
RC23685 (W0508-019) August 2, 2005
Computer Science

IBM Research Report

Policy-Based Management of Networked Computing Systems

Dakshi Agrawal, Kang-Won Lee, Jorge Lobo
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Policy-based Management of Networked
Computing Systems

Dakshi Agrawal, Kang-Won Lee, and Jorge Lobo

This article provides an overview of the PMAC platform

and shows how it can be used in practice using a few
examples to manage networked IT systems and applications.
In particular, we present:

Abstract—This article provides an overview of the Policy
Management for Autonomic Computing (PMAC) platform, and
shows how it can be used for the management of networked
systems. We present the policy information model adopted by
PMAC and the system model for interaction between the policy
manager and the managed resource. We also present the main
components of PMAC for policy creation, storage, evaluation,
and enforcement, and present practical applications of PMAC in
networks management.

• The information and system models of PMAC for

policy representation and the interaction between
policy components and managed resources;

 • The main components of PMAC for policy creation,
policy storage, policy evaluation, and enforcement at
managed resources; and

Index Terms—Policy-based System Management, Policy
Management for Autonomic Computing, Networked Computing
Systems Management

• A policy ratification module that certifies a policy by
taking into account its relationship with other policies
in the systems. For example, a system administrator
may want to know if a new policy can conflict with
existing policies.

I. INTRODUCTION

T HE need for a more autonomous management of networks
and distributed systems has driven research and industry
to look for management frameworks that go beyond the

direct manipulation of network devices and systems. One
approach towards this aim is to build policy-based
management systems [1]. In general, policies represent
externalized logic that can determine the behavior of managed
systems. The promise of policy-based management is that the
operation of computing resources can be guided to follow
certain rules, and can be dynamically configured so that they
can achieve certain goals and react more nimbly to their
environment. Over the years, multiple approaches have
evolved to support policy-based management of complex IT
systems. Some of these approaches are tightly coupled to a
specific application domain and operation environment, while
others are designed to be generic and more broadly applicable.

Finally, we present a case study of PMAC application in

storage area network management to illustrate how policy-
based management can be used in real life scenarios.

II. BACKGROUND ON POLICY TECHNOLOGY

A. Policy Information Model
To precisely specify the semantics of policy operations, a

policy management system must be built upon a concrete
information model. The policy information model used in
PMAC is inspired by the CIM (Common Information Model)
policy model [2]. The CIM policy model is defined by the
DMTF (Distributed Management Task Force) Policy Working
Group to facilitate a unified and consistent representation of
polices across a wide spectrum of technical domains including
policies related to configuration and usage of devices and
applications.

Policy Management for Autonomic Computing (PMAC) is a
generic policy middleware platform that can be used to
manage multiple aspects of a large scale distributed system
such as QoS, configuration, and auditing. Another equally
important goal of the PMAC platform is to provide software
components that can be embedded in software applications to
reduce the cost of writing the applications capable of taking
input from a policy based management system.

In PMAC, each policy is a rule containing four

components, namely (1) conditions, (2) actions, (3) priority,
and (4) role. The conditions associated with a policy rule
specify if the policy is applicable. We say a policy is
applicable when the conditions associated with the rule
evaluate to true. If a policy is applicable, then the set of
actions associated with the policy gets executed. The priority
is a non-negative integer that indicates the relative importance
of the associated policy. The priority value determines which
policy must be applied when there are multiple applicable

D. Agrawal is with the IBM T.J. Watson Research Center, Hawthorne, NY

10532 USA (e-mail: agrawal@us.ibm.com).
K.-W. Lee is with the IBM T.J. Watson Research Center, Hawthorne, NY

10532 USA (phone: 914-784-7228; fax: 914-784-6205; e-mail:
kangwon@us.ibm.com).

J. Lobo is with the IBM T.J. Watson Research Center, Hawthorne, NY
10532 USA (e-mail: jlobo@us.ibm.com).

 2

III. PMAC POLICY MIDDLEWARE policies with potentially conflicting actions (e.g., one policy
may allow access to data, while another blocks it). Finally, the
role defines the context in which the policy will be relevant.
For example, a policy defined for mail servers many have the
role "mail-server". For a detailed description of these
components, we refer the reader to the PMAC documentation
[4].

A. Overview of PMAC
The primary goal of PMAC is to reduce the cost of enabling

software applications and IT systems so that they can obtain
guidance from policy based management systems. More
specifically, the design goals of PMAC are as follows:

 B. System Model of PMAC
• PMAC should be generic, independent of platform,

software applications, and IT domains; The PMAC platform supports the system model adopted by
the IBM Autonomic Computing (AC) architecture, which
defines a framework for self-managing IT systems [3]. The
AC architecture presents two key abstractions: (1) an
autonomic manager (AM), which monitors computing
resources, analyzes the status of the resources, plans action for
the resources, and executes actions; and (2) a managed
resource (MR), which is the computing system that is
controlled and managed by the AM.1 The relation between
AM and MR is 1-to-n: a single AM typically controls one or
more MRs, and each MR is controlled by exactly one AM.
The communication between an AM and an MR is done
though the MR’s management interfaces, which exposes two
types of hooks, namely sensors and effectors. The sensors are
used by the AM to read the internal state of the MR and the
effectors are used by the AM to invoke actions on the MR.

• PMAC should support open formats and be compliant
with existing and emerging standards for service object
oriented architectures;

• PMAC should leverage existing technologies for parsing,
validation, distribution, and execution of policies; and

• PMAC policy should be flexible and extensible so that
application-specific functions can be added.

As a result, we have implemented a generic policy

middleware, which is based on open format (XML) and
standard technologies (e.g., Web Services Resource Property,
and J2EE), and supports a flexible and extensible policy
language.

At the highest level, PMAC provides four main

components: policy definition tool (PDT) for policy authoring,
policy editor storage (PES) for policy deployment and
persistence, autonomic manager (AM) for policy evaluation,
and managed resource-side component (MR libraries) for
policy enforcement. Figure 1 presents a simple illustration of
the overall architecture of the PMAC platform for two PDT’s,
two AM’s, and five MR’s in three computer systems.

In PMAC, the AM is a policy-based manager, which

monitors, analyzes, and plans according to the policies that
have been defined for the resources managed by the AM. In
this respect, the role of the AM is similar to that of the policy
decision point (PDP) as defined in RFC 3198 (for an overview
and references to different policy models see [8] and [10]). In
fact, an AM includes the functionality of a PDP and supports
additional features such as state monitoring, event correlation
and notification, which many traditional PDPs do not provide.
Likewise, there exists a similarity between the managed
resources and the traditional policy enforcement point (PEP)
component.

We note that even though PMAC borrows the AC

vocabulary, it substantially extends the bindings model of AC
which primarily relies on the web services. More precisely,
the AM in PMAC exposes a set of Java APIs which are useful
when the AM and the MR are running in the same Java virtual
machine, i.e. the policy module is embedded as a library in
applications. Alternatively, the AM can be run inside an
application server and be offered as a stateless session
Enterprise Java Bean (EJB) or as a web service to remotely
located managed resources. Thus the managed resource can
request policy guidance to the AM through RMI (in the EJB
case) or SOAP (in the web service case) protocols.

1 The AC architecture is related to the ITU-T Recommendation X.700:

Management Framework for Open Systems Interconnection, which defines the
relationship between a manager and managed elements.

Policy Management Domain

Definition
PDT2& Persistence PDT1 PES

Policy Evaluation
& Decision AM1 AM2

Po y aluationlic
DeE Ev

sioS E E S E S S E S & ci n MR MRMR MR2 MR
 Computer System 2 Computer System 1 Computer System 3

 Policy Enforcement

Managed System Domain

Figure 1 PMAC Architecture Overview

A policy definition tool (PDT) is a user interface by which

policy authors create and modify policies. PMAC supports the

 3

concurrent use of policy definition tools to create and modify
policies by multiple authors. Therefore, the consistency of
distributed policies must be checked at the policy editor
storage (PES). In PMAC policies are written and stored in the
Autonomic Computing Policy Language (ACPL). ACPL is an
XML-based policy language whose syntax closely mirrors the
policy information model of PMAC. Even though PMAC
includes a policy definition tool, it is expected that most
applications would provide their own definition tool
integrated in the overall application user interface. In that
case, the application developer can use the policy object
builder component to process policies.

The policy editor storage (PES) component stores policies

and policy-related metadata such as policy templates (for
repeated use of similar policies). This component acts as a
central repository where multiple policy definition tools store
all of their policies. In turn, policy updates are pushed from a
PES to autonomic managers according to their scope.
Depending on the configuration and application requirement,
the PES component can store policies either on a file system
or in a relational database. Currently PMAC supports major
database systems including DB2, Microsoft SQL, Oracle, and
Cloudscape.

The autonomic manager component is the main component

of PMAC. It obtains its policies from the policy editor storage
and registers managed resources that are interested in
receiving a policy guidance from it. In order to provide policy
guidance to an MR, the AM reads the state of the MR using
the sensor interface of the MR. The AM then evaluates
relevant policies by using the state of the MR and plans
actions. The policy evaluation may occur either due to an
explicit request from the managed resource for policy
guidance or on a schedule determined by the AM
configuration. Note that in the former case, the MR can send
its state along with the request to avoid the AM coming back
to read it. Based on the type of the result of policy evaluation,
the AM may invoke an action on the MR via the effector
interface of the MR, or simply return the result to the MR.
When the MR receives directives from the AM, the MR can
change its behavior in order to comply with the policy
guidance.

PMAC comes with the policy object builder component as a

user library. This component is capable of parsing policies
written in ACPL and creating a Java Policy Object from it.
The policy object builder also provides a capability to validate
policies written in ACPL against the ACPL grammar using
schema validation. PMAC also includes a design patterns
library which implements a set of operations that are
commonly required by certain types of applications. For
example, the SAN management application presented in
Section Error! Reference source not found. is based on the
auditor pattern.

B. Autonomic Computing Expression Language (ACEL)
At the core of ACPL is a rich expression language – the

Autonomic Computing Expression Language (ACEL) – that
facilitates writing policy rules [5][4]. ACEL has been
carefully designed so that it can express most common policy
conditions while closely following standard XML
conventions. The result is a strongly-typed language that can
be parsed and type checked almost entirely by XML parsers,
thereby making it attractive to applications that can consume
XML format (e.g. Web Services Policies). Moreover,
extending the language with new operations can be easily
done by modifying the schema and plugging in the extension
operators.

ACEL defines nine primitive types: Boolean, Short, Integer,
Long, Float, Double, String, Calendar and URI, which are
directly lifted from the XML standards; and two composite
types: CompositeData and Collection. A CompositeData is
equivalent to the XML complex type. A Collection object
represents an unordered collection of ACEL expressions.
ACEL also allows the definition of macro expressions.

ACEL provides various types of operators: type cast
functions (e.g., ToInt, ToFloat, ToBoolean), standard
arithmetic functions (e.g., Plus, Max, Log), Boolean
functions (e.g., And, Not, Equal), string functions (e.g.,
ToUpper, LeftSubString), calendar operations (e.g.,
GetDayOfWeek), and operations to traverse XML document
using Xpath expressions (e.g., XPathIntExpression).
Variables of different types can be part of an expression but
the values associated with these variables must be assigned
before the evaluation of the expression.

A condition in a PMAC policy can be any ACEL
expression of type Boolean with variables corresponding to
sensor names. The value of the variable is the same for all
occurrences of the variable in the AM policies. Variables in
ACEL are represented by an XML element type called
PropertySensor with an attribute PropertyName
identifying the name of the variable. For example, an
expression that multiplies a Float constant 3.14159 times the
PropertySensor diameter would be written as:

<Product>
 <FloatConstant>
 <Value>3.14159<
 </FloatConstant>

/Value>

 <Propert
</Product>

ySensor propertyName="diameter" />

We note that the XML representation of ACPL is mainly for
internal processing, policy persistence, and deployment. In
such cases, it is expected that policies will be created and
updated using a policy definition tool. However, for cases
when a policy definition tool is not used, PMAC also supports
a simple policy language called SPL. SPL is more human
friendly and policies in SPL can be easily written using a text
editor. For example, consider the following Boolean

 4

expression:

<And>
 <Not>
 <Equal>
 <PropertySensor propertyName="NumberOfPorts" />
 <IntConstant>
 <Value>16</Value>
 </IntConstant>
 </Equal>
 </Not>
 <Equal>
 <PropertySensor propertyName="VendorId" />
 <IntConstant>
 <Value>5</Value>
 </IntConstant>
 </exp:Equal>
 <Equal>
 <PropertySensor propertyName="Type" />
 <StringConstant>
 <Value>Core Switch</Value>
 </StringConstant>
 </Equal>
</And>

Using SPL, we can write the same expression as follows:

(Sensor(NumberOfPorts) != 16) and (Sensor(VendorId) = 5) and
(Sensor(Type) = “Core Switch”)

All policies written in SPL are internally translated in to
ACPL and both versions, the SPL and translated ACPL, are
stored in the PES. Parsing and evaluation is then done in the
same manner as for policies originally written in ACPL. The
simplicity and convenience of SPL, however, comes at a cost.
Theoretically, it is possible to define and implement SPL so
that it provides functionality equivalent to that of ACPL.
However, such an implementation will be a large undertaking
since it cannot rely on standardized tools and libraries similar
to those available for XML. Therefore, the PMAC
implementation of SPL provides a subset of ACPL
functionality.

C. Policy Ratification
Policies can interact with each other, often with undesirable
effects; therefore a policy administrator needs to be aware of
such relations among policies. Understanding and controlling
the overall effect of policies is particularly important in a
distributed system, where a policy author may only have a
partial view of the entire system, and multiple authors may
write policies for the same set of resources without
coordination.

Policy ratification is the process of certifying a policy by
taking into account its relationships with other policies in the
system before the policy is activated or ratified. In general,
there are different ways to specify policies. In some cases,
policies are specified in a key-value pair (e.g. the
configuration policy of Microsoft Exchange server). In other
cases the rules are of the form event-condition-action (when
event e occurs if condition c is true then perform action a). In
certain policy languages, policies are specified in a subject-
action-target model (subject s must (or can or must not or
cannot) perform action s to target t). The PMAC policy is an
example of an event-condition-action policy. In this section,
we present a set of general operations that are used for policy

ratification: (1) dominance check, (2) conflict check, and (3)
coverage check. We note that, although these operations have
been designed for PMAC, the fundamental ideas can be
applied to other types of policy.

Dominance check: A policy is dominated by a group of
policies S when the addition of the new policy does not affect
the behavior of the system governed by S, For example, a
policy “passwords must be longer than 4 characters” is
dominated by another policy “passwords must be longer than
6 characters” because the former policy is subsumed by the
later. In another example, a policy “Joe has access to file
server from 1 P.M. to 5 P.M.” is dominated by another policy
“Joe has access to file server from 8 A.M. to 7 P.M.” From
these examples, we observe that dominance checking
demands capability to determine whether a Boolean
expression implies another Boolean expression: in the first
example, we need to determine that whenever (password
length > 6) is true then (password length > 4) is also true,
while for the second example, we need to determine whenever
(13:00 < t < 17:00) is true then (08:00 < t < 19:00) is also true.

Conflict check: We say that two policies are in conflict, if
there are situations in which they may issue directives that
cannot be achieved simultaneously. For configuration policies,
two policies will conflict when they specify different
configuration values: “mailbox-quota=2 GB” and “mailbox-
quota=1 GB”. In the event-condition-action model, a conflict
between two policies may arise when the conditions of the
two policies can simultaneously be true, but specify
incompatible actions. For example, the policy “if a telnet
connection comes after 5 P.M. then serve the connection with
QoS level LOW” will potentially conflict with the policy “if a
telnet connection comes from the headquarters then serve the
connection with QoS level HIGH.” Therefore, the key
ratification operation here is to determine whether two
Boolean expressions can be made simultaneously true, i.e.
they are satisfiable.
Coverage Check: In many application domains, the

rom the above observations, we can conclude that the

administrator may want to know if policies have been
explicitly defined for a certain range of input parameters. For
example, when a firewall policy has been specified in the
event-condition-action model, the administrator may want to
make sure that at least one policy has a true condition for the
entire IP address space. In another example, when policies
controlling printer queue have been specified, an administrator
may want to know if the policies cover all priority classes for
all days of the week and all hours of the day. The key
operation in this case is to find out if a set of Boolean
expressions implies another Boolean expression, where the
second expression represents the value space that we want to
cover.

F
primitive operations to support policy ratification are solving
the implication and the satisfiability problem of Boolean
expressions. Finding general solutions for these problems is
known to be computationally hard. Thus we have taken a

 5

practical approach to identify the types of Boolean
expressions that occur frequently in policy rules, and provide
efficient solutions for such cases. In particular we support: (1)
Boolean expressions describing equality and inequality
constraints of a single variable per equality or inequality, (2)
Boolean expressions with constraints over time intervals, (3)
regular expression constraints over string, and (4) a set of
linear constraints over the real numbers. The interested reader
can find details of our ratification algorithms in [7].

Conflict resolution – the latter step of ratification: When
the conflict check process suggests a new policy can
potentially conflict with existent policies in the system, we
must resolve the conflict. A common practice to resolve
conflicts is to provide the author with a mechanism to specify
different priorities to conflicting policies: a policy with a
higher priority has precedence over the policies with lower
priority. In PMAC, priorities are positive integers where a
greater number represents a higher priority. After a policy
author is presented with a set of policies that can conflict with
the new policy being ratified, the author needs to resolve the
conflict either by disabling some policies or assigning a
priority to the new policy. The assignment of priority values,
however, may be tricky when many policies are involved in
conflict. In particular, inappropriate priority assignment may
require the adjustment of the priority of many already installed
policies. To illustrate the problem, in Figure 2 we show
policies represented by circles with numbers indicating their
priorities and the arcs between them indicates conflicts. For
illustration, we denote the priority relation by directed arcs
where the arc is directed from a higher priority to lower one.
The node with the question mark represents a new policy
about to be installed:

Figure 2 Priority Assignment Problem

In this example, if we assign 14 as the priority to the new
node, four policies need to change their priorities to maintain
relative priority. On the other hand, if we assign 15 to the new
policy, only one policy needs to change its priority. When we
have a large number of policies, determining the right priority
value can be non-trivial. The conflict resolution module of
PMAC helps the user by automatically assigning the priority
values to the new policies and by adjusting the values of the
related policies, when given only the relative priority of a new
policy. For this, PMAC has adapted algorithms to maintain
ordered lists under insertion and deletion operations where we

can guarantee that, on average, the amortized reassignment of
priorities is done in constant time.

There are other methods to detect and resolve conflicts at run
time using monitors and meta-policies [8]. For example,
consider a case when a set of security policies and a set of
service differentiation policies have been defined for a storage
system. In this case, the user may simply indicate that the
security policies have priorities over the service differentiation
policies using meta-policies. In other cases, more recent
policies may take precedence over older policies. These
approaches provide more flexible means to handle policy
conflicts rather than by just simply assigning priorities.
Although these methods can be computationally more
expensive, they are useful in certain application domains.

IV. CASE STUDY – NETWORK CONFIGURATION CHECKING
In this section, we present the configuration checking problem
of storage area networks as one of the applications of policy-
based system management in real life. To give a brief
introduction, storage area networks (SANs) are dedicated
switched networks between servers and storage so that the
storage system can be shared among multiple computers.
Currently, SANs are predominantly based on the Fibre
Channel protocol, which supports 1 – 10 Gbps raw
bandwidth. One of the main challenges in SAN management
is the complexity encountered during the system set-up and
reconfiguration at later time. Typically a SAN consists of a
large number of components from multiple manufacturers,
and many of them have interoperability constraints with each
other. For example, a storage device from a certain vendor can
only work with certain types of Fibre Channel switches with
certain firmware levels. In addition, over time, SAN
administrators have developed best practices to avoid any
problems that may arise from misconfigurations. We list a few
sample best practices from field practitioners as follows:

14 1613

12 • All zones should be configured so that the same host

bus adapter (HBA)2 cannot talk to both tape and disk
devices.

?
25

9
15

• Both Windows server and Linux server should not be
members in the same zone.

14

• Every active and connected port should be a member
of at least one active zone. 16 13

For correct operation, these conditions must be always
satisfied. Thus it is important to verify that the SAN
configuration is valid after adding or removing devices,
upgrading firmware, and/or making changes to network
configuration. It is possible to address these problems by
using storage management software, which may query the
underlying devices to discover their current status and detects
potential configuration errors. The state-of-the-art SAN
management software typically hard-codes the logic to detect
configuration problems. We can enhance the SAN

2 A host bus adapter is a Fibre Channel network interface card on the server

side machine.

 6

V. SUMMARY management system and make it more flexible and extensible
by externalizing SAN configuration rules as policy [6]. Policy-based network management promises to reduce the

burden on the human administrator by providing systematic
means to create, modify, distribute, and enforce policies for
managed computing resources. PMAC is a policy middleware
platform that has been developed based on the CIM policy
model. PMAC features an open format extensible policy
language, a standard-based flexible binding and invocation
model for the managed system, both database-based and file-
based policy persistence mechanisms, and user support
capabilities such as policy ratification. This article provided an
overview of the PMAC architecture highlighting each
component, and presents an example of PMAC application in
storage network management to show how policy
management is used in a real life scenario.

User Interface Scheduler

SAN

SAN Config Manager (Policy Invoker)

PMAC DB Data
Policy Config AM Scanne Analyzer

DB DB

 ACKNOWLEDGMENT
Figure 3 Extended SAN configuration manager The development of PMAC has been a huge collaborative

effort among teams from IBM T. J. Watson Research Center,
IBM India Research Lab, IBM Tokyo Software Lab, Tivoli
Software, and IBM Autonomic Computing Initiative. We are
grateful to everyone involved in the process that led to the
release of PMAC on IBM alphaWorks [4]. We are also
grateful to our colleagues at IBM Almaden Research Lab for
their help and collaboration throughout the design and
implementation of the SAN configuration checking system.

Figure 3 presents an overview of a SAN configuration
management system extended with PMAC. The original SAN
manager system consists of the SAN configuration manager
module, SAN configuration database, database scanner, user
interface, and scheduler. In the target SAN environment,
monitoring agents are deployed over the storage network to
keep track of the status of SAN devices and configuration
changes. When a configuration change happens in the SAN, it
is detected and stored in the SAN configuration DB. Based on
a pre-defined schedule or a trigger from the user, SAN
configuration manager invokes a DB scanner, which queries
the database, identifies the configuration changes, and reads
them into the SAN management system. In the original
system, the configuration manager module verifies the validity
of the new configuration using the internal hard-coded
interoperability constraints. In the policy-enabled version, the
raw configuration data is transformed into a format that can be
understood by the AM by the data analyzer module. The
configuration manager then makes a request to the AM for
policy evaluation. In effect, the configuration manager module
works as a managed resource in the AC architecture. Upon
this request, the AM checks whether the configuration change
violates the interoperability constraints by looking up the local
policy database. If a policy violation is detected, the violation
will be notified to the SAN administrator via various channels
(e.g. log file, SAN manager console, and email to the
administrator). In addition, it can trigger an action to invoke a
workflow to automatically reconfigure the SAN to correct the
error.

REFERENCES
[1] M. Sloman. Policy driven management for distributed systems. Journal

of Network and Systems Management, 2(4):333-360, 1994.
[2] Distributed Management Task Force, CIM Policy Model, Version 2.8,

http://www.dmtf.org/standards/cim/cim_schema_v281/CIM_Policy28-
Final.pdf, January 25, 2004.

[3] International Business Machines, Autonomic computing: Creating self-
managing computing systems, http://www.ibm.com/autonomic/2004.

[4] International Business Machines, Policy Management for Autonomic
Computing, http://www.alphaworks.ibm.com/tech/pmac, March 4, 2005.

[5]

[6]
al

 for distributed systems and networks (Policy

[7] f
istributed systems and

[8]

ic

[9]
on Data on Knowledge, 15(1):244-

[10] ges: A survey
and a new approach. IEEE Network. 15(1):10-20, 2001.

llinois–Urbana-Champaign (UIUC),
rbana, IL, all in electrical engineering.

D. Agrawal, J. Giles, K.-W. Lee, J. Lobo, Autonomic Computing
Expression Language, IBM developerWorks tutorial, March 2005.
D. Agrawal, J. Giles, K.-W. Lee, K. Voruganti, K. Filali-Adib, Policy-
based validation of SAN configuration, in Proc of IEEE internation
workshop on policies
2004), June 2004.
D. Agrawal, J. Giles, K.-W. Lee, J. Lobo, Policy ratification, in Proc o
IEEE international workshop on policies for d
networks (Policy 2005), 223-232, June 2005.
I. Aib, N. Agoulmine, M. S. Fonseca, G. Pujolle, Analysis of policy
management models and specification languages. In Network Control
and Engineering For QoS, Security and Mobility II, D. Gaïti, G. Pujolle,
A. Al-Naamany, H. Bourdoucen, and L. Khriji, Eds. Kluwer Academ

 Publishers, Norwell, MA, 26-30, 2003.
J. Chomicki, J. Lobo, S. Naqvi, Conflict resolution using logic
programming, IEEE Transactions

As explained in Section III.A, PMAC can either be
incorporated as a stand alone service component (EJB or Web
Service in an application server) or be embedded as a library.
In this example, we have shown the case of the latter, where
the PMAC component and the data analyzer have been
integrated into the SAN manager system.

249, 2003.
G. N. Stone, B. Lundy, G. G. Xie. Network policy langua

Dr. Dakshi Agrawal was born in Bikaner, Rajasthan, India. He received a
B.Tech. in 1993 from the Indian Institute of Technology–Kanpur (IITK), a
M.S. in 1995 from the Washington University, St. Louis, MO (WashU), and a
Ph.D. in 1999 from the University of I

U

http://www.dmtf.org/standards/cim/cim_schema_v281/CIM_Policy28-Final.pdf
http://www.dmtf.org/standards/cim/cim_schema_v281/CIM_Policy28-Final.pdf
http://www.ibm.com/autonomic/2004
http://www.alphaworks.ibm.com/tech/pmac

 7

rch Center, IBM Corporation, Hawthorne,
Y as a Research Staff Member.

cture of IBM Autonomic Computing Policy
frastructure and Products.

he University of Illinois at Urbana-Champaign (UIUC) in
omputer Science.

 T. J. Watson Research Center, Hawthorne, NY as a research staff
ember.

munity on
omputer Communications (TCCC).

anagement and monitoring of Lucent first generation of softswitch networks.

ystems and Networks. He has a PhD in CS from University of
Maryland at College Park, and a MS and a BE from Simon Bolivar University,
Venezuela.

He worked as a Visiting Assistant Professor at UIUC during 1999-2000. After
that, he joined T. J. Watson Resea
N

Dr. Agrawal was awarded a certificate of merit for securing the second rank in
the Indian National Mathematical Olympiads 1988. He received the Robert T.
Chen Memorial Award for 1999 for excellence in doctoral research in the
Department of Electrical and Computer Engineering at UIUC. He also
received the Ross J. Martin Memorial Award for 2000 for outstanding
research achievement by a graduate student in the College of Engineering at
UIUC. Most recently, He was awarded the IBM Research Division Award for
contributing to the archite
In

Dr Kang-Won Lee was born in Seoul, Korea. He received a B.S. in 1992 a
M.S. in 1994 from Seoul National University in computer engineering and a
Ph.D. in 2000 from t
C

He served the Republic of Korea Air Force during 1994 – 1995, and worked
as a research assistant for TIMELY research group at the Center for Reliable
High Performance Computing, Urbana IL during 1996 – 2000. In 2000, he
joined IBM
m

Dr. Lee was awarded a Magna Cum Laude from Seoul National University in
1992, Korean Government Overseas Scholarship from the Ministry of
Education in 1996, KFSA Scholarship from the Korea Foundation for
Advanced Studies in 1997, the C. W. Gear Outstanding Graduate Student
Award from the Computer Science Department at UIUC in 1999, the Best
Student Paper Award from Packet Video Workshop in 2000. Recently, He
received the IBM Research Division Award for contributing to the
architecture of IBM Autonomic Computing Policy Infrastructure and
Products. Currently he is the secretary of IEEE Technical Com
C

Dr. Jorge Lobo joined IBM T. J. Watson Research Center in 2004. Previous
to IBM he was principal architect at Teltier Technologies, a start-up company
in the wireless telecommunication space acquired by Dynamicsoft and now
part of Cisco System. Before Teltier he was tenured associate professor of CS
at the University of Illinois at Chicago and member of the Network
Computing Research Department at Bell Labs. In Teltier he developed a
policy server for the availability management of Presence Servers. The servers
were successfully tested inside two GSM networks in Europe. He also
designed and co-developed PDL, one of the first generic policy languages for
network management. A policy server based on PDL was deployed for the
m

Dr. Lobo has more than 50 publications in international journals and
conferences in the areas of Networks, Databases and AI. He is co-author of a
MIT book on logic programming and is co-founder and member of the
steering committee for the IEEE International Workshop on Policies for
Distributed S

	INTRODUCTION
	Background on policy technology
	Policy Information Model
	System Model of PMAC

	PMAC Policy Middleware
	Overview of PMAC
	Autonomic Computing Expression Language (ACEL)
	Policy Ratification

	Case Study – Network Configuration Checking
	Summary

