
RC23687 (W0508-032) August 4, 2005
Computer Science

IBM Research Report

Dynamic Introduction of Attributes into Policies

Alla Segal, Murthy Devarakonda, Ian Whalley, David Chess
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Dynamic Introduction of Attributes into Policies

Alla Segal, Murthy Devarakonda, Ian Whalley, David Chess
IBM Thomas J. Watson Research Center

{segal,mdev,whalley,chess}@us.ibm.com

Abstract

Current techniques in the field of policy
management rely on system designers and
implementers ‘baking’ information about policies
and the attributes that those policies can have and
what those attributes mean into a system at design
and build time. In the future, in which policy-
driven dynamic techniques for systems
management and system composition become
widespread (initiatives in this area include
Autonomic Computing [6,7] and On Demand
Computing [8]), this design- and build-time
approach will no longer be suitable—a dynamic
system must, in order to be effective, have a
dynamic understanding of the policies, and the
attributes of those policies, which drive it.

We describe a step on the road to a policy-
driven, dynamic IT world—specifically, we
describe techniques by which (for example) a
hardware upgrade or a small change in a user’s
requirements can have an effect on a system
without requiring a change in the policies, or the
policy infrastructure. Our technique permits new
attributes to be defined within existing policies,
without changes to the supporting policy
evaluation and management code. As a concrete
example, we further describe how the ability to
introduce new attributes can be implemented as
part of a policy-based storage management
system.

1. Introduction

In current approaches to policy-based system
management, such as for example [9,10], the
attributes about which policies can be written are
statically defined—defined when the policy
models are created by the architect, and when
policy management code is written by the
developer. The values of these attributes change at
run time, but the attributes that are available to the
policies are static. This makes it difficult to adapt
such systems to possible changes in managed
resources or users’ requirements.

Consider the following situation: company A
bought policy-based storage management
software a year ago to use with their storage
systems (which they bought from supplier E), and
is now adding a new storage system (purchased
from supplier I) to their SAN. The new storage
system exposes, to the policy management
software, a set of metrics that is somewhat
different from that exposed by the existing storage
systems—and a version of the policy management
software to support those metrics is not yet
available. For example, while the supplier E’s
storage systems allowed specification of the
average transfer rate (through an attribute called
transfer-rate), the supplier I’s storage
system separates this single metric into two
separate metrics—the read transfer rate and the
write transfer rate (through attributes called
read-transfer-rate and write-
transfer-rate). Company A’s QoS policies
have to be redefined using the new metric, but
their policy-based storage management software’s
user interface only allows specification of policies
in terms of the transfer-rate attribute, and
the old policy evaluation can only evaluate the
policies based on this attribute.

A similar situation can occur even without
the introduction of a new and different policy-
managed resource. In many cases, it may not be
possible at development time to identify all the
variables that a particular enterprise may want to
use in policies—constantly changing requirements
may mean than it necessary for an enterprise to
base its policies on a variable that wasn’t
considered important at the time of original
development. For example, a designer of a policy-
based storage manager may decide that most users
would prefer to measure quality-of-service in
terms of throughput and response time. Such a
system would, for example, allow the user to
define a policy that triggers re-allocation of
storage whenever the throughput or response time
falls within a certain range of throughput and
response time values. The storage system may
allow the determination of values of various other
system properties such as read-transfer-rate,

write-transfer-rate, serial number, etc. by way of
low-level system commands, but the user is not
able to use any but pre-defined attributes
“throughput” and “response time” in the creation
of policies. Allowing the use of every existing
system property in a policy may not be practical,
especially in cases where it is necessary to base
policy decision on the values determined by
applying more complicated functions to these
properties. (Here and elsewhere in the paper, we’ll
use the word “attribute” to refer to policy
attributes and “properties” to refer to all features
of a managed system that can be measured,
determined via low level system commands or
determined from the documentation whether or
not they can be used in policies.)

In another case, the designer may have
decided that users would want to determine the
level of service to assign to requests based upon
which company they come from; while the user
may want to use another characteristic, such as
server ID or application name. This case is
especially likely to arise when a policy-based
system such as, for example, storage or a DBMS
is used in a larger system and the requester details
vary depending on how storage or database
management is integrated with the overall system.
For instance, a utility management system
submitting requests to a DBMS has its own set of
requestor attributes different from the attributes
considered at the time the database management
system was designed.

Dynamic introduction of new attributes can
be seen as one, important way of achieving policy
adaptation. Earlier work has considered policy
adaptation by other means. Event calculus was
used as a means of specifying adaptive policies to
manage temporal events that encourage the
system to adapt [11]. An adaptive policy
management framework was proposed in the
Ponder policy specification language for
managing DiffServ networks [12]. The authors
have defined policy adaptation as dynamically
changing the parameters of a QoS policy, and
enabling/disabling a policy from a set of pre-
defined QoS policies at runtime. Policy
transformation is another technique [13] which
can be used to adapt a high-level policy to the
specific low level policies and mechanisms
(especially in a DiffServ network). None of these
approaches discusses how a policy framework can
become aware of new attributes to include them in
policy definitions, and thus the work described in
this paper defines a new dimension in policy
adaptation.

In the remainder of this paper, we describe a
model for the dynamic introduction of new
attributes into policies. We present two

approaches: the definition of new attributes via
the user interface and the definition of new
attributes using reusable components that
represent individual attributes. We also show how
both of these approaches can be combined for
greater flexibility.

In our earlier work [1] we presented the
policy management and rule execution
architecture used in our prototype autonomic
storage manager ALOMS-Tango [2]. In the
described prototype, the attributes of policies such
as response time and throughput were static. In
this paper we expand this prototype to support
dynamic attributes.

2. Dynamic attribute definition and
discovery

2.1. Classification of Attributes

Before the dynamic introduction of attributes
into policies is discussed, it is important to discuss
the characteristics that define an attribute. In this
section, we classify the attributes based on several
important factors.

The first factor is the type of information
represented by an attribute. An attribute can
reflect a property of a managed system such as,
for example, bandwidth or demand. These
attributes are often used in quality-of-service
policies. The evaluation of the policies depends
on the ability to determine the attribute’s value.
These attributes cannot be introduced into the
system arbitrarily; they have to correspond to an
existing system property (or a combination of
such properties). We refer to these attributes as
“system” attributes.

Alternatively, an attribute can represent a
property of an input request. We call attributes of
this type “request” attributes. An example of a
request attribute is owner id from the service
creation policy mentioned in [1]. This type of
policy assigns a particular level of service based
on the requestor’s characteristics. While request
attributes can often be introduced to policies by a
user simply typing in the attribute’s name, it may
sometimes be desirable to define them prior to
their use in policies. In addition to preventing
errors, the prior definition of request attributes is
necessary when the determination of the
attribute’s value from the request is non-trivial or
when additional information (e.g. external and
internal attribute’s name, type of a policy the
attribute will be used in) needs to be provided for
a new policy attribute. Possible additional
features of request attributes include: whether a
particular attribute can be used as the only input

characteristic of a request, whether an attribute is
a required or optional characteristic of every
request, whether one attribute shall only be used
in combination with some of the other attributes,
and other aspects of the relationships between
multiple attributes.

 Other examples of request attributes include
a user name or a group name used in a security
policy.

Another factor in attributes classification is
the distinction between ‘intrinsic’ and ‘derived’.
An ‘intrinsic’ or ‘base’ attribute directly
corresponds to a single system property. Intrinsic
attributes can be defined by specifying the
attribute’s name and the name of the
corresponding system (or requestor) property.

A ‘derived’ or ‘computed’ attribute is one
whose value is obtained by combining a number
of system or requestor properties. For example a
user can define an attribute demand-per-
server by dividing the value of system property
demand by the number-of-servers
assigned to the task, or define a new attribute
computer-id by concatenating the two
properties serialNo and machineType. The
definition of a new derived attribute needs to
specify 1) the names of system properties the
attribute’s value depends on 2) the instructions for
determining the value based on these properties.

The last factor in attribute classification is
“discoverability”. This characteristic is used to
distinguish between attributes that depend on the
properties of the managed system or request that
can be ‘discovered’ at the time the policy is
defined, and those attributes the existence of
which cannot be automatically determined until
the time of policy execution. These are referred to
as ‘discoverable’ and ‘non-discoverable’
attributes respectively.

An attribute is discoverable if 1) it depends
on one or more properties the existence of which
can be discovered programmatically (for example
by issuing low-level system commands) at the
time the policy is defined; and 2) the values of
these properties can be determined
programmatically at the time the policy is
evaluated. These properties can be static (such as
a system’s model or serial number) or dynamic
(such as throughput or response time). While
theoretically the request attributes can be
discoverable (by for example querying the
transport for what kind of information is
supported in request’s syntax), most often they are
not. While most system attributes are also
discoverable, it is possible to imagine a situation
when they are not. For example a particular
system property may not be listed by low-level
system commands, but its existence may be

documented and its value can be queried at the
time policy is executed.

When a discoverable attribute is defined by a
user, a list of the available system properties can
be provided to the user to facilitate the process of
attribute’s definition. The user can create an
attribute based on these properties. When a non-
discoverable attribute is defined by a user, the
user will have to type in the name of the attribute
and, when appropriate, the name of non-
discoverable property the attribute will depend on.
In some cases, a system may prohibit the
definition of non-discoverable system attributes.

Both discoverable and non-discoverable
attributes can be intrinsic or derived.

2.2. User-interface based attribute
definition

The most straightforward approach to the
definition of a new attribute involves the user
interface (which, in CIM [3] terminology, is part
of a policy-management application).

Using a user interface, new attributes are
defined by the user (typically, the user will be a
system administrator)—the system will,
presumably, come with some attributes
predefined, but will allow a user to create new
ones.

In order to create a new system attribute, the
user is required to specify both the name of the
new attribute, and the mechanism by which the
value of the new attribute is to be determined. The
latter may involve selecting (or specifying – if the
attribute is non-discoverable) a system property or
properties upon which this attribute depends and
defining a formula by which the new attribute’s
value may be determined.

In order to specify the new attribute with
reference to pre-existing managed system’s
properties, the user will need to have access to a
list of the properties of the policy-managed
systems that can be used in policies. In order to
support this requirement, the underlying resource
management components must be able to provide
lists of their properties. In cases when the
‘external’ name of the new attribute is different
from the one used internally, the latter will have
to be provided. When appropriate, the range of
allowed values can be specified as well, as well as
other parameters.

For example, in order to define a new derived
attribute average-transfer–rate, the
value of which is determined as a simple average
of the two discoverable properties read-
transfer-rate and write-transfer-
rate, the user might:

1. Select the UI function “Define New
Attribute”;

2. Type in both internal and “screen” names
for the new attribute:

a. Attribute name: average-
transfer–rate

b. Screen name: Average transfer
rate

3. Select read-transfer-rate and
write-transfer-rate from a list of
available metrics;

4. Define, in an implementation-dependent
manner, the formula to be used to derive the
value of the new attribute. In this case, that
formula is (read-transfer-
rate+write-transfer-rate)/2;

5. Save the new attribute.
The new attribute definition can then be

saved in the policy repository as a special
‘attribute definition policy’ or it can be stored
separately in ‘attribute definition repository’. The
formula by which the attribute’s value is
determined can be encoded in any format, for
example, by defining an XML format for
expressions or as an ABLE [4] rule. In the case of
non-discoverable request attributes the definition
can involve simply specifying the name,
specifying internal and external name as well as
other characteristics such as the attribute’s relative
priority and its relation to other attributes. The
internal name of an attribute shall be used to
determine the attribute’s value from the request
that triggers policy evaluation.

Once an attribute is defined, it can be used in
policy creation. When evaluating a policy
containing new attribute(s), the policy processing
code that determines the attribute’s value first
checks if knows how to determine the attribute’s
value directly. If it does not, the attribute
definition is located to determine the names of
required system properties. The value of each of
these properties is obtained by calling appropriate
sensors and the attribute’s value is determined by
applying the specified formula (or by evaluating
an ‘attribute definition policy’ as mentioned
above).

2.3. Attribute beans

The user interface approach works best in
simple cases where the value of an attribute is
easily determined through simple predefined
operations done on managed system’s properties.
In cases where the attribute value is determined
by applying a fairly complex formula, a different
approach is appropriate.

This approach supports the dynamic
discovery of the attributes and dynamic

determination of their values during policy
evaluation. To facilitate dynamic introduction of a
new attribute into the system, we use Java beans
and reflection technologies. We introduce the
‘attribute bean’—a JavaBean™ [5] that contains
methods that allow construction of the new
attribute from discoverable properties of the
system.

The main functions of an attribute bean are to
provide the names of managed resource properties
that are required to determine the attribute value,
and to determine the attribute value based on the
values of these properties. A sample interface, that
such beans are required to implement, is shown in
Fig. 1. This AttributeBeanInterface
contains various methods to allow for future tools
that may help in the creation of attribute beans.

E

 Figure 1. A sample AttributeBeanInterface

An attribute bean may also be used to convert

the user-visible name of an attribute to the one
used in a request, or to determine its relationship
to other attributes. It is possible to keep this
information inside attribute beans as well, as
shown in Fig. 2.

F
A

Error! public interface AttributeBeanInterface {
 // get name of the attribute to facilitate discovery
 public String getAttributeName();
 public void setAttributeName(String name);
// the name under which the attribute is known to the user
public String getAttributeUIName();
public void setAttributeUIName(String uiName);
// set names of attributes upon which this attribute depends
public void setAlsoSpecify(String[] attributeNames);
// get the names of the attribute(s) that
// also have to be specified on the rule
public String[] getAlsoSpecify();
// set attribute’s priority
public void setPriority(int priority);
// get attribute’s priority
public int getPriority();
// indicate if this is a required attribute
public void setRequired(boolean required);
// is it a required attribute?
public boolean getRequired();
public Object getValue();

}

rror! public interface AttributeBeanInterface {
// get name of the attribute to facilitate discovery
public String getAttributeName();
public void setAttributeName(String name);
// the name under which the attribute is known to the user
public String getAttributeUIName();
public void setAttributeUIName(String uiName);
public void setMetricNames(String[] metricNames);
// names of the metrics required to compute
// the value of the bean
public String[] getMetricNames();
// in an alternative embodiment, the metric
public Object getAttributeValue(HashMap metricValues);

 }
igure 2. Another example of a sample
ttributeBeanInterface

The attribute beans may be introduced into
the system in a number of ways. For example, a
naming convention that associates an attribute
bean’s name with the attribute name can be used.
In this case, a user creating a policy can simply
type in an attribute name and have the attribute
bean located during the policy evaluation or
indicate that an attribute bean will be provided.
The location of the bean can optionally be
specified as well. Alternatively, a configuration
file with a list of supported attribute beans can be
used by both the user interface and the policy
execution environment or all beans can be located
by searching for all classes that are located in a
specific location (in, for instance, a filesystem or a
particular URL) and follow the attribute bean’s
naming convention. In cases where the user
interface is designed to discover the attribute
beans, no additional information needs to be
specified by the user; the user need only use the
already defined attributes in the policies.

2.4. A hybrid approach

Sometimes it may be desirable to use both
user-interface based attribute definition and bean-
based attribute definition.

In this case, the user interface-based
definition can be used for the attributes created by
using simple computations on a few available
system properties whereas the attribute beans can
be used for complex computations or those
combining a large number of managed resource
properties.

In this case, the policy execution environment
will have to first have to check if an attribute
referenced in the policy was defined by the user,
and then try to locate a corresponding attribute
bean.

It is also possible to define some information
for the new attribute via the user interface and use
attribute beans to provide additional information.

3. A worked example — policy-based
storage management

3.1. Autonomic Storage Manager
Prototype

As an example of the possible
implementation of this capability, we’ll use the
policy based autonomic storage management
prototype, ALOMS-Tango, described in [2].

ALOMS-Tango allows administrators to
define classes of service for storage in terms of
performance and space metrics, set up alerts to be
generated if the actual performance of the

allocated storage comes within a given fraction of
violating the requirements of the class of service,
and visualize the configuration of the storage
system for the allocated storage and identify
performance bottlenecks. For the purposes of this
paper, we are mostly interested in two main
components of the prototype: the ALOMS-Tango
Management Unit (ATMU) (which is responsible
for resource provisioning and re-provisioning,
collection of configuration information and
performance metrics, policy management, and
user interface support) and the sensors that the
ATMU uses to collect the information about the
storage system.

The user interface manager component of the
ATMU allows the administrator to define service
classes, to define policies and to visualize the
configuration of the storage.

The policy management and rule execution
architecture of the prototype was described in [1].
It has three subcomponents: a policy agent, a
translator, and a rule engine. The policy agent
retrieves relevant policies from a policy repository
(in an XML schema) and uses the translator to
convert them into a form that is suitable for the
rule engine. During policy evaluation, the rule
engine references certain variables and functions
in evaluating the condition part of a rule, and
(when necessary) in carrying out the action part.

The ATMU obtains the values of
performance metrics via sensors.

3.2. Incorporating dynamic attributes
into storage policy templates

In order to illustrate how the ability to add
dynamic attributes will affect storage policy
templates we’ll consider the service class template
and the alert policy template described in [1].

 With only pre-defined attributes, the service
class definition was defined in [2] as

Service Class “Gold”
Maximum size = 100Gbytes
Throughput = 20 Mbytes/Sec
Response Time = 5ms/4K block
Seq/rand access % = 100%

Out of the specified service class attributes

only throughput and response time are
discoverable metrics that are used to monitor
performance as in the following alert policy:

Generate an alert, if
[throughput] for [a container]
falls below [95%] of the value
specified in its service class
definition, in a 10-minute
period.

UI Manager

 Policy
Repository

Translator

Rule Engine

Alert logs

To storage infrastructure

New/
updated
policies

Existing
Policies

logAlerts

policies

Policy Agent

request policies,
subscribe

getMetrics

Callbacks

Sensors & Effectors
Browser

Mapping
functions

Alert
Manager

Policies in XML

Rulesets

Repository

Attribute
Definitions
Repository

Service Class
Definitions
Repository

Attribute
Beans

Policy execution
environment

Figure 3 Policy management and rule execution architecture with support for the
dynamic introduction of attributes

If for whatever reason, an enterprise wants to

use a performance metric different from the
throughput and the response time, it would need
the ability to introduce new attributes into (and
remove old attributes from) both the service class
definition and the alert policy. Moreover, it would
make sense to allow the use of a new attribute in
an alert policy only after it has been incorporated
into the service class definition.

The other policy templates mentioned in [1]
are service-change and service-creation policy
templates. Service-change policies specify the
conditions that trigger re-allocation of storage.
Since most of these conditions depend on the
same performance metrics as alert policies, the
process of introducing of new attributes into these
policies is identical to that of alert policies.

Service-creation policy templates specify that
data objects allocated for a specific user should be
assigned a specific service class. Each user has
properties such as a user id, a server id or a
company id. These are non-discoverable attributes
as they represent the characteristics of an input
request. While these attributes are not affected by
changes in the managed resource, the ability to
introduce them into policies would allow an
enterprise a greater ability to customize the
system to their own needs and thus will result in

greater usability of the system. In the next section,
we will illustrate the use of an UI-based approach
to introduce these attributes into policies.

3.3. Changes to policy management and
rule execution architecture

In the policy management framework
described in the previous section, the ability to
introduce new attributes mostly affects the UI
manager component, as well as the system
components implementing mapping functions
responsible for determining the attribute’s value at
policy evaluation time.

The UI-based definition of new discoverable
attributes is based on the list of all available
storage metrics provided by the sensors. The user
creates new attributes by combining one or more
metrics from the list using simple arithmetic
operations. In case where more complex
operations are desired, the user can specify that a
corresponding attribute bean will be provided
during policy evaluation. A more complicated
solution would require the user interface to have
access to the list of attributes defined as attribute
beans.

Our sensors use low-level system commands
and are capable of returning all available static
system metrics and all dynamic metrics measured

for a specific logical or physical volume. This
makes it easy to both present the list of all metrics
to the user and to determine the attribute’s value
by simply extracting the values of relevant metrics
from sensor’s output XML. In systems with
sensors that can only measure a specific property,
the layer that is capable of determining all
available properties would need to be developed.

 In case of request attributes, the user
specifies the attribute UI name, the internal name
and relative priority for conflict resolution. At
present, only service creation policies have the
potential to cause conflicts that can be resolved by
assigning priority to attributes. An example of
such a conflict is the existence of two policies that
assign different service classes for different
requester attributes such as ‘assign service class
“gold” to all requests from company “Chase” and
‘assign service class “silver” to all requests from
server “a001”’. A request that includes both of
these parameters – company=”Chase” &
server=”a001” – will cause conflict that can
be resolved by assigning a higher priority to the
attribute “company”. Since neither alert policies
nor re-provisioning policies have potential for the
similar conflicts, the priority field is not needed
for discoverable attributes in this particular
system.

Once an attribute has been defined, it is saved
in the attribute repository and is available for use
in policies. In our case, the discoverable attributes
become part of service class definitions and
quality-of-service-related policies, whereas non-
discoverable attributes are used in service creation
policies. For example, in an alert policy
mentioned above, the metric of storage
performance can be any dynamically defined
attribute.

In case of a richer set of policy templates, it
may be necessary to group attributes by template.
For example, if different sets of requestor
attributes are applicable to service creation
policies and to security policies, it will be
necessary to specify which attributes are
supported by which set of policies.

When the rules are evaluated, the
responsibility for determining the newly defined
discoverable attributes’ values falls to callback
functions. For example the following rule might
result from the translation of an alert policy that
indicates that an alert shall be issued if the value
of the new attribute aveTransferRate falls
below 95% of the value specified in the
corresponding service class:

if (observedValue(“pmdo1”,

aveTransferRate, “minutes”, 10)
< 95% of expectedValue(“pmdo1”,

aveTransferRate)) then
(createAlert(“logEntry”, “pmdo1
average transfer rate is below
95% of specified value”))

The callback responsible for evaluating

observedValue must locate the
aveTransferRate attribute’s definition and
determine its current value. This callback is one
of the mapping functions located inside the
AlertManager. In order to do this, the Alert
Manager first checks if the attribute corresponds
to a property measurable by the sensors. If not, the
Alert Manager attempts to locate the attribute’s
definition from the attributes repository and, if
this fails, tries to instantiate the
AveTransferRateAttributeBean class.
From the attribute’s definition the Alert Manager
follows the process outlined above for
determining this attribute’s value using sensor
output.

It would also have been possible to encode
the attribute definition as a special group of
policies. An example of an attribute definition
policy would be an action-only policy that
specifies that the attribute aveTransferRate
is equal to the average of two system properties
read-transfer-rate and write-transfer-rate. In this
case, the determination of the attribute’s value
would have triggered the execution of a particular
set of rules that would have resulted in this
attribute’s value.

Fig. 3 shows the policy management and rule
execution architecture modified to allow the
dynamic introduction of attributes through the
user interface and attribute beans.

4. Conclusion

In this paper we have presented the case for
the dynamic introduction of attributes into
policies. We introduced the concept of ‘attribute
bean’ and further described the system that allows
dynamic definition of attributes via user interface
and discovery of attribute beans at run-time, as
well as the determination of new attributes’ values
at run-time without requiring any change to the
existing policy management code.

In terms of the CIM policy management
framework [3], the ability to define new attributes
has to be supported by the policy management
tool, while the ability to execute policies that use
dynamic attributes and to determine discovered
attributes’ values has to be added to policy
decision and policy enforcement points.

In order to facilitate the dynamic discovery of
supported metrics system properties and their use
in policy attribute definitions, the standards for

both metric names and the sensors’ output need to
be developed. Similarly, the ability of a future
system’s policy decision code to evaluate policies
that use new attributes depends on the
development of a standard format for attribute
definitions produced by policy management tool,
and standard interfaces for the attribute beans
created by a programmer.

It is our belief that the ability to introduce
attributes into policies at run-time will be very
important in the emerging areas of autonomic
computing and e-business on demand.

5. References

 [1] Murthy Devarakonda, Alla Segal and David
Chess “A Toolkit-Based Approach to Policy Managed
Storage”, Proc. of 4th IEEE Intl Workshop on Policies
for Distributed Systems and Networks, June 2003.

[2] Murthy Devarakonda, David Chess, Ian
Whalley, Alla Segal, Pawan Goyal, Aamer Sachedina,
Keri Romanufa, Ed Lassettre, William Tezlaff, and Bill
Arnold "Policy-based autonomic storage allocation",
Proc. of 14th IFIP/IEEE Intl. Workshop on Distributed
Systems: Operations and Management, DSOM 2003,
Marcus Brunner and Alexander Keller (Eds.), Published
by Springer-Verlag as Lecture Notes on Computer
Science 2867.

[3] DMTF, “CIM Core Policy Model white
paper,” DSP0108, February 2001, http://www.dmtf.org/
education/whitepapers.php.

[4] Joseph P. Bigus, Jennifer Bigus,
“Constructing Intelligent Agents Using Java, “Second
Edition, John Wiley & Sons, Inc., 2001.

[5] Cay S. Horstmann, Gary Cornell “Core Java.
Volume II-Advanced Features”, Sun Microsystems
Press Java Series, 2000.

[6] Paul Horn, “Autonomic Computing: IBM’s
Perspective on The State of Information Technology”,
IBM Corporation,
http://www.research.ibm.com/autonomic/manifesto

[7] Jeffrey O. Kephart and David M. Chess, “The
vision of Autonomic Computing,” Computer Magazine,
IEEE, Jan 2003.

[8] IBM Corp, “Living in an On Demand
World”, October 2002, on the Web at
http://t1d.www3.cacheibm.com/ebusiness/doc/content/p
df/whitepaper.pdf

[9] M. Kaczmarski, T. Jiang, D.A. Pease,
"Beyond backup toward storage management", IBM
Systems Journal, Vol 42, No 2, 2003

[10] Dinesh Verma, "Simplifying Network
Administration using Policy based Management", IEEE
Network Magazine, March 2002

[11] Chrisos Efstratiou, Adrian Friday, Nigel
Davies, Keith Cheverst, “Utilising the Event Calculus
for Policy Driven Adaptation on Mobile Systems,”
Proc. of 3rd IEEE Intl Workshop on Policies for
Distributed Systems and Networks, June 2002.

[12] Leonidas Lymberopoulos, Emil Lupu, Morris
Sloman, “An Adaptive Policy Based Management
Framework for Differentiated Services Networks,”

Proc. of 3rd IEEE Intl Workshop on Policies for
Distributed Systems and Networks, June 2002.

[13] Dinesh C. Verma, “Policy-Based Networking:
Architecture and Algorithms,” New Riders Publishing,
2001.

[tm] JavaBean is a trademark of Sun

Corporation

http://www.dmtf.org/ education/whitepapers.php
http://www.dmtf.org/ education/whitepapers.php
http://t1d.www3/

	Introduction
	Dynamic attribute definition and discovery
	Classification of Attributes
	User-interface based attribute definition
	Attribute beans
	A hybrid approach

	A worked example — policy-based storage management
	Autonomic Storage Manager Prototype
	Incorporating dynamic attributes into storage policy templat
	Changes to policy management and rule execution architecture

	Conclusion
	References

