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Abstract 
Three-parameter lognormal distribution has been demonstrated for applications in 
electromigration data analysis, especially for Cu interconnect structures with insufficient 
redundancy.  Examples are given on estimating parameter values from experimental data 
using the maximum likelihood method.  Detailed analyses are presented on confidence 
bound estimations of the parameters and their propagation to lifetime projections.   
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1. Introduction 
 
Electromigration (EM) is a wear out failure mechanism for on-chip metal interconnects in 
ULSI (Ultra Large Scale Integrate) circuits.  The root cause for EM failures is the 
interconnect voiding from metal atomic diffusion driven by the “electron wind”.  The 
weakest link for EM failures in Cu interconnects is the via/line interface (either within or 
below the via), where a thin slit like-void can cause a catastrophic circuit failure [1-4]. 
For advanced semiconductor technologies, the interconnect features, especially the Cu 
damascene vias, are becoming smaller and smaller, down to a fraction of a tenth of a 
micrometer.  This via size shrinking results in a smaller critical void size, and 
consequently a shorter time, to cause a substantial resistance increase or open circuit 
failures.  Furthermore, for interconnect structures with poor redundancy (both via and 
liner redundancy), EM failure times are very sensitive to void location and shape, and 
show broader distributions [1,5]. Traditional EM analysis with 2-parameter lognormal 
fitting leads to unacceptably short lifetime projections for such failure distributions.  As 
discussed by the current authors [5], a more appropriate three-parameter lognormal 
distribution model can better fit the data and produce more reasonable projections.  In 
this paper, we present detailed discussions on the application of a three-parameter 
lognormal model in EM data analysis, including estimating parameter values and their 
confidence bounds from experimental data using maximum likelihood and related 
methods.  Propagation of the errors from these estimated parameters to the projected 
lifetime will also be discussed. 
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2. Three-parameter Lognormal Distribution in EM Modeling 
 
Traditionally, EM failure times have been analyzed by lognormal distributions with two 
characteristic parameters, t50 (the median time to failure) and σ (the shape factor, or the 
standard deviation of the logarithm of failure times) [6,7,8].   Since EM is a wear out 
failure mechanism, a minimum void with finite size is needed to cause an interconnect 
resistance increase above a preset failure criterion.  To form this critical void, certain 
amount of Cu has to diffuse away from the divergence spot, which requires definite time.  
Therefore, unlike defect-caused failures, there is no instant EM induced failure; a finite 
minimum failure time is needed for an EM failure.  For distributions with a minimum 
threshold failure time, X0 , a 3-parameter lognormal fit has been found to be more 
appropriate [5]. The probability density function (PDF) ( )f t  of the three-parameter 
lognormal distribution is given by: 
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Formula (1) uses special parametrization that is convenient for work with reliability data.  
In what follows we will denote by T the random variable representing the failure time 
distributed in accordance with (1).    
  
The major visual difference between a two-parameter and a three-parameter lognormal 
distribution is a straight line vs. a downward bending curve at the early fail portion (for a 
positive X0) in the normal probability plot for logarithms of failure times [5,9].  The 
difference between these two distributions depends heavily on the shape factor, σ, and 
the difference between t50 and X0.  As shown in Figure 1(a), for a tight distribution with σ 
= 0.2, the difference is hardly distinguishable between three-parameter and two-
parameter lognormal fits for a sample size as large as 1000.  When σ is increased to 1.0, 
however, for the same t50 and X0 values, the difference between the two fits becomes very 
evident for a sample size of only 100; see Figure 1(b).   
 
For Cu interconnects, due to the damascene process, the redundancy feature of the 
structures has significant effect on EM distributions [1].  Good redundancy (for both liner 
and via) usually leads to tight EM distributions, while poor redundancy results in broad 
distributions.  Consequently, straight lines are seen on the probability plots for log(T) for 
EM data from structures with good redundancy, while a downward curvature in the early 
fail portion is observed for EM structures with poor redundancy.  Figure 2 shows four 
examples of EM stress data using similar structures with poor redundancy from 3 
technology nodes.  The common feature for these EM structures is a single via contacting 
a wider Cu line below with electrons flowing from the via down to the line. The line 
widths are 2-3 times of the width of the via.  Regardless the via size and integration 
details, all these data show similar distribution shapes, with early portion of the 
probability plot bending down wards.  Table I lists the goodness of fit comparison 
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between two-parameter and three-parameter lognormal distributions.  It is clear that only 
the three-parameter fitting can reflect the characteristics of the early fail population, 
which is crucial for lifetime projection.  
 

3. Parameter Estimations with Maximum Likelihood 
 
Maximum Likelihood Estimation (MLE) is the most widely used technique in statistics, 
due to its desirable efficiency and the least biased propositions [10].  The likelihood 
function for a three-parameter lognormal sample with single right data censoring is given 
by: 
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where n is the total number of samples under stress, m is the number of data points to be 
included in the fitting, { are the ordered failure times.  Our censoring here 
of type 1, i.e., the censoring time  is established a-priori; so that the experiment is 
considered terminated at time t  and failure times exceeding are either not observed or 
considered irrelevant.  One can also produce a similar expression for type 2 censoring, 
where the experiment is discontinued after observing the m-th failure; in this case t is 
simply replaced by t in (2).  F is the cumulative distribution function (CDF) of the 
three-parameter lognormal distribution corresponding to the density (1).  The estimation 
of parameters (t

(1) (2) ( ), ,..., }mt t t
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50, σ , X0 ) involves maximizing the likelihood function (2) as a function 
of these three parameters.  In practice, it is the logarithm of (2), not the likelihood 
function (2) itself, that is maximized through solving the following equations 
simultaneously: 
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One can show that a unique solution of the equations (3)-(5) exists and it indeed 
corresponds to the maximum of log-likelihood.  This solution defines the maximum 
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likelihood estimates (MLE’s); we will denote it by ( t ).  Discussions of the 
detailed mathematical procedures on how to solve these equations are beyond the scope 
of this paper.  Thanks to today’s computing technology, satisfactory solutions should be 
fairly easily achievable for EM stress data with reasonable sample size and quality.  
Examples of three-parametric lognormal estimation based on likelihood maximization 
can be found in [13]. 

50 0
ˆˆ ˆ, ,σ X

 
Data censoring is often necessary for EM data analysis, either because stress intensities 
have to be kept reasonably low (in order for data to stay within the envelope of the 
acceleration model) and so the life test is terminated before all samples fail, or because of 
the presence of multiple failure mechanisms.  For accurate parameter estimation, the 
fitting should include all the data points belonging to the population under study, and 
exclude the points not belonging to this population.  The censoring point may be 
determined by evaluating the fitting residuals 
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or the parameter value stability (both should give the same answer).  Within a uniform 
population, the residuals { } should correspond (approximately) to a sequence of 
independent standard normal random variables.  Therefore, the mean of the squared 
fitting residuals should not change substantially with right data censoring variation; but it 
will increase fairly rapidly when the data points not belonging to the population are 
included in the fitting.  Figure 3 illustrates the goodness of fit (mean of the squared fitting 
residual) of data A from Figure 2, which corresponds to the experimental data with 
electrons flowing from a (0.1 x 0.1)µm

iz

2 V2 down to a 0.3µm M2 line.  The mean of the 
squared fitting residuals is fairly constant for data censoring from 40 to 75, it starts to 
increase rapidly after 75 (Figure 3(b)).  Visual inspection of the probability plot in Figure 
3(a) clearly shows that the population beyond 75 looks different from the rest.  This was 
further confirmed by failure analysis: the samples that failed before 75 had a void directly 
under the via, while samples that failed later had voids away from the via in the Cu line.  
For this example, =75 is the appropriate censoring time.  Figure 3 also shows the 
variation of the estimated parameter values of X

ct
0, σ and t50.  Both X0 and σ track the 

variations of the goodness of fit well – fairly constant in the censoring range of 40-75, 
and starting to decrease rapidly beyond 75.  The estimated t50 does not change 
significantly as the function of censoring policy.  From these results, the mean of the 
squared fitting residuals proves to be a good indicator for determining appropriate data 
censoring. 
 

4.  Estimation of Minimum Failure Time, X0 
 
As will be shown in the later sections, the minimum possible failure time X0 is the most 
important parameter for EM lifetime projection for structures with poor redundancy.  
Smaller via size in the newer technologies results in shorter minimum failure times, 
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which makes the issue of estimation of X0 even more important.  An MLE point estimate 

0X̂  of this parameter is obtained by solving the equations (3)-(5). This estimate, however, 
suffers from a substantial upward bias, which could lead to overly optimistic lifetime 
projections.  It is, therefore, important to include a bias-correcting mechanism as part of 
the estimation procedure.  Such a mechanism will be described in this section.   
 
We will first focus on the procedure for obtaining a lower confidence bound for X0 – this 
problem is generally more important in practice than the problem of point estimation, as 
decisions are typically based on confidence statements as opposed to point estimates 
whose variance may turn out to be too high for practical purposes.  As an example, 
consider the stress data of Case A in Figure 2 (a (0.1 x 0.1) µm2 via down to a 0.3µm 
wide Cu line).  In this case the MLE estimate of X0 is 0X̂ = 4.16, with right data censoring 
at 75.  Based on this estimate, we would like to obtain a 95% lower confidence bound; 
this amounts to finding a value of ∆ for which we could claim that  with 

95% confidence.  In general, the confidence bound is a random variable  that 
satisfies the property: 

0 4.16X ≥ −
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where α is some number close to zero (α << 1). 
 
One of the most powerful methods for deriving confidence bounds is based on the so- 
called profile likelihood (e.g., see [11, 12, 13]).  This method is based on the fact that if 
the true value of the parameter is 0X , and the maximum likelihood estimates of the other 
parameters obtained under the assumption that the threshold is 0X are  
respectively, then the logarithm of the likelihood ratio 
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is distributed (asymptotically, as the sample size increases) as a 2χ random variable with 
one degree of freedom.  In accordance with this statement, derivation of the lower 
( (1 ) 100%α− ×  confidence bound for 0X  involves finding a value of ∆  for which 
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where 0X̂  is the maximum likelihood estimate of X0; the first term in the braces is the 
maximal value of the log-likelihood  log(L), where the maximum is computed with 
respect to all three parameters (X0, t50, and σ); and the second term in the braces is the 
maximal value of the log-likelihood, where the constrained maximum is computed by 
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fixing X0 at the value X0  = , and maximizing log(L) with respect to the remaining 
two parameters (t

0X̂ − ∆

2 0.05− ×

50 and σ).  Clearly, this maximization procedure establishes t50 and σ as 
implicit functions of  - and this fact is reflected in the above notation.   0X̂ − ∆
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For the purpose of EM reliability projection, only the lower bound of X0 is concerned, for 
instance, for a 95% confidence bound, α = 0.05 and the cut-off value for establishing the 
confidence bound is . 2 2),1] [0.9,1] 2.70χ χ= =

 
Figure 4 shows the results of X0 confidence bound estimation from profile likelihood 
based on equation (9). For this example (Case A of Figure 2), at dL =2.7 (95% 
confidence), the lower bound of X0 is 0X̂ − ∆  = 2.41, or the confidence of X0 being 
greater than or equal to 2.41 is 95% (note that the maximum likelihood estimate of X0 is 
4.16). 
 
Based on the structure of the likelihood function, it can be expected that the MLE would 
be biased upwards.  This, in turn, leads to the lower confidence bound being biased 
upward, resulting in overly optimistic lifetime projections.  It is, therefore, essential to 
incorporate bias-correction methodology into the estimation process. This bias correction 
on the estimated parameter values should become especially important for lifetime 
projections with tight reliability margins and/or smaller sample sizes. 
 
 The bias-correction procedure we propose can be viewed as an application of the so-
called “parametric bootstrap” technique, with the objective of providing the correct 
coverage probability of the confidence bound.  We define it as follows: 
 
Procedure A. Bias-corrected estimates and bounds for X0 
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         where  is the solution of  (9). ∆
 
 
To illustrate the application of the above procedure, consider again the data from case A 
of Figure 2. The estimated values of the parameters were   
Now select B=1000 (the number of bootstrap replications) and generate 1000 censored 
datasets (based on n=240 EM structures on test in each run) from the three-parameter 
lognormal distribution with parameters X

0 50
ˆ ˆ ˆ4.16, 24.90, 0.94.X t σ= = =

0 = 4.16, t50 = 24.90, σ = 0.94 and censoring 
time t . The lower 95% confidence bound for X75c = 0 was 4.16-1.75 = 2.41 (see Figure 
4). 

 
A total of 1000 sets of data with 240 points in each set (the similar sample size as Case A 
of Figure 2) were generated.  Confidence bound estimation was then performed on each 
of these 1000 sets of data following the profile likelihood method as described above.   

   
Figure 5 shows the simulation results.  There are 943 out of the 1000 values of X0 - ∆ 
smaller than or equal to 4.16, which is 7 fewer than what is expected (950), illustrating 
under-coverage obtained through the straight profile likelihood methodology .  In 
reviewing the estimated X0 values, some upward bias was observed for X0 estimation with 
MLE at the sample size of 240.  For the 1000 simulated data sets, the mean of the 
estimated X0 values should be very close to the input value of 4.16.  But the actual mean 
value of estimated X0 is 4.31, which indicates a 0.15 upward bias on X0 estimation: 
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In accordance with Procedure A, we apply the bias correction to both the estimate and the 
lower bound. In light of (11), this results in  
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X X EstBias X

LowerBound X X EstBias Xα

= − × = − =

− = − ∆ − × = − =

%
 (13) 

 
Simulation study confirms that the proposed estimation method indeed improves the 
coverage probability of the profile likelihood confidence bounds.  In particular, re-
evaluation of the original simulation run used in conjunction with Procedure A results in 
952 out of 1000 lower bounds being lower or equal to X0 nominal input value, which 
confirms the 95% coverage probability in this case. 
 
The bias on the estimated parameter values from MLE varies with sample size and 
parameter value range.  As shown in Figure 6, for the distribution with the parameter 
values discussed in this section, the upward bias for X0 estimation is inversely 
proportional to the sample size; this is a typical behavior of bias in well-conditioned 
statistical models.  In particular, when the sample size doubles, the bias value decreases 
to approximately half.  At a sample size of 240, the upward bias for X0 is 0.15/2 (the 
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mean of the 1000 estimated X0 nominal is 4.31), while at a sample size of 480, the 
upward bias of estimated X0 is decreased to 0.07/2 (the mean of the estimated X0 nominal 
is 4.23), which is about half of that for the sample size of 240.  
 

5.  Estimation for Lifetime Projections 
 
For purposes of practical application to EM reliability, the lifetime projection is often 
focused not on lifetime itself, but rather on the maximum allowed use current density 
(Juse) for a specified product lifetime.  When the circuit designers follow this Juse 
guideline in their product design, the product is protected from premature EM wear out 
failures.  The projection of Juse from stress data is given by a version of Black’s equation 
that specifies the acceleration mechanism with respect to stress conditions [5,6] 
 

1/

1 50 0 0exp[ log( )] 1 1exp ,
N

use s
EOL s

U t X X HJ J
t N

σ
k T T

  + − + ∆
= × 

 
− 

 


  
               (14) 

   
where ∆H is the activation energy for Cu diffusion, N is a material-specific constant, k is 
the Boltzmann constant, T is the interconnect temperature (in K), Js is the stress current 
density, Ts is the stress temperature (in K), U1 is the quantile for the given CDF at 
product’s end of life, tEOL.  X0, t50 and σ are the three parameters in the lognormal 
distribution derived from the stress data.  In the special case where U1 approaches  
negative infinity, the acceleration equation (14) is reduced to, 
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and Juse is determined only by X0, in addition to the kinetic parameters of ∆H and N, i.e.,  

 is independent of tuseJ 50 and σ from the stress data.  
 
We have described a procedure for estimating X0 confidence bound in the previous 
section;  for EM reliability evaluation, our objective is to understand how the confidence 
bounds (or errors) of the estimated values of the parameters from the stress data 
propagate to the Juse projection.  In this section, our focus will be on estimation of Juse as a 
function of the three distribution parameters, X0, t50 and σ. One must recognize, however, 
that the errors in kinetic parameters, ∆H and N, can also have significant effect on the 
projected Juse.  For the sake of simplicity, we will ignore the effect of these parameters in 
the present article.   
 
By (15),  Juse is a monotonic function of X0 for a given set of stress data and product 
design,  
 

0(useJ ψ=          (16) 
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In this case, the confidence bound (say for 95%) of Juse can be directly computed by 
replacing the X0 value with its lower 95% confidence bound value, 

0[1 , ( )] [ (1 , )]LowerBound X LowerBound X 0α ψ ψ α− = −    (17) 
      

However, for general cases, equation (14) shows that Juse is a function of all the three 
parameters, 
 

50 0( , , )useJ t X ,ψ σ=         (18) 
 
and thus errors in all three parameters propagate to Juse estimation.  To include 
contributions of all these three parameters to the Juse confidence bound, we can re-
parametrize any one of these three parameters (X0, t50, σ) in the likelihood function (2)  
and conduct a similar likelihood ratio testing as that for the X0 confidence bound 
estimation.  If X0 is re-parametrized by Juse, based on equation (14), 
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       (20) 

       
The re-parametrized likelihood function is constructed by replacing X0 in equation (2) 
with Juse through equation (19).  The steps of Juse confidence bound estimation with 
profile likelihood are the same as for X0. The results are shown in Figure 7. In this 
particular example of Case A from Figure 2, the lower 95% confidence bound for Juse  is 
1.09MA/cm2, while the estimated nominal Juse from equation (14) is 1.74 MA/cm2.  The 
values of parameters in equations (19) and (20) used for these estimations are listed in 
Table II.  These values are for illustration purpose for this specific example, and may not 
be taken as generic numbers for different interconnect integration and EM structure 
designs. 
 
One can obtain bias-corrected estimates and confidence bounds for Juse by using the same 
methodology as that described in Procedure A. This correction could be very important 
when the projected Juse is close to the allowed values in product design. 

 
6. Discussion 

 
In this paper, the focus has been on the case of X0 with positive values.  Mathematically, 
non-positive values of X0 may be obtained from fitting some of the stress data.  Unlike 
the positive X0, there is no physical meaning for X0 with negative value, considering that 
EM is a wear out failure mechanism.  Graphically, when the early portion of a failure 
time distribution curve in the probability plot does not bend downwards, it indicates a 
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non-positive X0 in the three-parameter lognormal distribution. This may be an indication 
of process defects (or non-uniform distribution) of the hardware, further discussions on 
these special cases are beyond the scope of this paper.   
 
To focus on the methodology of the three-parameter lognormal estimation for EM stress 
data, this paper also does not attempt to discuss the details of the kinetics aspect of EM 
lifetime -- in the likelihood re-parametrization process for Juse estimation, ∆H and N were 
considered as constants. For more accurate lifetime projection, one may also want to 
explore the propagation of errors in these constants to the projected Juse . 
 

7.  Summary 
 
While three-parameter lognormal distribution can fit the data better and generate more 
reasonable lifetime projections than two-parameter lognormal, especially for the 
structures with insufficient redundancy, presence of an additional threshold parameter X0 
also makes the data analysis more complicated and challenging. Parameter estimation 
based on MLE in conjunction with parametric bootstrap procedures for bias correction 
resulted in meaningful and informative inference for the experimental data.  Examples 
are also given on confidence bound estimation and its propagation to lifetime projections 
using profile likelihood.   
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Table I.  Goodness of Fit Comparison between 2- and 3-Parameter Lognormal  
 

Technology 
Node 

6nm 
(thin wire) 

65nm 
(fat wire) 

90nm 180nm 

Symbol in Fig. 2 A B C D 

Via size (0.1x0.1) µm2 (0.2x0.2) µm2 (0.14x0.14) µm2 (0.28x0.28) µm2

Line width 0.3µm 0.6µm 0.28µm 0.76µm 

Goodness of fit  
3-parameter 

0.003 0.013 0.017 0.006 

Goodness of fit 
2-parameter 

0.009 0.018 0.036 0.015 

* Goodness of fit here is defined as the mean of the squared residuals. 
 
Table II.  Parameter Values Used for Juse Projection 
 
Parameter Value Units 
tEOL 110,000 hours 
U1 -6.7  
Js 2.5 MA/cm2 
T 373 K 
Ts 573 K 
n 1.1  
∆H 0.9 eV 
k 0.0000862 eV/K 
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Figure 1.  Effect of shape factor (σ) on the difference between two-parameter and three-
parameter lognormal fittings.  All data were generated by Monte Carlo simulations, with 
inputs: t50 = 25, X0 = 4; σ = 0.2 for (a) and σ = 1.0 for (b).  The solid line is for three-
parameter, and broken line is for two-parameter lognormal fittings. 
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Figure 2.  Examples of EM failure time distributions of structures with a single via 
connecting a wide line below from different technology nodes.  All stresses were 
conducted at 300 oC, 2.5MA/cm2.  Solid lines are for three-parameter, and broken lines 
are for two-parameter lognormal fitting.  Symbols are defined in Table 1. 
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Figure 3.  Fitting parameter variation with right data censoring on the experimental data 
of Case A from Figure 2.  (a) three-parameter fitting on the EM data; (b) estimated X0 
(symbol “X”) and goodness of fit (symbol “e”) variation and (c) t50 (symbol “t”) and σ 
(symbol “s”) variation. 
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Figure 4.  X0 confidence bound estimation using profile likelihood.  (X0 - ∆) is the fixed 
X0 values used in the constrained MLE, and dL is defined in equation (9) 
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Figure 5.  Monte Carlo simulation results of 1000 runs on X0 (symbol B) and X0-∆  
(symbol A) estimation.  Each run has a sample size of 240 points.  The input three-
parameter lognormal parameters are X0 = 4.16, t50 = 24.90, σ = 0.94. 
 

 
Figure 6.  Effect of sample size on the upward bias of the estimated X0 values from 1000 
runs of Monte Carlo simulation.  The black dot is the median value of the estimated X0 
and the horizontal line is the expected X0 value (the input value for the simulation), the 
gray bar covers10 – 90 percentiles, the vertical line bar covers 2.5 – 97.5 percentiles. 
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Figure 7.  The results of Juse confidence bound estimation with re-parametrized profile 
likelihood.  dLJ is similar to dL, but with the likelihood function (2) re-parametrized to 
Juse using equation (19). 
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