

p̃(y) = {1 + exp[−(y − v1)/v2]}−1 (1.4)

Let us now select the parameters (u1, u2) = (10.2 7.5) and (v1, v2) = (14 1.7). After simulating
the process of losses and discovery in accordance with these parameters, we obtain a plot shown
in Fig. 2. One could see that the observable data is very similar to that presented in Fig. 1. One
can show, based on the methods presented later, that the particular distributions selected above
do not contradict the data and thus can be considered (with some stretch, as we will see in Section
5) plausible. In the following section we develop methods for fitting models of this type.

2. The estimation problem

Let, in general, f̃(y|u) and p̃(y|v) are the density of log-losses and the DPC, respectively (
u and v are the corresponding parameters). The density of a log-loss y conditional on this loss
appearing in the body of sources and being discovered there is given by

f̃c(y|u, v) = {f̃(y|u)p̃(y|v)}/C(u, v), (2.1)

where the mean value of the discovery probability, represented by the normalizing constant
C(u, v), is given by

C(u, v) =
∫ ∞

−∞
f̃(y|u)p̃(y|v)dy. (2.2)

Suppose that the overall number of losses recorded in the set of sources is N and the actual
number of discovered losses is k; the corresponding log-losses are y1, y2, . . . , yk. Our main problem
is estimation of the parameters u,v and N .
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2.1 Likelihood based estimation

The log-likelihood of the observed data is given by

L(u, v, N |y1, y2, . . . , yk) = ln

(
N

k

)
+k× lnC(u,v)+(N−k)× ln(1−C(u, v))+

k∑

i=1

ln
[
f̃c(yi|u,v)

]
;

(2.3)
the inference can now be based on this log-likelihood. When nothing else is known about the

parameters, one can derive the Maximum Likelihood Estimators (MLE’s) by finding the parameters
that maximize (2.3). In this article we will not perform such a likelihood analysis; instead, we will
work with a somewhat simplified form of the likelihood that arises when it is known a-priori that
N is large and C is small. The presented approach adequately represents the main ideas and is
sufficient to address the problems that motivated this research. Analysis of the exact likelihood
(2.3) can be carried out in a similar way.

When it is known a-priori that N is large and only a small fraction of the losses is discovered, one
can approximate the binomial term in (2.3) by the corresponding Poisson term. The approximate
log-likelihood becomes

L(u, v, N |y1, y2, . . . , yk) ≈ ln


(NC(u, v))ke−NC(u,v)

k!


 +

k∑

i=1

ln
[
f̃c(yi|u, v)

]
, (2.4)

In the process of Maximum Likelihood (ML) estimation one can take advantage of the fact that,
for given u and v the likelihood is maximized when

N = k/C(u, v), (2.5)

indicating that one can expect to obtain estimates of good quality based on the conditional
distribution of the observed losses only. After substitution of (2.5) into (2.4), we can obtain the
estimates by solving the gradient equations,





∑k
i=1

∇uf̃(yi|u)

f̃(yi|u)
= k × ∇uC(u,v)

C(u,v)∑k
i=1

∇v p̃(yi|v)
p̃(yi|v) = k × ∇vC(u,v)

C(u,v)

(2.6)

The equations (2.6) can be solved by using a simple iterative scheme that starts from some
initial values (u0, v0) and proceeds as follows:

Estimation Procedure A:
Step1: For the current values (u, v) = (u(i),v(i)) compute C(u, v) and its gradient vectors by

u and v, ∇uC(u, v) and ∇vC(u, v).
Step2: Substitute the resulting values in the RHS of (2.6) and solve the two groups of equations

separately. Assign the solutions to (u(i+1), v(i+1)).
Step3: Iterate Step 1 and Step 2 until the convergence occurs; Accept the result if it passes

tests for local optimality, sanity and goodness of fit, as described later.

The tests for ”sanity” mentioned in the procedure are needed because the solution of (2.6) max-
imizes the approximate log-likelihood (2.4) and not the exact likelihood, (2.3). Therefore, if for the
resulting estimates (û, v̂) the value C(û, v̂) is not small enough to justify the Poisson approximation
used to obtain (2.6), this solution cannot be considered acceptable. In such situations one cannot
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expect that a small value of C(û, v̂) will be obtained by solving the exact profile likelihood equa-
tions; therefore, failure of the equations (2.6) to produce a value of discovery probability, C(û, v̂),
that is small enough to be compatible with one’s expectation indicates that the full optimization
approach is inadequate and some additional restrictions on parameters are necessary.

Once the estimates (û, v̂) are at hand, the estimate N̂ is obtained by substituting these values
into (2.5).

2.2 Constrained estimation and Inference

Many problems related to the model described above involve maximization of the likelihood
in the presence of some constraints on the parameters. For example, after obtaining the ML
estimates, one could decide that the resulting value of C(û, v̂) is too high to be plausible, and carry
out estimation under the constraint

C(u, v) = c0, (2.7)

where c0 is a suitably chosen constant. The estimation can be carried out by introducing a
Lagrange multiplier β associated with this constraint and maximizing the Lagrangian

Lβ(u, v, N |y1, y2, . . . , yk) = L(u, v, N |y1, y2, . . . , yk)− β(lnC(u, v)− lnc0). (2.8)

One way to achieve this goal is to solve the gradient equations




∑k
i=1

∇uf̃(yi|u)

f̃(yi|u)
= (k + β)× ∇uC(u,v)

C(u,v)∑k
i=1

∇v p̃(yi|v)
p̃(yi|v) = (k + β)× ∇vC(u,v)

C(u,v)

C(u, v) = c0.

(2.9)

The above equations can be solved by repeating, for various values of β, the process similar to
Procedure A until a value of β is found for which the constraint (2.8) is satisfied; the details of this
algorithm will be omitted.

Another situation in which constrained optimization is used in conjunction with the likelihood
analysis is when one is willing to assume that some components of the parameters are known. This
will lead to a reduced system (2.6) which contains only the equations corresponding to unknown
parameters; this system can be solved by using an approach described in Procedure A. For example,
under the assumption that the vector v that characterizes the PDC is known and equal to v0, the
estimation process boils down to solving the system

k∑

i=1

∇uf̃(yi|u)
f̃(yi|u)

= k × ∇uC(u, v0)
C(u,v0)

(2.10)

Constrained estimation also plays an important role in inference related to the parameters of
interest. For example, let us assume that v is known and equal to v0, and one is interested in testing
the hypothesis that C(u, v0) = c against the alternative C(u, v0) < c, at the significance level γ.
To achieve this goal, we can compute the maximum value of the log-likelihood under the constraint
C(u, v0) = c (denote the constrained estimate by ûc) and reject the hypothesis if C(û, v0) < c and

ΨC(c) = 2 {L [û, v0, k/C(û,v0)]− L [ûc, v0, k/C(ûc, v0)]} > χ2
1−α(1). (2.11)

Furthermore, confidence bounds are obtained simply by collecting values that are not rejected
by the corresponding test. For example, the value of c in the domain c > C(û, v0) for which an
equality is achieved in (2.11) represents a (1 − γ) × 100% upper confidence bound for C(u, v0).
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As usual, two-sided (1− γ) × 100% confidence interval is obtained by combining lower and upper
(1− γ/2)× 100% confidence bounds.

Likelihood based inference about C(u, v) does not lead directly to inference about N . In
particular, if (C, C̄) is the (1 − γ) × 100% confidence interval for C then (k/C̄, k/C) does not
provide enough coverage to serve as (1−γ)×100% confidence interval for N ; however, these bounds
are useful as initial points in the numeric procedure described below. To test the hypothesis that
N = n against the alternative N < n, we have to compute the maximum value of the log-likelihood
under the constraint N = n. As can be seen from (2.4), this goal can be achieved by solving the
gradient equations





∑k
i=1

∇uf̃(yi|u)

f̃(yi|u)
= n×∇uC(u, v)

∑k
i=1

∇v p̃(yi|v)
p̃(yi|v) = n×∇vC(u, v)

(2.12)

by using a suitably modified Procedure A. Denote the constrained estimates by (ûn, v̂n) and
the score associated with N by

ΨN (n) = 2
{
L(û, v̂, N̂)− L(ûn, v̂n, n)

}
. (2.13)

Then the hypothesis is rejected if N̂ > n and ΨN (n) > χ2
1−α(1) . The lower (1 − γ) × 100%

confidence bound for N is then the value of n < N̂ for which ΨN (n) = χ2
1−α(1) . The upper bound

is obtained in a similar way.

3. Goodness of Fit Tests

The fact that we successfully obtained estimates of the basic parameters does not mean much
unless the data is compatible with our model. In this section we discuss methods that enable one
to make a judgment about such compatibility. We will consider two situations. In the first one
we assume that the population of losses, whether it fits the model or not, remains homogenous -
in other words, we cannot readily point out sub-populations (SP) for which the underlying model
parameters can be suspected to be different. In the second situation we have reasons to suspect
non-homogeneity and will need to test whether this is indeed the case.

3.1 Homogenous population

When the only way in which the model does not fit is associated with the choice of a wrong model
rather than with the presence of sub-populations, one can use a number of graphical and analytical
tools to test the model adequacy. One important graphical tool is the probability plot. Denote
the ordered observations (log-losses) by y(1), y(2), . . . , y(k). Denote the Cumulative Distribution
Function (cdf) of the observations, conditional on discovery, by

F̃c(y|u, v) =
∫ y

−∞
f̃c(t|u, v)dt =

{∫ y

−∞
f̃(t|u)p̃(t|v)dt

}
/C(u,v) (3.1)

Suppose that the estimates of the parameters are (û, v̂). One form of a probability plot is
obtained by plotting, for i = 1, 2, . . . , k, the points [i/(k + 1), F̃c(y(i)|û, v̂)]. Failure of these points
to form a straight line with slope 1 is an indication of lack of fit. Some standard tests, such
as Kolmogorov - Smirnov test, can be used to test for significance of the observed lack of fit.
It is recommended to use adjustments to account for the fact that the parameters have been
estimated from the data, eg. see D’Agostino and Stephens (1986). Another form of the probability
plot is sometimes useful in models involving special parametric structure, such as location-scale
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equivariance. This form is obtained by computing the scores si = F̃−1
c [i/(k + 1)] and plotting the

points (y(i), si), i = 1, 2, . . . , k.
Another useful method is to compare the log-likelihoods corresponding to individual losses

against the expected values. Denote the mean and variance of a single log-likelihood term by

E(u,v) =
{∫∞
−∞ f̃(t|u)p̃(t|v)× ln

[
f̃(t|u)p̃(t|v)

]
dt

}
/C(u, v)− lnC(u, v),

V (u, v) =
{∫∞
−∞ f̃(t|u)p̃(t|v)× ln2

[
f̃(t|u)p̃(t|v)

]
dt

}
/C(u,v)− (E(u, v) + lnC(u, v))2.

(3.2)

Now assume that the parameters are equal to their estimated values. Then, under the assump-
tion that the model is correct,

Z =

{∑k
i=1 ln

[
f̃c(yi|û, v̂)

]}
− kE(û, v̂)

√
kV (û, v̂)

, (3.3)

can be treated as a realization of a standard normal random variable. Therefore, we can reject,
at the level of significance γ, the hypothesis that the observed losses come from the postulated
model if |Z| > z1−γ/2.

One can find a number of additional goodness-of-fit tests in D’Agostino and Stephens (1986).

3.2 Non-homogenous population

Consider, for example, the case where the data set contains losses corresponding to two types of
businesses: Banking and Others. If we disregard distinction between the sub-populations and apply
one of the tests described above, we might reach a conclusion that some given model adequately
represents the observed losses. Yet, fitting two separate models to sub-populations of interest can
explain the data much better. Suppose, for example, that we have identified m sub-populations
P1, P2, . . . , Pm for which, as we suspect, the parameters of the underlying population of losses are
different, but the DPC’s are the same and are assumed to be known. We can then perform the test
for homogeneity based on the following statistic:

T = 2





m∑

j=1

L(ûj ,v, N̂j |yj)− L(û, v, N̂ |y)



 , (3.4)

where

yj is the sub-sample of losses corresponding to the j -th sub-population.

ûj is the vector of estimated parameters based on the data for the j -th sub-population only.

N̂j is the estimated number of losses in the j -th sub-population (the estimation is based on yj

only).

L(ûj , v, N̂j |yj) is maximum log-likelihood based on the data corresponding to the j -th sub-
population only.

y is the overall sample

û is the vector of estimated parameters based on the complete sample

N̂ is the estimated overall number of losses
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L(û, v, N̂ |y) is maximum log-likelihood based on the complete sample

If the population is homogenous, the statistic T should have a chi-square distribution with
the number of degrees of freedom equal to the product of m and the number of parameters in
which the sub-populations differ from each other; for example, if the distributions of log-losses
corresponding to different populations can differ in both location and scale, the number of degrees
of freedom is 2m. We reject the homogeneity hypothesis at the level of significance γ if T exceeds
the (1− γ)× 100% -th quantile of the chi-square distribution mentioned above.

It is not difficult to generalize the above test for the case where the PDC parameters for various
sub-populations can also be different.

4. Tail Based Inference

One can still take advantage of the model under consideration even if the goodness of fit tests
based on the complete data set suggest its rejection. Consider the situation where the company
has to estimate reserves needed to cover the overall losses in the coming year. Consider two types
of losses: small losses (not exceeding some prescribed level A) and large losses (greater than A).
The company has enough internal information to estimate the magnitude and frequency of small
losses. Larger losses, however, are observed rarely within the company, providing no solid basis for
statistical estimation. It is then natural to perform that data analysis under the working assumption
that the distribution of large losses pertaining to the company’s business can be estimated based
on observed losses suffered by ”similar” companies. The company performs a search of the body
of sources to collects information on such losses. Suppose that most of the discovered losses are
greater than A and our attempt to fit a model involving Weibull losses and Logistic PDC fails;
there is still a possibility that this model will fit to a suitably transformed data if we limit our
attention to the population of losses that are greater than A. For example, such a model could fit
well some form of an excess loss data, such as (xi −A) or ln(xi/A− 1).

Another area in which estimation in the domain x > A is of primary interest is insurance.
Suppose that the company intends to insure itself against losses exceeding A (here A could also
represent the deductible demanded by the insurance company. From the insurance company point
of view, losses below A are of no interest, and its risk analysis can be performed solely based on a
distribution that fits the data only in the domain x > A.

Instead of fitting some distribution to some form of excess loss data as suggested above, one could
use an alternative approach inspired by the asymptotic theory of sample extremes (see Galambos
(1987)). One of the main subjects of this theory is analysis of distributions that have a Pareto tail
index, i.e.,

1− F (x) ∼ x−aL(x), as x →∞, (4.1)

where L(x) is some slowly varying function, i.e., a function that satisfies the relation

L(tx)/L(x) → 1 as x →∞, (4.2)

for every t > 0. This class is very extensive and it includes many of the distributions used by
practitioners to model losses. When A is a large number (as in the case in insurance applications or
the problem of operational risk estimation described in the beginning of the section), the distribution
of the data in the domain x > A is given by

F (x|x > A) = 1− (x/A)−a[L(x)/L(A)] ≈ 1− (x/A)−a, x > A. (4.3)
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The above approximation, suggested by (4.2), can be justified in many practical situations. In
the simplest case where the distribution of losses in the range of interest x > b is a two-parameter
Pareto,

F (x) = 1− (x/b)−a, x > b, (4.4)

i.e., L(x) ≡ 1, the approximation in (4.3) reduces to equality. In terms of logarithms, the
distribution becomes shifted exponential, i.e.,

F̃ (y|y > u1) = 1− exp{−(y − u1)/u2}, f̃(y|y > u1) = u−1
2 exp{−(y − u1)/u2}, y > u1 (4.5)

where

u1 = ln(A), u2 = 1/a. (4.6)

The above argument illustrates the point that in the tail area the location-scale distribution
families once again lead to relatively tractable models; however, the location parameter typically
turns out to be the left endpoint of the corresponding distribution.

In general, the problem of inference in the case where the log-losses are treated as left-censored,
are assumed to come from the distribution f̃(y|y > u1;u), and are observed in accordance with
some DPC p̃(yi|v), is similar to that described in Section 3. From the practical standpoint, this
analysis is frequently simpler because u1 can be treated as known.

5. Examples

Consider the data in Appendix A. To illustrate application of the described methods, considering
two cases: in the first case we fit the Weibull-Logistic (WL) scheme to the whole distribution of
losses contained in the set of sources. In the second case we focus on large losses (those exceeding
some ”deductible” or other boundary of interest) exclusively, disregarding possible lack of fit for
the distribution as a whole.

5.1 Global Weibull-Logistic Model

In this section we assume that the underlying distribution of losses is Weibull, i.e., the log-losses
are distributed in accordance with (1.2) and that the DPC is logistic (1.4). In the first phase, let
us estimate the parameters (u, v, N) without imposing any restrictions on them. Maximization of
the log-likelihood (2.4) leads to the estimates û = (17.1, 3.74) and v̂ = (8.78, 0.34), which imply,
by (2.2), that C(û, v̂) = 0.90 and, by (2.5), that N̂ = 225/0.90 = 250. In other words, the ”best”
explanation of the data offered by an unconstrained model is as follows: the losses are coming from
the Weibull distribution with a very large scale parameter, exp(17.1) = 2.67 ×107 and not very
small shape parameter, c = 1/3.74 = 0.27. So, the underlying set of sources does not contain many
small and moderate losses. The loss corresponding to the probability of discovery 0.5 is exp(8.78)
= 6500 and losses corresponding to the probability of discovery 0.1, 0.25, 0.75, 0.9 and 0.99 are
given in the first line of Table 1. Basically, the unconstrained approach suggests that all losses
except those below 30000 are discovered and represented in the data at hand.

From the practical standpoint this explanation, of course, does not make any sense and the
above example illustrates what could happen if one does not think a-priori about the plausible
values of the parameters and counts on statistical estimation to ”find” them. In the next step,
assume that one has reasons to believe that the DPC parameters can be treated as known and
equal to v̂0 = (14 1.7). This suggests that the loss corresponding to the probability of discovery
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0.5 is 1.2M and losses corresponding to other values of the probability of discovery are given in the
second line of Table 1. Use of the constrained estimation procedure described in Sec. 2.2 leads to
the estimate û = (10.2, 7.5) which appears more sensible from the practical point of view: now
the large losses are explained not as much by a large scale parameter, as in the unconstrained
case, but by a smaller shape parameter. This suggests that the bulk of the losses in the body of
sources still lay undiscovered: the estimated proportion of discovered losses is C(û, v̂0) = 0.20 and,
consequently, the estimated number of losses recorded in the set of sources is N̂ = 225/0.20 = 1125.

An noted in the Introduction, a simulated sample from this model is shown in Figure 2. Even in
the unconstrained case, there is no assurance that the model corresponding to estimated parameter
values will fit the data (in fact, it does, as the interested reader can verify by applying the tests
illustrated below). Once constraints are imposed, it becomes quite possible that the model will fit
poorly and careful examination of goodness of fit issue is in order. We apply some of the techniques
described in Section 3 to verify that the constraint v0 = (14 1.7) is compatible with the data. First,
let us consider the probability plot (see Figure 3). The maximal deviation from the straight line, is
0.09. Practitioners frequently use 0.05 as the cut-off value, so we would reject the hypothesis that
the model fits the data if this deviation exceeds the critical 5% value for the Kolmogorov-Smirnov
statistic. Since this critical value is known to be 1.36/

√
225 = 0.09, we have no sufficient evidence

that the model does not fit the data.
To apply a test based on the likelihood, note that the log-likelihood of the data in the constrained

model is -605. Formulas (3.2) suggest that for data coming from the model with parameters û
= (10.2, 7.5) and v̂ = (14 1.7) the average score per observed loss is E(u, v) = -2.63 and the
variance is V (u, v) = 0.55. This suggests that the value of the log-likelihood observed under the
estimated model is approximately normal with mean and standard deviation −2.62 × 225 = -591
and

√
0.55× 225 = 11.1, respectively. The value -605 is within 1.27 standard deviations from the

mean, which corresponds to the p-value of 0.1 for the one-sided goodness of fit test - so, this test
also does not lead to rejection of the model.

One could notice, however, that the constrained model barely squeaks by, and it does not even
have some features that a practitioner may desire: given that the provided data is a result of
a limited search effort, the probability 0.1 of discovering a loss of magnitude 28000 in the body
of sources appears too high and the overall probability of discovery 0.2 appears way too high as
well. However, our analysis shows that an attempt to obtain a much better Weibull-Logistic model
compatible with the data set at hand does not lead anywhere: models that appear more attractive
from the practical standpoint unfortunately do not fit, especially in the lower end. The difficulties
are probably related to the fact that efforts of putting together the data base are in the very initial
stage and appear very uneven in coverage. Furthermore, some values of the data have a much higher
probability that the neighboring data, which exposes the fact that a Weibull model is a-priori just
a convenient mathematical approximation: for example, a typical small fine imposed by a judge
against an operational risk related violation and reported in the press is much more likely to be
$10,000 (DM 18497 in the data set) than $9000. Though such partial grouping does not derail the
estimation process, it is advisable to establish, in every individual study, what is its effect on both
estimation and goodness of fit tests.

Finally, we test whether, under the assumption that the model is WL with v̂ = (14 1.7), the
population of losses classified as being of ”high” or ”medium” relevance (sub-population 1, denoted
SP1) differs significantly from the population classified as being of ”low” relevance (sub-population
2). Let us fit two separate models for the two sub-samples. The estimated population parameters
(based on sample size of 140) for SP1 are û1 = (9.8, 7.9) and the maximal value of the log-likelihood
is -385 (the model cannot be rejected by goodness of fit test, but the quality of fit is marginal).
The parameters for SP2, based on sample size of 85, û1 = (10.7, 7.0). The maximal value of the
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log-likelihood is -220 and the fit is very good. As indicated earlier, the maximum log-likelihood
value for the complete data set was -605. To test whether the complete data set is explained better
by two separate models for SP1 and SP2 than by a single model, we need to compute T . Since we
have two sub-populations that differ in two parameters, T should be compared to χ2

0.95(4) = 9.49.
In our case T = 2(−385 − 220 + 605) = 0, indicating that we have no evidence, under the given
PDC, to conclude that there is a significant difference between the loss distributions corresponding
to SP1 and SP2.

5.2 Tail Pareto-Logistic (PL) Model

Now let us consider the situation from the prospective of the insurance company and assume that
only losses exceeding A = DM 1.2M (the deductible) are of interest. Assume that the distribution of
losses is two parameter Pareto; as noted in Section 4, this implies that the log-losses are distributed
in accordance with (4.5) with u1 = ln(1.2× 106) = 14. The only parameters of interest are v, the
scale u2 and N . The relevant data is now reduced from 225 to 163 losses exceeding 1.2M.

First, let us apply the unconstrained model. Maximization of the likelihood based on conditional
density functions leads to the estimates û2 = 1.14, v̂ = (19.7, 0.98). Therefore, C(û, v̂) = 0.02 and
the total number of losses exceeding 1.2M contained in the set of sources is estimated to be N̂ =
163/0.02 = 8150. This model suggests that the loss that has the probability 0.5 to enter into the
set of sources and be discovered is 3.7 × 108). Losses corresponding to various values of the DPC
are shown in Table 1.

Once again, one has a reason to be disappointed in the results of the automatic search for the
model parameters: it appears as if losses of very high magnitude have a high chance to be overlooked
in the process of building the data base. One could ”correct” this anomaly by introducing a
constraint that the parameters of the Logistic DPC are v0 = (17, 1). Under this constraint the
magnitude of a loss that has a 0.5 probability to be discovered is 2.4×107); other values (see Table
1), also appear to be more reasonable to a decision maker. The resulting estimate of the scale is
u2 = 1.97. The estimated overall discovery probability is now much larger, namely, C(û, v̂) = 0.30
leading to 163/0.3 = 543 as the estimate of total number of losses of magnitude exceeding 1.2M in
the time period of interest.

To check whether the resulting Pareto-Logistic model (for losses exceeding 1.2M) with parame-
ters û = (14, 1.97), v̂ = (17, 1) fits the data, we first examine the probability plot in Figure 3: the
Kolmogorov-Smirnov test suggests that the fit is good. The mean and variance of the log-likelihood
score corresponding to a single measurement are E(u,v) = -2.19 and V (u, v) = 0.55. Therefore,
the mean and standard deviation of the log-likelihood under the assumption of the above model
are −2.19× 163 = -356 and

√
0.55× 163 = 9.4. The maximal log-likelihood computed for the data

at hand under the constraint v = v0 = (17, 1) is -353, which is in agreement with the mean and
standard deviation computed above.

6. Discussion

The limited scope of the data set discussed in this article enables one to answer questions of type
discussed above. However, one would need a much more elaborate data set in order to address more
complex questions. For example, consider the problem of building a model to estimate operational
risk losses for a given enterprise. A data base suitable for such estimation would consist of a list of
losses; for each record we would have not only loss magnitude and relevance, but also such entries
as Industry, Number of Employees, Type of Loss, Market Value of the bank, etc. A promising
strategy is to:

• establish, for each factor, whether it is affecting (i) λ, (ii) (u1, u2) or (iii) (v1, v2); in some
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cases the type of an effect can be reasonably well postulated - for example, for some types
of losses the rate could be assumed to be roughly proportional to the number of employees.
Such a-priori relationships can considerably simplify the subsequent analysis. Their validity
can be tested by using post-estimation goodness-of-fit procedures.

• Estimate the relationship between factors and the basic model parameters, λ, (u1, u2), (v1, v2)

• For a given enterprise P evaluate, based on the above model, the corresponding parameters,
λP , (u1P , u2P ), (v1P , v2P ).

• Evaluate risks related to P based on the estimated parameters

We intend to consider such more general models in future research.
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Figure 1. Observed losses plotted on the Weibull probability plot.

Figure 2. Simulated replica of the data obtained by combining Weibull distribution of losses and a logistic PDC.
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Figure 3. Probability plots: Weibull-Logistic (WL) model, with parameters u = (10.2, 7.5), v
= (14, 1.7), dashed line, and Pareto-Logistic (PL) model with parameters u = (14, 1.98), v = (17,
1) in the domain y > 14, dotted line. The maximal Kolmogorov-Smirnov deviation is shown for
the WL model.

0.1 0.25 0.5 0.75 0.9 0.99
WL, u = (17.1, 3.74), v = (8.78, 0.34): 3100 4500 6500 9400 14000 31000

WL, u = (10.2, 7.5), v = (14, 1.7): 28000 1.9 ×105 1.2 ×106 1.8 ×106 5.0 ×107 3.0 ×109

PL, u = (14, 1.14), v = (19.7, 0.98): 4.2 ×107 1.2 ×108 3.7 ×108 1.1 ×109 3.2 ×109 3.4 ×1010

PL, u = (14, 1.98), v = (17, 1): 2.7 ×106 8.1 ×106 2.4 ×107 7.2 ×107 2.2 ×108 2.4 ×109

Table 1. Values of DPC for Weibull-Logistic (WL) and Pareto-Logistic (PL) models.
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APPENDIX A: Data used in the Example
.
Company Relevance Loss

ABN-Amro High 126000000
AIG High 162000000
Airtours Low 23200000
Albatross-Warehousing High 600000
Allied-Colloids Low 32726.5
Allied-Colloids Low 50300.5
Allied-Colloids Low 469800
Allied-Colloids Low 59458.7
Allied-lyons High 450000000
Anheuser-Busch Medium 63000000
ARCO-Pension-Fund High 39600000
Asesores-de-Valores-(AVA) Medium 177
AsiaFocus-and-others Medium 12132000
Askin-Securities High 1080000000
Astra-USA High 17730000
B-Pacoroni High 29500
Baii-Asset-Management High 300000
Banco-Bilbao-Vizcaya High 1000235.349
Bank-Of-America High 75000000
Bankers-Trust High 8694000
Bankers-Trust High 240000000
Banque-Nationale-de-Paris High 31500000
Barings High 2400000000
Barloecher Low 117000000
Baxter-Healthcare Low 28600000
Bear-Stearns High 46242.5
Bedfordshire-County-Council Medium 4620000
Bent-Emanuel-Christiansen-of-Saeby Low 737500
Bingdon-Builders Low 29000
Boliden Low 10400000
BP Low 28620000
Bre-X Low 7500000000
Britanic-Assurance High 1950000
British-Airways Low 362500000
British-Airways Low 9025000
British-Airways Low 912500
British-Government Low 6380000000
British-Petroleum Low 290000000
British-Rail Low 72500
Bula-Resources Low 36900000
Butte-Mining Low 75000000
Campbell-Soups Low 1160000
Canadian-Government Low 20800000
Cantrade High 118000000
Capel-Cure-Myers High 24000000
Cargill-(Minnetonka-Fund) High 180000000
Caterpillar-Financial High 14940000
Centrica Low 2250000000
Chiroscience High 10075000
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City-Technology-Holdings Low 14500000
Codelco High 360000000
Commercial-International-Bank High 9860000
Connex-South-Eastern Low 5015000
Connex-South-Eastern Low 3944000
Credit-Commercial-de-France High 23859230.54
Credit-Suisse High 224000
Credit-Suisse High 900000
Credit-Suisse-First-Boston High 95940000
Credit-Suisse-First-Boston High 1782000
Credit-Suisse-First-Boston High 1782000
CreditLyonnais High 31500000
Cruden-Construction Low 310300
Cynamaur Low 150800
Daewoo Medium 11570000
Daimler-Benz Low 600000000
Dain-Bosworth High 2034000
Daiwa-Bank High 1980000000
Dean-Witter-Reynolds High 40000
Dell-Computer High 62280000
Detroit-Edison Medium 74250000
Deutsche-Bank High 200000
Diocese-of-Dallas Low 9000000
Dolophin-Drilling Low 2950
Dresdner High 70000
Dura-Automotive-Systems-Inc Low 11700000
Dura-Automotive-Systems-Inc Low 1800000
Endessa High 3530242.41
Equitable-Life High 270000000
Eurotunnel * 580000000
Exxon Low 14400000000
First-of-America-Securities High 18497
First-Southwest-Company High 18497
Florida-State-Treasury High 1792800000
Garibaldi-Small-goods-Py-limited Low 13230000
General-Accident High 1101000
Gibson-Greeting High 35460000
Glaxo High 393000000
Go-Ahead-Group Low 2082200
Goldman-Sachs High 58800000
Goldman-Sachs High 46242.5
Goldman-Sachs High 138727500
Goldman-Sachs High 101700000
Goldman-Sachs High 6300
Goldman-Sachs High 2034000
Grant-Thornton High 43500
Great-Eastern-Railway Low 2593050
Hammersmith-and-Fulham-Council High 1800000000
Harris-Trust-and-Savings-Bank High 92340000
Hickson-and-Welch Low 1160000
Hickson-and-Welch Low 145000
Hoover Low 144000000
Hyundai Low 29510000
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Imperial-College-of-Science-Technol. Low 450000
Intel Low 1440000000
Invesco High 33000000
JH-Marsh-McLennan High 590000
J-P-Morgan-Securities High 46242.5
John-Sisk-Sons Low 3900000
Jones-Day-Reavis-Pogue High 91800000
JP-Morgan High 3292500
Kasima-Oil High 2700000000
Kaye-ScholerFierman-Hays-Handler High 73800000
Kensey-Nash Low 170280
Kidder-Peabody High 630000000
Kidder-Peabody High 18000000
KN-Kwikform Low 116000
KPMG-Peat-Marwick High 135000000
Kraft-Foods-Limited Low 12000000
LW-Insulations-Ltd Low 20300
Lazard-Freres High 2034000
LeBoeuf-Lamb-Greene-MacRae High 104760000
Lehman-Bros High 2034000
Lehman-Brothers High 147976000
Lehman-Brothers-Imternational High 120000000
Lenzing Low 19675000
Lenzing Low 2175000
LG Low 13260000
Liberty Medium 716300
Lloyds-TSB High 2079750000
London-and-Manchester-Assurance High 1950000
LucasVarity Low 31900000
Mattel-Inc Low 36000000
Mead-Corp High 21780000
Medani High 90000000
Merril-Lynch High 180000000
Merril-Lynch High 175721500
Merril-Lynch High 290000
Merrill-Lynch High 91000000
Merrill-Lynch High 54000000
Merrill-Lynch High 720000000
Merrill-Lynch-Pierce-Fenner-Smith High 18497
Mersey-Docks-and-Harbour-Co Low 30000000
Metallgesellschaft High 2762000000
MGM/UA-Communications-CO Low 64739500
Microsoft Low 15487500
Miller,-Johnson-Keuhn High 18497
Morgan,-Keegan-Co High 18497
Morgan-Stanley-Co High 18497
National-Express Low 1475000
Nations-Bank High 12150000
Natl-Assoc-of-Securities-Dealers High 160000000
NatWest High 270000000
Nelson-Wheeler Medium 127800000
Neville-Russell High 43500
Nortehrn-Railroad-Company Low 2774550
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Occidental-Petroleum Low 5900000000
Oppenhiemer-Co High 18497
Orange-County High 3060000000
PO-Nedlloyd Low 81075900
Pacific-Horizon-Funds High 122220000
PaineWebber High 46242.5
Pan-Am Low 37044300
Paramount-Communications High 36000000
Phillip-Morris Low 98000000
Piper-Jaffray High 18497
Piper-Jaffray High 2034000
PNC-Capital-Mkts High 18497
Powerscreen-International Low 173365000
Prudential-Corporation High 1350000000
Prudential-Insurance-of-America Medium 1849700
Prudential-Insurance-of-America Medium 2959520000
Prudential-Securities-Inc High 46242.5
Quadrex- High 29000000
Quilter-Fund-management High 660000
Railtrack Low 222430
Raymond-James-Assoc High 18497
Rhone-Poulenc Low 23490000
RMC-Group Low 14413000
Royal-Bank-of-Scotland High 255000000
Royal-Bank-of-Scotland High 1299000
Salomon-Briothers High 504000000
Salomons-Smith-Barneyn High 129479000
Samsung Low 14820000
Samuel-Montagu High 498800000
Schwab High 31444900
Seattle-Northwest-Securities High 18497
Sedgwick High 23200000
SG-Warburg High 109800000
Shell Low 258000000
Showa-Shell-Sekiyu High 2844000000
SK-Group Low 25350000
Smith-Barney High 46242.5
Sony-Corporation High 1681000
South-East-Infrastructure-Maint.-Co Low 314360
South-West-Trains Low 2938200
Southern-Track-Renewals Low 27550
Soverign-Unit-Trust High 4875000
Spicer-Oppenheim-(Delloitte-Touche) Medium 290000
Stagecoach Low 7375000
Stagecoach Low 2882600
Stamford-Tyres Low 36000000
Standard-Chartered-Bank High 28000000
Stone-Youngberg High 18497
Sumitomo High 4994100000
Sumitomo-Finance-International High 4500000
Sun-Life-of-Canada High 21750000
SunTrust-Capital-Mkts High 18497
Sutro-Co High 46242.5
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TACA Low 506459100
TI-Group Medium 26460000
Tilbury-Douglas Low 72500
Tom’s-of-Maine Low 720000
Transpot-Life-Insurance Low 45180000
Trevor-Osborne-Property-Group Low 8990000
UEM Medium 33000
Union-Bank-of-Switzerland High 750000000
Union-Bank-of-Switzerland High 384000000
UPS High 145260000
Virgin Low 1875000
Volkswagen Low 201450000
Warwickshire-Health-Authority Low 2900000
West-Bromwich-Building-Society Medium 29000000
West-Indies-Cricket-Board Low 2700000
Winchester-Commodities High 301000000
Wood-Gundy High 18000000
Yakult-Honsha High 517600000
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