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ABSTRACT 

Broad failure time distributions were observed for line depletion 
electromigration in Cu interconnects for various structures without 
sufficient liner contact and via redundancy. The root cause for this 
behavior was identified as the sensitivity of failure times to the void 
size, shape and location.  Application of traditional 2-parameter 
lognormal distribution model to corresponding stress data often 
results in very pessimistic EM lifetime projections.   A 3-parameter 
lognormal distribution was found not only to fit the experimental 
data better, especially for the early portion of the failure time 
distributions, but also to generate more accurate lifetime projections 
for void-size-limited EM.   Given the nature of EM wear-out, deeper 
consideration indicates that a 3-parameter lognormal distribution has 
a sounder physical basis than a 2-parameter lognormal distribution.  
The new parameter introduced in the model, the minimum failure 
time (X0), scales with via size over several technology generations, 
further validating the minimum void size explanation. [KEY 
WORDS: Electromigration, Cu interconnects, voids, reliability, 
lognormal, redundancy.] 

INTRODUCTION 

Electromigration (EM) is one of the major reliability concerns for 
Cu interconnects in advanced semiconductor chips.  It is caused by 
Cu atomic diffusion along the electron flow direction due to the 
momentum exchange with the conducting electrons.  Extensive 
improvements in integration processes and materials selection have 
been made industry wide to meet the ever challenging requirements 
for EM resistance [1-3].  However, the aggressive shrinking of Cu 
lines and vias, compounded with the drive toward lower K dielectric 
materials for newer technologies has exacerbated EM challenges.  
The smaller via allows a smaller minimum Cu void size to cause a 
circuit to fail.  Coupling this smaller minimum void size to the 
relatively wide process variation can cause broad EM failure time 
distributions, in particular for connections without sufficient liner/via 
redundancy [4].  Such broadly distributed EM stress failure times 
make the traditional EM lifetime projection model very pessimistic. 

A sound model for failure time distribution is a pre-requisite for 
accurate projection of EM reliability from accelerated stress data.  
Not only must the model be able to mathematically fit the 
experimental data well, but it must also generate the characteristic 
parameters to properly reflect the physics of the EM process.  
Traditionally, a 2-parameter lognormal distribution has been used to 
fit EM failure times.  But this fit encounters a difficulty with EM 
stresses on interconnects without sufficient liner redundancy and via 
redundancy.  This paper discusses how to overcome these difficulties 
with a more appropriate 3-parameter lognormal distribution fitting. 

2- VS 3-PARAMETER LOGNORMAL DISTRIBUTIONS 

The 2-parameter lognormal distribution has been most commonly 
used to characterize EM failures for interconnects including Al, 

AlCu and Cu in ULSI circuits for the last four decades.  It is 
described as   

     (1) 

                      (2) 

     (3) 

where f is the probability density function (PDF) and F is the 
cumulative distribution function (CDF) of lognormal distribution; t50 
(the median time to failure) and σ (the standard deviation of the 
logarithm of failure times) are the characteristic parameters of the 
distribution (i. e. the two parameters we are referring to), and z is the 
score function that transforms failure times to the standard Gaussian 
scale. On the z vs Log[t] probability plot, the ideal single modal 
distribution is a simple straight line. For some via/line EM structures, 
failure time distributions have been found to severely deviate from 
ideal linear behavior.  Introduction of two bimodal lognormal 
distributions was needed to obtain a satisfactory fit [5].  These 
models were 

1) the superposition model, where the overall distribution is the 
sum of two 2-parameter lognormal distributions,                                

(4) 

and 2) the weakest link (or competing risks) model , 

                                                                                                         (5) 

where F is the overall CDF,  F1 and F2 are the CDF for early mode 
and late mode, respectively, and  p1 is the fraction of the early mode.  

These 2-parameter and bimodal lognormal distribution models 
have worked seemingly well for aluminum based interconnects.  For 
the advanced Cu interconnects, while they seem still working well 
for many structural configurations, fits to the data are less 
satisfactory for structures without sufficient liner and via 
redundancy.   

Conceptually, the 2-parameter lognormal distribution should not 
be an appropriate model for EM failure times, since EM is a wear-out 
failure mechanism. As equation (3) indicates, as z becomes smaller 
and smaller, t approaches zero.  This implies that nearly instant EM 
failure is possible, though the probability may be very low.  
Although instantaneous failure is possible for defect-induced fails, it 
seems intuitively evident that it should never happen for wear-out 
failure mechanisms, such as EM.  Since EM failure is caused by 
metal voiding resulting from atomic diffusion, a critical minimum 
void size (Vcrit) is needed to cause an observable resistance increase 
for the given interconnect structure.  This critical void requires a 
finite time for the metal atoms to diffuse.  For instance, the weakest 
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link for damascene Cu interconnect EM is the via/line contact region, 
where Cu voiding either under or within the via bottom can cause 
failure. To cause any �significant� resistance increase, the minimum 
void size (Vcrit) needs to be large enough to cover most of the via 
bottom.  The minimum time (tmin) needed to form this void through 
Cu atomic diffusion is described by: 

 

 (6) 

 

where s is the effective cross section area for Cu atomic flux, νd is Cu 
drift velocity, Deff is the effective Cu diffusivity, Z* is the effective 
charge number, e is the electronic charge, ρ is the Cu electrical 
resistivity, j is the stress current density, and kT is the thermal 
energy.  Since Vcrit is a definite positive volume (it varies with 
via/line layout under the same stress conditions),  tmin must be a finite 
positive number as well.  More specifically, there should be a 
threshold time (tmin > 0) before which no EM failures can occur.  
This threshold time is the minimum failure time for a given 
interconnect under specific stress conditions.  The appropriate 
lognormal distribution for EM failure times with a minimum 
threshold should be a 3-parameter distribution, which is given by: 

 

  (7) 

   (8) 

 
where X0, the third parameter, is the minimum threshold failure time 
(tmin).  To emphasize that the minimum threshold failure time is not 
the failure time observed from the first fail among the samples in a 
set of stress, but rather is a theoretical limit which the distribution 
approaches, symbol X0, rather than tmin, is used from now on to 
represent this minimum threshold failure time.  In theory, the earliest 
failure time approaches this minimum threshold failure time as 
sample size is increased, but it will never quite reach it for finite 
sample sizes.   

Filippi et al [6] applied equation (8) on EM failure data analysis 
of Ti-AlCu-Ti interconnect.  They pointed out that use of the 2-
parameter lognormal distribution leads to the paradoxical results that 
lower stress-current density or selection of a higher resistance shift 
criterion for failure could lead to shorter projected lifetimes. They 
successfully resolved this paradox by using the 3-parameter 
lognormal distribution. 

The basic difference between 2-parameter and 3-parameter 
lognormal distribution is whether the z vs Log[t] line on the 
probability plot is straight linear or curved downward (for positive 
X0).  As will be shown in the following discussions, this difference 
may be hard to distinguish or can be easily noticeable from the 
experimental data, depending on the parameters of the distributions. 

Figure 1 compares the basic functions of the 2-parameter and 3-
parameter lognormal distributions.  The shift to the right for the 3-
parameter lognormal PDF curve (Figure 1(a)) highlights the impact 
of X0 (minimum failure time for EM).   Figure 1(c) shows the 
distinguishing feature of z vs Log[t] of the 3-parameter lognormal 
distribution, the bending downwards (for positive X0) away from the 
linear as for 2-parameter distribution.  Figure 2 presents examples of 
the impact of X0 and σ on the differences between the 2-parameter 

and 3-parameter lognormal distributions.  These figures clearly show 
that both the shape parameter, σ, and the differences between t50 and 
X0 have significant impact on the difference between the two 
distributions, especially for the early portion of the distribution.  For 
a CDF as low as 10-5 with a tight distribution (σ=0.2, as shown in 
Figure 2(a)), the difference between 2-parameter (linear) and 3-
parameter (curved) lognormal distributions is hard to distinguish.  
For the same X0 and t50, the difference between the two distributions 
become evident for the broader distributions (σ=1.0) for CDF as high 
as 10-3 as shown in Figure 2(b).  The failure time distributions for the 
traditional EM stress data from Al based interconnects are usually 
tight (σ in the range of 0.1 - 0.3), they seem to follow the 2-
parameter lognormal distribution very well for sample sizes in 
dozens (seemingly good linearity on the probability plot, without 
severe bending downwards).  Even for Cu interconnects with decent 
redundancy, most of the failure time distributions are not terribly 
broad, and the deviation from linearity feature in probability plots is 
not strikingly evident with sample sizes up to hundreds. These 
experiences may have explained why the application of 2-parameter 
lognormal distribution model in EM data analysis has not been 
seriously challenged.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.   COMPARISON OF 2-PARAMETER AND 3-PARAMETER 
LOGNORMAL DISTRIBUTIONS.  THE DISTRIBUTION PARAMETERS IN THIS 

EXAMPLE ARE: t50 =25, σ =0.95.  THE BROKEN LINES ARE FOR 2-
PARAMETER (X0 = 0), AND THE SOLID LINES ARE FOR 3-PARAMETER 

LOGNORMAL (X0 = 4). 

5 10 20 50 100
t

1

10

50

90

99

e
l
i
t
n
e
c
r
e
P

−3

−2

−1

0

1

2

e
l
i
t
n
a
u
Q

(C) 

5 10 20 50 100
t

0
0.2
0.4
0.6
0.8

1

F
DC

(B) 

5 10 20 50 100
t

0.0

0.01

0.02

0.03

FD
P

(A) 



 

 

 

 

FIGURE 2.  IMPACT OF σ AND X0 ON THE DIFFERENCES BETWEEN 2-
PARAMETER AND 3-PARAMETER LOGNORMAL DISTRIBUTION.  FIGURE 

2(a) ASSUMES t50 = 25, σ = 0.2; FIGURE 2(b) ASSUMES t50 = 25, σ = 1.0. 

VOID SIZE LIMITED EM FAILURE DISTRIBUTIONS IN 
CU INTERCONNECTS 

Failure Time Distribution and Redundancy 

As discussed in references [4,7], redundancy (liner redundancy 
and via redundancy) features in Cu interconnects have substantial 
effects on EM failure characteristics and distributions.  Liner 
redundancy refers to current carrying-capability of liners when Cu is 
locally removed from the area, this includes the liners covering the 
bottom and side walls of vias and lines, and the contact between the 
via bottom and the liner of the line below (sidewall and/or line end).  
Via redundancy refers to the number of vias in contact with the lines 
below or above. The redundancy features determine the critical void 
size necessary to cause early EM fails (or minimum failure time).  
For advanced technologies, aggressive shrinking in line and via 
dimensions reduces the critical void size for failure, and enhances the 
sensitivity to void shape and location [4].  As a result, the EM failure 
times become shorter, and the distributions become broader for the 
cases with less redundancy (both via and liner).  Figure 3 shows a 
few examples of line depletion EM failure time distributions with 
different redundancies.  The stress structure is shown in Figure 4(a) 
and the via-line contact features at the cathode end are shown in 
Figure 4(b).  The stresses were conducted at 300 oC at a current 
density of 2.5MA/cm2 in the line, with electrons flowing from V2 
down to a 200µm long M2 line.  The nominal V2 size is (0.1 x 
0.1)µm2, the M2 line width ranges from 0.1µm to 0.7µm. It is clear 
that with the increase of redundancy, the failure time distributions 
become tighter and tighter.  Cases C and E have both good via 
redundancy (the maximum number of vias along line width in one 
row) and liner redundancy (all vias contact the line end liner and the 

outer vias also contact the M2 sidewall liners), and both show fairly 
tight distributions and longer times for early fails.  Though case A in 
Figure 4 only has one via, there is good contact between the via 
bottom and the M2 sidewall liners, because the M2 line has the same 
width as the V2 via.  This good liner redundancy requires a deeper 
void to cause failure (larger relative critical void size and longer 
minimum failure time), and to exhibit a steady, gradual resistance 
increase after the initial resistance jump.  Consequently, it has the 
tightest failure time distribution among the 5 examples in Figure 3.  
Furthermore, since the stress current was chosen based on the current 
density in the M2 line, the current crowding at the V2/M2 interface 
for Case A is also the lowest.  Case D has less than the maximum 
number of vias allowed along the line width and the outer vias do not 
contact the M2 sidewall liners below.  It has less relative via and 
liner redundancy than Cases A, C, and E, so its failure distribution is 
broader.  Case B has very poor via and liner redundancy (single via 
on a wider line).  As a result, it has the broadest failure distribution 
and shortest early failure times.  

  

FIGURE 3.  EXAMPLES OF LINE DEPLETION EM FAILURE DISTRIBUTIONS 
� THE DISTRIBUTION BECOMES BROADER (HIGHER σ) WITH THE 

REDUCTION OF THE REDUNDANCY (BOTH LINER AND VIA). 

 

 

(b) 
FIGURE 4.  SCHEMATIC OF THE STRUCTURES FOR EM STRESSES 

SHOWN IN FIGURE 3.  (a) SCHEMATIC OF THE CROSS SECTION OF THE 
STRUCTURE; (b) VIA/LINE CONTACT OF THE CATHODE END. 

A legitimate question here is whether the local current crowding 
has an impact when comparing the failure time distributions above. It 
is true that the severity of current crowding at the via/line contact 
interface is different for the cases discussed above.  Experiments 
were conducted on case-B at different stress currents.  Lower stress 
current causes failure times to lengthen, but does not alter the 
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distribution shape significantly.  This suggests that the local current 
crowding should not be a major concern when comparing the above 
failure distributions under current stress conditions.   

Issues with 2-Parameter Lognormal Distribution 

Figure 5 shows the fitting lines of the data from Figure 3 with 2-
parameter lognormal distributions.  As the redundancy (via and 
via/line liner contact) decreases, the failure distribution becomes 
wider and the quality of the fitting becomes poorer.  For structures 
having good redundancy, the tight sigma allows good fitting of the 
data with single 2-parameter lognormal distributions (A, C and E).  
However, for Cases B and D, a single 2-parameter lognormal 
distribution does not fit the data well; z is clearly not a linear function 
of Log[t] on the probability plot.  It is clear that the 2-parameter 
lognormal distribution cannot accommodate the bending down of the 
early portion of these broader distributions. It severely overestimates 
the EM susceptibility.  Recalling the comparisons made in Figures 
1(c), 2(a) and 2(b), these experimental data suggest that the 3-
parameter lognormal distribution is more appropriate for fitting 
failure time distributions of such cases. 

 

FIGURE 5.  FITS OF THE DATA FROM FIGURE 3 WITH 2-PARAMETER 
LOGNORMAL DISTRIBUTION 

Application of 3-Parameter Lognormal Distribution 

Figure 6 shows the fitting curves of the experimental data with 3-
parameter lognormal distribution described by equations (7) and (8). 
Visual inspection clearly shows that the 3-parameter lognormal 
distribution produces a much better fit than the 2-parameter 
lognormal, especially for the early portion of the broader 
distributions (B and D). Quantitative analysis of goodness of fit for 
these data will be published separately [8]. For EM life time 
projection, the early portion of the distribution is the most important 
part, and those early fails are the real reliability concerns.  

To further validate application the 3-parm lognormal to these EM 
failure distributions, physical failure analyses were performed on 
samples from stresses of case B with various failure times as shown 
in Figure 7(a).  Figure 7(b) presents the cross section pictures of 
these samples.  They confirmed that all failures follow the same 
mechanism with void under the via.  The only difference between the 
early and late fails is the void size and shape.  The very early fail (1) 
has a very thin slit-like void right underneath the via.  The late fail 
(4) has a larger void, and it seems that the void did not start right 
underneath the via, but adjacent to the via and eventually grew to the 
via bottom to cause the fail.  These SEM pictures demonstrate that 
the failure times are determined by void sizes and shapes.  The root 
cause of the wide distribution is the sensitivity of the failure times to 

the size and shape of the void needed to cause failure, due to the lack 
of (or insufficient) redundancy.  With better redundancy, the 
minimum void size to cause failure is larger, the failure time is less 
sensitive to void shape and location [4], and consequently, tighter 
failure time distributions will be achieved. 

 

FIGURE 6.  FITS OF THE RESULTS FROM FIGURE 3 WITH 3-PARAMETER 
LOGNORMAL DISTRIBUTION 

 

 

FIGURE 7.  EM FAILURE CHARACTERISTICS OF CASE B.  (A) (TOP) � THE 
FAILURE TIME DISTRIBUTION AND PFA SAMPLE LOCATIONS; (B) 
(BOTTOM) � CROSS SECTIONS OF THE REPRESENTATIVE SAMPLES 
SHOWING THE VOID FEATURES. 

For any distribution to be used in reliability modeling (such as 
EM), mathematically fitting the experimental data well is only one of 
the necessary requirements.  As we stated earlier, the parameter 
values derived from the model have to make physical sense for the 
failure mechanism under study.  Since the fitting parameters will be 
used for lifetime projection, it is very important to ensure that the 
parameters obtained are stable. One aspect of the parameter stability 
is the variation with data censoring.  Analysis of the accelerated 
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lifetime stress data often involves right censoring.  The appropriate 
censoring should enable the fitting to include all the data points 
belonging to the same distribution and to exclude those points not 
belonging to the distribution. Some degree of variation for the 
estimated parameter values is expected with different data censoring.  
However, significant changes in estimated parameter values with 
minor data censoring variation should raise questions on the validity 
of the assumed failure model.  For the failure time distribution of 
case B (symbol B in Fig.3), the very late portion of the population 
shows a different trend from the rest of the population.  Failure 
analysis further confirmed that those are the failures with voids in the 
line, away from the via, differing from the rest, which all had void 
under the via. They should be censored prior to fitting.  Figure 8 
shows the values of the mean of the squared residuals (that serves as 
a goodness of fit measure) as a function of the right censoring time. 
The error increases dramatically when failure time data beyond 75 is 
included in the distribution prior to fitting.  Table I lists the fitting 
parameters obtained at different right censoring times.  Table I also 
compares the estimated parameter values of case B with nonlinear 
regression and Maximum Likelihood Estimation (MLE) with various 
right data censoring.  Both Figure 8 and Table I suggest that 75 is the 
appropriate time for the right data censoring of this example.  With 
data censoring from 50 to 75, the estimated parameter values are 
fairly stable. Detailed discussions on the parameter estimation and 
confidence bound analyses are beyond the scope of this paper, and 
they are planned to be published separately [8]. 

FIGURE 8.  FITTING RESIDUAL VARIATIONS WITH RIGHT CENSORING 
TIME FOR CASE B.  NOTE THAT THE ERROR INCREASES RAPIDLY IF FAILS 

BEYOND 75 ARE INCLUDED IN THE DISTRIBUTION PRIOR TO FITTING. 

It should be kept in mind that the EM failure time distributions 
discussed above and in what follows are determined by the 
interconnect redundancy features; they are not in any way related to 
gross process defects and/or gross non-uniformities across a wafer.   

Via Size Impact on Minimum Failure Time 

While it is obvious that the 3-parameter lognormal distribution 
can fit the failure time data better for line depletion EM with 
insufficient redundancy, additional validation is provided by scaling 
of the estimated parameter values.  Many factors can affect minimum 
failure times, such as void growth rate (by stress conditions and 
process/integration conditions), layout characteristics (redundancy 
and passive Cu reservoir) and geometric dimensions.  As has been 
discussed earlier (see equation (6)), the minimum void size to cause 
an early failure should be proportional to the length of the via/line 
contact area, or the via length for structures with the same via/line 
width ratio.  At the same stress conditions and for the same 
integration scheme, a larger via should result in a longer minimum 
failure time (X0), since more time is needed to form a thin slit void 

that covers the entire via bottom.  Figure 9 shows failure time 
distributions for three technology nodes with different via sizes for 
cases of line depletion EM with similar redundancy features (single 
via contacts a wide line below). Table II lists the details of the via 
sizes, integration, estimated EM failure time distribution parameters.  
Comparing the data with similar integration schemes and via to line 
width ratio, the minimum failure time (X0) scales fairly well with the 
via size. 

Figure 9 also shows the comparison between 3-parameter and 2-
parameter fits; the details are listed in Table II.  The 3-parameter 
lognormal distribution clearly fits the data better for all these cases. 

Table I.  Estimated Parameters from Failure Time Distribution of 
Case B 

X0 (a.u) t50 (a.u) σ Right 
Censoring 

Time MLE Regress MLE Regress MLE Regress

100 2.94 2.37 24.94 25.16 0.82 0.81 
90 3.36 3.17 24.85 25.08 0.85 0.87 
80 3.64 3.58 24.84 25.05 0.88 0.90 
75 4.16 3.74 24.90 25.10 0.94 0.92 
70 4.04 3.77 24.86 25.10 0.93 0.93 
60 4.09 3.81 24.87 25.11 0.93 0.93 
50 3.87 3.78 24.76 25.16 0.90 0.93 
40 4.29 4.10 24.98 25.46 0.96 0.98 
30 4.62 4.56 25.49 26.27 1.03 1.07 

FIGURE 9.  EXAMPLES OF EM FAIL TIME DISTRIBUTIONS FOR 
STRUCTURES WITH SIMILAR POOR REDUNDANCY FROM 3 TECHNOLOGY 
NODES.  SOLID LINES ARE FOR 3-PARAMETER LOGNORMAL FITTING, 
BROKEN LINES ARE FOR 2-PARAMETER LOGNORMAL FITTING.  A � 65nm 
NODE; B � 65nm NODE FAT WIRE; C � 90nm NODE; D � 180nm NODE.  
SEE TABLE II FOR DETAILS. 

LIFE TIME PROJECTION WITH 3-PARAMETER 
LOGNORMAL DISTRIBUTION 

To prevent EM induced interconnect failures, circuit designers 
are usually given guidelines on the maximum current density allowed 
in the metal lines and vias based on the product application 
specifications.  JEDEC [9] recommends general procedures to 
project the allowed design current from accelerated stress data.   The 
two key parameters from the stress data used for the projection are t50 
(the median failure time) and σ (the distribution shape factor).  For 
general semiconductor chip applications, the allowed accumulated 
end life failure probability (value of the CDF) per connection is 
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usually very low (typically less than 10-11).  Projection from the 
stress sample size (usually in the order of hundred or less, where the 
minimum CDF value is about 10-2) to the general population scale 
(10-11) is about 9 orders of magnitude, and the projected lifetime 
becomes extremely sensitive to the variation of σ, especially for 
distributions with high σ values.  As discussed in previous sections, 
for interconnect structures with poor redundancy, this approach can 
result in very pessimistic lifetime projections. When a 3-parameter 
lognormal distribution is applied, the dependency on σ for the 
lifetime projection can be significantly alleviated.   

Table II.  Minimum Failure Time Variation with Via Size Scaling 

Technology 
Node 

65nm 
(thin wire) 

65nm 
(fat wire) 

90nm 180nm 

ILD SiCOH SiCOH FSG SiO2 

Via size 
µm2 

0.1x0.1  0.2x0.2 0.14x0.14 0.28x0.28 

Line width 0.3µm 0.6µm 0.28µm 0.76µm 
3-parm:X0 4.16 7.3 21.9 33.5 

3-parm: t50 24.9 33.8 51.8 200.7 
3-parm: σ 0.94 1.23 1.02 1.08 

Goodness of 
fit:  3-parm 

0.003 0.013 0.017 0.006 

Goodness of 
fit: 2-parm 

0.009 0.018 0.036 0.015 

Note:  1) The Cu/cap interface for 65nm differs from that for the 
earlier technologies (90nm and 180nm).  The Cap/Cu interface of 
90nm samples stressed is similar to that of 180nm.  
2) The goodness of fit is defined as the mean of the squared  
residuals.  
 

Based on Black�s acceleration model for electromigration [10]:                       

             
     (9) 

In equation (9), MTTF is the median time to fail, A and n are 
constants, and j is the stress current density, ∆H is the activation 
energy for metal diffusion, k is Boltzmann constant, T is the 
interconnect temperature (in K).   

We have shown in previous sections that the physical failure 
mechanism is the same for the fails across the entire uniform 
distribution range.  This suggests that the relation (9) is satisfied not 
only for the median of the failure time, but also for an arbitrary 
quantile of the failure time distribution, where A is determined by the 
order of the quantile. In light of this fact, the maximum allowable use 
current density (Juse) for a given interconnect may be calculated as: 

                                        
 (10) 

where Js is the stress current density, Ts is the stress temperature (in 
K). n, k, ∆H and T have the same meaning as in equation (9), and tEOL 
is the designed quantile of a given order (e.g., median) of the product 
lifetime. tf is the projected quantile of the same order of the failure 
time distribution under stress conditions; for the lognormal  
distribution it is given by: 

                      (11)                                                                                    

where U1 is the quantile of interest for the given CDF at product�s 
end of life, expressed on the standard Gaussian scale.  For the 
distributions with high σ, the term +X0 in the tf calculation (equation 
(11)) can play a crucial role for the lifetime projection, and can give a 
major relief compared to 2-parameter lognormal distribution model.  
It is also this term that reduces the lifetime projection dependency on 
the shape factor, σ.  Furthermore, if the quantile of interest tEOL is the 
left endpoint of the failure time distribution (i.e., quantile of order 
zero), then U1 approaches negative infinity, resulting in 

                                                                       (12)   
                      

and the Juse projection is simplified as 

       (13) 

 

which makes the Juse projection completely independent of t50 and σ.  
The sole parameter needed from the stress data is the minimum 
failure time, X0, in addition to the kinetic parameters ∆H and n. 

Equations (10) and (13) contain the same kinetic parameters, n 
and ∆H, as for the 2-parameter lognormal model.  To produce an 
accurate lifetime or maximum allowed current density projection, 
these kinetic parameters should be generated by the 3-parameter 
lognormal modeling.     

Special attention needs to be paid to joule heating issues when 
applying equation (10) or equation (13) for Juse projection.   In both 
equations, T is the temperature of the interconnect under 
consideration.  It may differ from the nominal chip operating 
temperature (Tu), depending on the level of joule heating of the 
interconnect itself, by its neighbors or both.  When joule heating is 
not negligible, T = Tu + ∆T.  ∆T is the temperature rise of the 
interconnect caused by joule heating.  The details on how to include 
joule heating in the lifetime projection are discussed by Hunter 
[11,12] and Li, et al [13]. 

DISCUSSIONS 

Sample Size Considerations 

As shown in Figures 1(c), 2(a) and 2(b) and already alluded to 
above, the graphical difference between 2-parameter and 3-parameter 
lognormal distribution on the probability plot is that the curve for 3-
parameter fit bends down (for positive X0) at the left (early failure), 
while the 2-parameter curve is a straight line. For tight distributions 
(low σ), this downward bending may not become apparent on the 
probability plot, except for very large sample sizes.  Applying 2-
parameter lognormal distribution for EM lifetime projection to these 
cases may not be prohibitively conservative, and usually projects 
reasonably accurate values at use conditions.  However, for stress 
data with very broad distributions (high σ), like case B in Figure 3, 
the inherent limitations of using a 2-parameter lognormal distribution 
in EM data analysis become apparent.  The projected lifetime 
becomes prohibitively conservative, and does not appropriately 
reflect the technology capability.  While 3-parameter lognormal 
distribution makes sense both mathematically and physically for EM 
data analysis, it usually requires a much larger sample size for 
reasonable parameter estimation. Figure 10 gives one example of 
variation of estimated parameter values from Monte Carlo 
simulations.  The input parameter values for the 3-parameter 
lognormal function are: X0 = 4.16, t50 = 24.9, σ = 0.94.  200 
simulations were conducted for each sample size.  For this specific 
example, the sample size needs to be 240 or greater to ensure 90% 



 

 

probability that the estimated X0 falls within the range of 3.1 � 5.4 
(the input value is 4.16).  

 

 

FIGURE 10.  MONTE CARLO SIMULATIONS SHOWING ESTIMATED 
PARAMETER VARIATION WITH SAMPLE SIZE.  THE GRAY BARS COVER 10 

� 90 PERCENTILES, AND THE VERTICAL LINE BARS COVER 2.5 � 97.5 
PERCENTILES. THE BLACK DOT IS FOR THE 50 PERCENTILE.  THE 
HORIZONTAL LINE IS THE INPUT VALUE (THE EXPECTED) FOR THE 

SIMULATION. THE 3-PARAMETER LOGNORMAL FUNCTION USED IS: X0 = 
4.16, t50 = 24.9, σ = 0.94.  FOR EACH SAMPLE SIZE, 200 SIMULATION 

RUNS WERE CONDUCTED. 

Redundancy Impact on Minimum Failure Times   

Equations (11) and (12) show the importance of X0 values on EM 
lifetime projection. It seems straightforward from equation (6) to 
model X0, if the Cu diffusion parameters are known.  In reality, Vcrit 
is a very sensitive function of interconnect redundancy (both liner 
redundancy and via redundancy).  Similar to the discussions made in 
reference [4], when the vias have good contact with the line liner 
below for line depletion EM, the void underneath the via needs to 
grow deeper into the Cu line to cause a resistance increase greater 
than a pre-set EM failure criterion.  Furthermore, the details of 
via/line liner contact (such as contacting line end liner, sidewall liner, 
and whether or not there is a line extension under the via), and the 
liner thickness and electrical properties all affect Vcrit.  For via 

redundancy, it is easy to understand that with more vias contacting 
the line, greater Vcrit is needed to observe the resistance increase 
needed to cause an EM failure. The layout arrangement of the 
redundant vias (number of rows, columns, and their spaces, with and 
without line extensions, etc) will also have significant impact on Vcrit.  
Therefore, these variables all should be taken into consideration for 
maximum allowed design current guidelines. 

SUMMARY 

Using an appropriate distribution model is very important for 
accurate reliability projections. Considering the wear-out nature of 
the EM failure mechanism, the 3-parameter lognormal should be 
more appropriate than the commonly used 2-parameter lognormal for 
EM failure time distributions.  For the EM stress data with 
reasonably tight distributions, the 2-parameter lognormal distribution 
can still produce acceptable lifetime projections for practical 
purposes.  However, for EM stress data with broad distributions 
(high σ), the 2-parameter lognormal model may become severely 
conservative and fails to reflect the behavior of early failure.  The 3-
parameter lognormal distribution can better fit the stress data and 
produce more accurate projections for the interconnect EM resistance 
provided an adequate sample size is used.   
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