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ABSTRACT
Autonomic computing is a grand-challenge vision of the future in
which computing systems will manage themselves in accordance
with high-level objectives specified by humans. The IT industry
recognizes that meeting this challenge is imperative; otherwise, IT
systems will soon become virtually impossible to administer. But
meeting this challenge is also extremely difficult, and willrequire
a worldwide collaboration among the best minds of academia and
industry. In the hope of motivating researchers in relevantareas
to apply their expertise to this vitally important problem,I outline
some of the main scientific and engineering challenges that collec-
tively make up the grand challenge of autonomic computing, and
provide pointers to initial efforts to address these challenges.

Categories and Subject Descriptors
A.1 [General Literature ]: Introduction and Survey; H.0 [Information
Systems]: General; H.4 [Information Systems Applications]: Gen-
eral; I.O [Computing Methodologies]: General; I.2.11 [Distributed
Artificial Intelligence ]: [intelligent agents, multiagent systems];
K.6 [Management of Computing and Information Systems]: Gen-
eral

General Terms
Management, Measurement, Performance, Reliability

Keywords
Autonomic computing, self-managing systems, research challenges

1. INTRODUCTION
Typical present-day IT1 environments are complex, heteroge-

neous tangles of hardware, middleware and software from multiple
vendors that are becoming increasingly difficult to integrate, install,
configure, tune, and maintain. At the present rate of growth in com-
plexity, even the most skilled IT professionals may find it impossi-
ble to administer IT environments within a few years. Most ofthe
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IT industry recognizes that the only viable solution to thislooming
crisis is to endow systems and the components that comprise them
with the ability to manage themselves in accordance with high-level
objectives specified by humans [38]. IBM introduced this vision of
self-managing systems in 2001 when it launched the Autonomic
Computing initative [24]. Hewlett-Packard’sAdaptive Enterprise
initiative [23] and Microsoft’sDynamic Systemsinitiative [44] are
related industry efforts that recognize that self-managing compo-
nents and systems are vital to the future of IT.

The purpose of this paper is to decompose the grand challengeof
autonomic computing into several of its constituent scientific and
engineering challenges. Even incremental steps towards meeting
some of these individual challenges are likely to be beneficial to in-
dustry in the near-term, long before the vision of autonomiccom-
puting is realized fully. As evidenced by over 20 workshops and
conferences devoted to the topic over the last two years, autonomic
computing offers a rich application domain for researchersin many
branches of computer science, including software architecture, sys-
tems, artificial intelligence, and human-computer interfaces. It is
also likely to benefit from advances in applied mathematics,novel
applications of economic mechanisms, and even ethnographic stud-
ies. It is hoped that this brief survey of autonomic computing re-
search challenges will encourage researchers in relevant areas to
join this movement, and lend their expertise to problems whose so-
lution would have an enormous impact on the IT industry.

The paper is organized as follows. First, in section 2, I de-
scribe a framework that has proved to be useful in defining and
describing IBM’s autonomic computing research program. Then,
in sections 3, 4, and 5, I use this framework to highlight a subset of
challenges that define fruitful avenues for research—the pursuit of
which could yield significant practical benefits in the intermediate
to long term. I close with a summary and some final comments in
section 6.

2. FRAMEWORK
Autonomic computing draws upon an enormous diversity of fields

within and beyond the boundaries of traditional computer science.
Therefore, any attempt to categorize and describe the wholere-
search effort and its associated challenges is bound to be imperfect.
The architecturally-flavored framework that I use in this paper has
proven to be helpful in defining and growing IBM’s own autonomic
computing research program, which now comprises the diverse ef-
forts of at least 100 researchers, and can thus be viewed as a micro-
cosm of the broader worldwide effort on self-managing systems.

At the very coarsest level, I divide the research space into three
basic parts: autonomic elements, autonomic systems, and human-
computer interactions.

Autonomic elements are the basic building blocks of autonomic
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systems, which through their mutual interactions produce the over-
all self-managing behavior of autonomic computing systems. Es-
sentially any type of computing resource can be viewed as an auto-
nomic element: a storage device, a database or application server,
a middleware component, a load balancer, a workload manager, a
resource broker, etc. One can think of these autonomic elements
as services within a service-oriented architecture. Alternatively,
and in many cases more accurately, one can identify autonomic
elements as software agents, and autonomic computing systems as
multiagent systems. For more detail on autonomic elements,their
behavior, and their interrelationships, see reference [38].

Within the autonomic element branch of the research framework,
I distinguish three sub-branches:

• Specific autonomic elements. Research directed towards
improving the self-managing capability of specific compo-
nents such as databases, storage systems, servers, etc.

• Generic autonomic element technologies. Research on tech-
nologies that are generally applicable to autonomic elements,
including planning, modeling, forecasting, optimization, etc.

• Generic autonomic element architectures, tools, and pro-
totypes. Research on the internal structure of autonomic el-
ements, tools to help create autonomic elements, and refer-
ence implementations of autonomic elements built with these
tools.

Within the autonomic systems branch of the research framework,
I distinguish three sub-branches:

• Autonomic system technologies. Research on generic tech-
nologies that entail interactions among multiple autonomic
elements to achieve system-level goals, including problem
determination and remediation, automated provisioning, work-
load management, automated installation and configuration,
integrity management, etc.

• Autonomic system architectures and prototypes. Research
on system-level architectures that effectively govern interac-
tions among autonomic elements, and prototypes that assem-
ble the many other pieces described in this framework to
demonstrate systems with improved self-management rela-
tive to existing systems.

• Autonomic system science. Research on fundamental sci-
ence of large-scale autonomic computing systems, address-
ing questions of learning, stability, control and emergentbe-
havior in multiagent systems, and also addressing questions
of how to quantify the degree of self-management in systems.

Finally, within the human interaction branch of the research frame-
work, I distinguish two sub-branches:

• Human studies. Research on present and future interac-
tions between human administrators and other users and self-
managing systems, to determine what interfaces and other
modes of interaction are most effective.

• Policy. Research on methods for eliciting high-level poli-
cies from people, representing and appropriately transform-
ing those policies within autonomic systems, and managing
behavior with respect to those policies.

In the remainder of this paper, I will structure a survey of re-
search challenges in all of these areas around this framework, and I
will provide pointers to initial efforts to address these challenges.

3. AUTONOMIC ELEMENT CHALLENGES

3.1 Specific autonomic elements
For many years, researchers have striven to make individualsys-

tem components more self-managing, especially servers, database
management systems, and storage systems. Certainly, extensive re-
search programs in all three of these areas had been under wayfor
decades at IBM and other research institutions when the autonomic
computing initiative was first announced by Paul Horn in 2001. A
steady stream of new self-managing capabilities has entered com-
mercial products over the last several years, and trend we can ex-
pect to continue into the foreseeable future. The challenges within
these individual domains are numerous but well-understood, and it
would be presumptuous to attempt to catalog them here.

The mainnewresearch challenge introduced by the autonomic
computing initiative is to achieve effective interoperation among
autonomic elements. In order for this to happen, product developers
must look beyond their natural product-centric tendenciesand cul-
tivate a more holistic, system-level point of view. In otherwords,
specific autonomic elements must be designed with a greater aware-
ness of the fact that they will be situated in autonomic systems and
intercommunicating and interacting cooperatively with other auto-
nomic elements. One requirement is that individual components
must adopt standard interfaces defined by autonomic system archi-
tectures, as discussed further in Section 4.2. A second requirement
is that individual components must generate and supply needed in-
formation to other components, and must be capable of requesting
and using such information from other components. For example, a
database component might need to answer what-if questions from
application server middleware that is trying to add extra capacity
to the application tier. Or an application server middleware com-
ponent might be asked by a provisioning manager to estimate what
would be the benefit of adding an additional server to the middle
tier. The basis for this second set of capabilities will be discussed
further in Sections 3.2 and 3.3.

3.2 Generic autonomic element technologies
Autonomic elements will draw upon a number of common tech-

nologies, including monitoring, event correlation, rule execution,
modeling, optimization, forecasting, planning, feedbackcontrol,
and machine learning. Here I outline special challenges that au-
tonomic computing creates for some of these technologies.

Autonomic elements will need to share common methods for
collecting and representing monitored data. The challenges here
are mainly ones of standardization. One notable effort to define a
consistent, common format for monitored events and log file for-
mats is the Common Base Event format [25], which is being de-
veloped under the auspices of the OASIS Web Services Distributed
Management Technical Committee. Legacy components can gen-
erate events and log files in their traditional formats, and asuitable
Generic Log Adaptor can convert these events or log files intothe
CBE format, whereupon they can be stored in a common repository
and/or sent to subscribers.

Rule engines and correlation engines (with their associated lan-
guages) are useful technologies for analyzing monitored data and
log files to identify trends or situations that warrant deeper exami-
nation. One serious challenge in this space is to determine agood
set of rules and/or correlation expressions that describe the condi-
tions under which particular automated actions or analysesshould
be triggered, or humans should be alerted (presumably so that they
can take action manually). One complication is that the conditions
may require correlation across multiple components, so even as-
sembling the requisite data in one place may be an issue. At the
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very least, human experts are likely to need assistance in author-
ing a potentially large set of rules. Ideally, a good portionof the
rule authoring should be based on some form of machine learning,
and based on system-level goals coupled with historical observa-
tion. Promising initial efforts that automatically discover correla-
tions between low-level system measurements and high-level Ser-
vice Level Objectives include work by Hewlett-Packard Labs[53]
and IBM Research [9].

The forementioned research on extracting correlations between
low-level system measurements and high-level Service Level Ob-
jectives is based on statistical regression and/or modeling. Mod-
els, and methods for learning them automatically, are key tothe
functioning of autonomic elements in several respects. Autonomic
elements need models that map potential actions into probable out-
comes so that they can make decisions about the right action or
action sequence. They need models of workload so that they can
forecast future demand and plan accordingly. In some cases,they
may need models of other system components with which they
have relationships, or with which they are contemplating forming
a relationship. And, as mentioned above, models are important
because they establish useful relationships between the high-level
terms in which humans wish to express goals and priorities for sys-
tem behavior and the low-level control parameters and observables
that autonomic elements can control and/or monitor. A majorchal-
lenge for all types of modeling is to learn and re-adjust the models
continually on the fly. Models must adjust quickly to observations
with a minimum of data and training time, and they must adapt to
conditions that are noisy and prone to fluctations that are extrinsic
or intrinsic to the system. Queuing models, once used mainlyfor
the essentially static role of capacity planning, are starting to be
used for performance optimization and resource allocation, which
require continual readjustment of queuing model parameters; the
work of Menasce [3] and Chess et al. [17] exemplify this trend.

Three additional learning challenges are worth mentioning. First,
many types of learning utilize random exploration to seek more
profitable regions of parameter space. In simple classic machine
learning problems, extensive trial and error is acceptableso long as
the asymptotic performance is good. However, in autonomic sys-
tems, system components are unlikely to have such a luxury. They
are expected to work well from the beginning and adapt themselves
seamlessly to environmental changes. Too much trial and error may
cause poor average performance. Thus the classic exploration vs.
exploitation tradeoff is likely to be biased more towards exploita-
tion. Finding principled ways to explore parameter space while
still capitalizing on what has already been learned remainsa chal-
lenge. Second, there may be several hundred tunable parameters
in modern-day databases like Oracle and IBM DB2, or in web ap-
plication server middleware. In order for any learning algorithm to
train sufficiently quickly, this number must be reduced to nomore
than one or two dozen of the most relevant parameters. Identifying
which are most relevant in a given situation is highly non-trivial.
Third, traditional convergence guarantees that hold for machine
learning by single agents in stationary environments [47] do not
apply when multiple agents are learning simultaneously andtheir
actions are coupled. The very act of learning by one agent changes
the environment experienced by other agents, raising the possibil-
ity that the learning process may never converge [39]. The field of
multiagent learning is still in its infancy, with a handful of tech-
niques and even fewer theoretical analyses. The naı̈ve approach
of endowing autonomic elements with single-agent learningalgo-
rithms and hoping for convergence sometimes works, but there is a
limited understanding of the conditions under which this approach
is successful.

Optimization challenges overlap a good deal with those of learn-
ing. Autonomic elements inhabit a highly dynamic world. Re-
gardless of whether they are using deterministic or stochastic ap-
proaches to optimization, they must cope with nonstationarity. In
other words, due to either extrinsic effects such as changing work-
load or intrinsic effects such as adaptative behavior by other au-
tonomic elements, an individual autonomic element’s optimization
landscape is bound to change over time. Many traditional opti-
mization techniques assume implicitly that the objective function is
static, and do not bother to resample it. This assumption hasbeen
observed to lead to pathological behavior in multiagent systems,
even when the external environment is static, because adaptation
by individual agents changes their behavior in a way that alters the
objective functions of the other agents [37].

Over the last few years, the planning community has begun to
recognize that, to be truly practical, planners must take several
real-world issues into account, many of which are relevant to au-
tonomic computing [32]. One real-world issue is that autonomic
elements must conduct their planning in open environments that are
not completely understood. This calls for planning techniques that
gracefully handle incomplete domain specifications, i.e. the pre-
conditions and/or postconditions for actions are not fullyknown.
Moreover, since planning takes place in dynamic environments that
may change during the course of executing a plan, it is vital to
continually assess progress towards completion of a plan, and to
replan whenever plans go awry. Finally, generating and manipulat-
ing plan metadata describing capabilities and conditions of use is
very important, as this provides a way to catalog, reuse and pos-
sibly merge plans that have proven successful in the past. Several
workshops are devoted to exploring these challenges, notably the
IJCAI-05 Workshop on Planning and Learning ina PrioriUnknown
or Dynamic Domainsand theAAAI 2005 Workshop on Exploring
Planning and Scheduling for Web Services, Grid and Autonomic
Computing.

3.3 Generic autonomic element architectures,
tools, and prototypes

In addition to the challenges of developing individual autonomic
element technologies, as outlined in Section 3.2, there is the chal-
lenge of bringing them all together coherently to create a single au-
tonomic element that functions competently in an autonomiccom-
puting system. In their ultimate realization, autonomic elements
will be software agents that concurrently and asynchronously exe-
cute multiple threads of activity that are directed by goalsthat are
either intrinsic to the element or derived from service relationships
with other elements [38]. A typical autonomic element mightsi-
multaneously be providing service to several other elements, con-
suming services from several others, and planning tasks associated
with these service relationships. This challenge bears much in com-
mon with that of developing a competent software agent, which
requires an effective marriage of technology with architecture.

A good autonomic element (or software agent) architecture should
effectively support the need to manage and coordinate multiple
threads of execution within the element. A single task such as hon-
oring the terms of a service agreement with another element might
entail monitoring the variables of interest, analyzing theextent to
which they are being kept within agreed-upon bounds, and, ifall
is not satisfactory, invoking a planner to determine a sequence of
actions that is likely to improve performance. Concurrently, the el-
ement may use the monitored data to improve its internal model of
the relationship between performance and control parameters, or it
may revise its forecast of future workload, or even the modelupon
which it bases such forecasts.
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When one considers that there will be multiple tasks executing
simultaneously, all of them requiring coordination acrossdifferent
monitoring, analysis, modeling, learning, optimization,and plan-
ning modules, it is clear that the challenge of developing anauto-
nomic element architecture capable of managing such complexity
is great. One fundamentally hard problem is to develop an archi-
tecture (and accompanying functionality) for detecting and resolv-
ing conflicts that are bound to occur when an autonomic element
cannot meet all of its obligations. For example, consider anau-
tonomic database element that needs to serve a given number of
queries per minute, and which is required to run full backupsevery
24 hours. An optimizer may determine that the query process needs
25% more bandwidth and 10% more memory to perform satisfac-
torily, while a planner may determine that, in order to complete in
time, the backup needs to start immediately and run at high prior-
ity until completion. These actions may or may not be in conflict
with one another. Given that they are not expressed in the same
terms, and given that the decisions behind them may not have been
generated at exactly the same time, how is a possible conflictto be
detected? And if a conflict exists, what mechanisms can be used
to change one plan or the other (or both) so that the conflict isre-
solved?

Autonomic element architecture is important, but architecture
alone will not suffice. Software developers need tools that pro-
vide a good set of autonomic element technologies, means forin-
terconnecting them in accordance with the architecture, and easily
integrable interfaces that permit the autonomic element tointeract
appropriately with other autonomic elements. (The detailsof what
these interfaces should be are a matter of system-level architecture,
to be discussed further in Section 4.2.) One early effort to pro-
vide some of this functionality to developers is the IBM Autonomic
Computing toolkit [29], which is available for trial by software de-
velopers. It is encouraging that, despite the lack of many functions
that one would like to have ultimately, the toolkit is already proving
to be useful. An account of its use in developing self-configuring
network services at Intel can be found in reference [43].

Finally, it is worth stating that building and refining prototypes,
preferably ones grounded in real applications, is an essential part
of the process of developing architectures and tools for autonomic
elements. Simple autonomic elements built with the extended re-
search version of the IBM Autonomic Computing Toolkit are de-
scribed in reference [18], which also gives an account of howele-
ments so constructed can interact to form a system that optimizes,
configures, and heals itself. The process of using the tools to build
architecturally-compliant elements provided several useful lessons
that led to refinements in the tool and the architecture.

4. AUTONOMIC SYSTEM CHALLENGES

4.1 Autonomic system technologies
Technologies associated with system-level self-configuration, self-

healing, self-optimization, and self-protection [38] tend to entail
interactions among multiple autonomic elements.

First, consider self-configuration. Suppose there is an existing
system to which a single new element (say a new server) is added.
The challenge in this case is for the new element to integrateitself
seamlessly into the system with minimal human intervention. In
most schemes that have been proposed [18], this requires a form
of bootstrapping in which the element interacts with a registry in
two ways: it discovers other elements in the system that can help it
complete its configuration, and it registers itself so that other sys-
tem elements can find it and learn of its capabilities. Advances
in OWL [19] and other efforts to develop Web Services semantics

will help improve the ability of autonomic elements to express their
needs, capabilities, and properties, and to reason about the needs,
capabilities, and properties of other autonomic elements—enabling
them to discover and use one another more effectively.

A more complex and challenging self-configuration scenariois
the automated deployment of a large-scale application, which en-
tails much more than merely running the self-configuration sce-
nario of the previous paragraph several times. There are complex
interdependencies among autonomic elements that must be taken
into account in the detailed choreography that typifies large-scale
solution deployment. The details of what servers will be chosen,
how they will be arranged in multiple tiers, and where routers and
firewalls will be placed will be derived automatically from agen-
eral specification of the application and its service level require-
ments, supplemented with knowledge of the existing infrastructure
and appropriate metadata on the various system resources and their
mutual interdependencies. To make this work in a realistic setting
will require clever integration of capacity planning, capture and
use of human expert knowledge about system configuration [21],
and planning and scheduling technologies [35] that generate work-
flows describing the detailed installation and configuration chore-
ography. A workflow so generated must be robust to changes in
hardware and software license availability that may occur during
the course of executing the workflow. This suggests that research
on continual replanning and other new directions in practically-
oriented planning will be important in this context [41]. Radically
different approaches to self-configuration are worth exploring as
well, such as the more decentralized paradigm of goal-directed self-
assembly [18] or other ideas inspired by emergent computation and
self-organizing systems [46].

Next, consider self-healing. The problem management lifecycle
begins with a stage in which selected metrics of individual compo-
nents are monitored and perhaps aggregated. In a subsequentstage,
the stream of low-level events is processed into higher-level assess-
ments of the health of individual components or the system asa
whole. This is followed by problem localization and/or determina-
tion, and finally by problem remediation.

The first two stages, monitoring and analysis, have already been
discussed somewhat in Section 3.2. Rule and correlation technolo-
gies are typically applied at the analysis stage because they can be
applied efficiently to voluminous event streams. However, as dis-
cussed in section 3.2, the number of rules required can be large,
and authoring is difficult. Any technologies that reduce thebur-
den on humans to write low-level rules and correlation ruleswould
be helpful (more detailed thoughts on human-computer interaction
appear in Section 5.1.) In addition to developing machine learning
techniques that automatically determine thresholds beyond which
high-level events, actions, or alerts are generated, technologies that
assist humans with rule authoring are needed, including newrule
interfaces and mechanisms for capturing expert knowledge.

At the third stage, problem localization and/or determination, the
challenges become especially interesting. Note that, while track-
ing a problem’s exact origin down to the offending line of code
is a wonderful ideal, even coarse localization to a bad router or
unresponsive server can be quite valuable in autonomic systems.
Even if an individual autonomic element cannot determine what
ails it and heal itself, the system as a whole can still exhibit self-
healing by replacing, rebooting, or otherwise working around the
faulty component. Thus problem localization is a key ingredient of
self-healing. In complex, highly interconnected systems,attribut-
ing the cause of a failure to a particular component can be tricky.
For example, suppose you are connected to a web site and your ses-
sion suddenly dies. The source of the problem could be practically
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anywhere—on your machine (and even then it could be a hardware
failure of a bug in any of a number of software modules), or it could
be somewhere at the website (a hardware or software problem on
any of a large number of servers or routers that support the web
site), or it could even be somewhere in the network that connects
you to that web site.

One approach to problem localization uses probe signals. Probe
failures, such as a ping timeout or unresponsiveness to a test trans-
action, can be used to infer a set of possible candidate bad compo-
nents, and that set can be narrowed down by using multiple overlap-
ping probes. Since probes can create extra load on systems, they
should be used as sparingly as possible. One interesting line of
research [11] uses information theoretic techniques to identify op-
timally small and efficient sets or sequences of probes that can pin-
point problems; efforts are being made now to extend the workto
scale to larger systems and handle multiple simultaneous failures.
Problem localization techniques such as these rely on a knowl-
edge of patterns of interconnection, or dependencies, among sys-
tem components. This brings up yet another challenge that isbe-
ginning to be addressed [22]: how to extract these dependencies
automatically as the system’s configuration continually shifts?

The final stage, automated remediation of a problem once it has
been localized, is perhaps the most difficult. One approach is to
compile a large database of known symptoms and associated reme-
dial actions. When a problem is localized and/or diagnosed,the
symptom database is consulted, and if there is an adequate match
to a known symptom then the associated action is taken. Here the
main challenges are to populate the knowledge base and to develop
methods for searching it effectively. Effective techniques for cap-
turing human expert knowledge of problems would be very use-
ful, as would automated techniques for harvesting logs to extract
problem signatures, which Brodie and colleagues have begunto
develop [10].

Another promising avenue of research on problem remediation
is the recursive micro-rebooting concept of Fox et al. [14],which
seeks to reengineer the rebooting bludgeon into a scalpel. In this
scheme, software components at varying levels of granularity are
designed to be crash-only, i.e. the only recourse if they aresus-
pected of not functioning properly is to reboot them. Ratherthan
rebooting an entire system or application, which could take10 sec-
onds to several minutes, a faulty Enterprise Java Bean (EJB)can
be rebooted in mere tenths of a second. It remains to develop im-
proved statistical techniques that distinguish clearly between work-
ing and failing states, as false positives lead to poor system per-
formance due to excessive unnecessary reboots and false negatives
leave the system in a nonfunctional state. Moreover, other reme-
diation techniques must still be applied in cases where there are
hard failures, configuration problems that cause persistent faults,
or persistent state is corrupted.

Littman et al. [42] have taken a radically different approach that
completely bypasses diagnosis and localization. They formulate
autonomic network repair as a reinforcement learning problem in
which numerous different fault types are injected into the network
during training. The reinforcement learning algorithm explores
several alternative test and repair actions. Over time, thealgorithm
learns which repair actions lead to the highest reward without learn-
ing any intermediate problem diagnosis representation. Animpor-
tant question is whether this technique can scale to larger,more
complex systems in which the range of possible faults, elements,
and remediation actions is significantly larger.

Next, consider self-optimization. Workload management and au-
tomated provisioning (or re-provisioning) are canonical examples
of system-level self-optimization. Workload management seeks to

tune control parameters (e.g. the proportion of memory or band-
width allocated to a specific workload or job class) so as to provide
the best possible service to a given workload or set of workloads,
taking into account any tradeoffs that have been specified inpoli-
cies. Automated provisioning works in conjunction with workload
management to provide additional resources (e.g. new servers)
when they are needed to meet performance objectives, and to re-
move those resources when they are needed elsewhere more ur-
gently. In both cases, decisions about control parameter settings or
resource allocation must be based on objectives (or policies) speci-
fied by humans. Performance models (as discussed in Section 3.2)
play a key role in this context, as they establish a relationship be-
tween the control parameter settings or resource allocation and the
expected service performance level in which policies tend to be
expressed. Machine learning techniques are likely to play an in-
creasingly prominently role in self-optimization, building on early
results by Stone et al. [51, 52].

Perhaps the most difficult challenge in system-level systemopti-
mization is one of coordination. Database, storage, workload man-
agement, provisioning, and other self-optimizing elements all have
their own independent means for expressing optimization criteria
and for tuning themselves in accordance with those criteria, and
these criteria are often mutually incompatible, making it impossible
to coherently express and manage to system-level goals. There is
an urgent need to establish alingua francafor expressing optimiza-
tion goals in self-managing systems, a point that will be discussed
further in Section 5.2. Further compounding the problem of in-
compatible optimization goals and procedures, some autonomic el-
ements have only limited interfaces for specifying goals, and much
of their self-optimization is driven by built-in assumptions. For ex-
ample, a self-optimizing database element may try to maximize the
number of queries it can process per unit time, independent of type,
yet business needs establish differential priorities among different
types of query. Fortunately, such shortcomings are beginning to be
recognized and addressed, notably in the area of storage [16, 48].

Finally, consider self-protection. Several general thoughts on
self-protection in autonomic computing systems can be found in
[38]; here I shall briefly touch upon two aspects of self-protection.
First, autonomic systems must proactively protect themselves by
continually monitoring all parts of the system for compliance to se-
curity policies, such as correct security settings on firewalls, suffi-
ciently current antivirus updates, etc. and taking appropriate reme-
dial action such as blocking network access to noncompliantcom-
ponents or automatically updating those components to makethem
compliant. A recent security offering by Cisco and IBM is one
recent effort to provide some of these capabilities [26]. Second,
autonomic systems will need to protect actively against perceived
threats as they occur. This will require system elements that sense
and handle specific types of threats within their domain of expertise
to not just do their individual jobs, but to intercommunicate among
themselves when they detect suspicious behavior, inducingother
elements to be more vigilant, at least temporarily.

4.2 Autonomic system architectures and pro-
totypes

An autonomic computing system must exhibit all of the self-
management capabilities described in Section 4.1. In Section 3.3 I
suggested that the development of competent autonomic elements
requires an effective marriage of technology with architecture. Ar-
chitecture is even more critical to autonomic computing systems
than it is to autonomic elements. Just as a 1.3-kg pile of neu-
rons is not a brain unless the neurons are wired together prop-
erly, an assortment of perfectly self-managing autonomic elements
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will not yield an autonomic computing system unless the elements
share a set of common behaviors, interfaces and interactionpatterns
that are demonstrably capable of engendering system-levelself-
management. In other words, no system-level architecture for auto-
nomic computing is credible unless it (together with an appropriate
set of technologies) can be demonstrated to support a full range of
self-management capabilities in a prototype or—still better—a real
deployed system.

The existing literature on multiagent systems will likely prove
to be a rich source of good ideas about system-level architectures
and software engineering practices [30, 31] for autonomic comput-
ing. Continued advances in the field of multiagent systems, espe-
cially as it has recently begun to recognize the importance of con-
verging with modern trends in service-oriented computing,should
be taken seriously. An early effort to develop an architecture that
specifically addresses the needs of autonomic computing by mar-
rying some of the concepts of agent-oriented and service-oriented
architecture is described in reference [50]. This work explores and
validates the architecture by means of an autonomic data center
prototype called Unity that employs three design patterns:a self-
configuration design pattern for goal-driven self assembly, a self-
healing design pattern that employs sentinels and a simple cluster
re-generation strategy, and a self-optimization design pattern that
uses utility functions to express high-level objectives.

4.3 Autonomic system science
Several fundamental research questions pertaining to autonomic

systems are discussed in [38], including the control and exploita-
tion of emergent behavior and the potential uses of economicmech-
anisms such as auctions and bilateral negotiation.

To date, some of the relevant work on emergent behavior in
self-managing systems has been concerned with self-organization
of networks of sensors and pervasive devices [5], or peer-to-peer
networks of services [45]. Other work has been concerned with
system robustness and its dependence upon network structure and
other properties [1, 15, 4]. In their work on Astrolabe [6] and the
more recent QuickSilver project, Birman et al. have studiedro-
bust, decentralized information management based on epidemic al-
gorithms [20]. I believe that more unified and concentrated efforts
to understand and exploit emergent behavior in autonomic systems
could have a radical and profound influence on their architecture,
and could lead to much more decentralized and robust system struc-
tures than have yet been imagined.

The main influence of economic mechanisms upon the design of
autonomic computing systems has come in two flavors. First, the
idea that autonomic elements should negotiate service relationships
plays a prominent role in the autonomic computing architecture of
White et al. [50]—an idea that can be traced to a substantial litera-
ture on negotiation in multiagent systems. Second, Chase etal. [8,
27] and my colleagues and I at IBM [7, 49, 40] have explored the
concept of using utility functions as a means for specifyinghigh-
level objectives. A more general use of economic mechanismsin
autonomic computing systems may not occur for a few more years
because the interactions among autonomic elements will be largely
cooperative in nature. However, at the point when autonomiccom-
puting systems grow beyond the boundaries of individual organi-
zations, issues of economic incentive will become very important,
and ideas and concepts from economics will provide a rich source
of inspiration for autonomic system architectures and mechanisms.

A third area of autonomic system science that is worth notingis
benchmarking. Benchmarks for system performance abound: the
Transaction Processing Performance Council has defined at least 4
different benchmarks, of which TPC-W (which simulates a typical

web-based e-commerce environment) is perhaps the best known.
The Standard Performance Evaluation Corporation (SPEC) has de-
fined several benchmarks such as SPECjAppServer to measure the
performance of web application servers. Benchmarks are useful
both for quantifying and for spurring progress in the metrics that
they cover. Yet benchmarks for self-management propertiesother
than self-optimization, such as self-configuration, self-healing, and
self-protection, are largely lacking. It is crucial to fill this gap.
Recent notable efforts in this space include the development of de-
pendability benchmarks [33] as well as incipient autonomicbench-
marks for self-configuration and self-healing [12, 13].

5. HUMAN-COMPUTER CHALLENGES

5.1 Interfacing with humans
Autonomic computing is intended to reduce the burden of man-

agement for administrators by allowing them to express their goals
and let the system take care of the details of managing to those
goals. To determine how we can best support and improve their
practices, it is critically important to understand how administra-
tors manage systems today. A research team led by Paul Maglio
of IBM’s Almaden Research Center has been conducting ethno-
graphic studies of system administrators, observing theirbehavior
as they plan and rehearse complex system upgrades and diagnose
problems [2]. Although this work is still in a preliminary stage, it
has led to some important insights about the nature of policythat
suggest that it will be a much more iterative process than many have
imagined. While a simple policy such as “Update the current patch
level of the operating system every 4 months” might seem plausi-
ble and easily programmable, in reality there will be all sorts of
mitigating circumstances that might argue for postponement of the
patch, such as concerns about software compatibility, or the system
being too overloaded to bring it down for an upgrade. Supporting
iterative development and flexible interpretation of policies will be
a major challenge that could keep HCI researchers busy for years.

In general, there is a need to develop new languages and metaphors
that will enable humans to monitor, visualize, and control auto-
nomic systems. Humans will need to specify their goals and ob-
jectives in a natural manner, and they will need to visualizetheir
potential effect. The techniques must be sufficiently expressive of
preferences regarding cost vs. performance, security, risk and reli-
ability, etc. Yet on the other hand they must be sufficiently struc-
tured and/or naturally suited to human psychology and cognition
as to keep specification errors to a minimum—especially because
high-level policies will provide a greater leverage over system be-
havior than traditional lower-level forms of control. In general, this
is a very rich and at present little-studied field of study, and it is
critical that more HCI researchers become involved.

Finally, returning to a point made in Section 4.1, another im-
portant HCI challenge for autonomic computing is to providegood
intuitive interfaces that make it as easy as possible to capture expert
knowledge about rules, constraints, and system models.

5.2 Policies
Policies are essential to the autonomic computing vision, as they

are the form in which humans will express their objectives toau-
tonomic systems. The good news is that there has been an enor-
mous amount of research in the field of policy extending back many
years; the bad news is that the bulk of it has been concerned with
lower-level action-based policies that directly express the actions
that should be taken when given conditions are satisfied. Thekey
to the future lies in higher-level forms of policy based on goals and
utility functions. Goal-based and utility-function-based policies are
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much more in the spirit of autonomic computing in that they focus
on the desired states, leaving it to the system to observe thecurrent
state and plan how to reach a desired state [40].

Utility-function policies, which are receiving growing attention
from researchers [8, 27, 36, 49] can be viewed as extensions of goal
policies. Rather than merely performing a binary classification of
possible system states into “desirable” and “undesirable”, they as-
cribe a scalar value to each possible state, so that during the course
of operation the system has the freedom to select the highest-valued
state. In other words, utility functions express an optimization
objective—a prerequisite for true self-optimization. In principle, if
objectives for self-healing, self-configuration, and/or self-protection
can be defined and included in the utility function, the system can
seek the feasible system state that realizes the best tradeoff among
all of these properties. (Of course, this presumes that there are rea-
sonable metrics and benchmarks for these properties).

Utility functions are an attractive candidate for a much-needed
lingua franca for high-level objectives in autonomic computing
systems. All objectives would be expressed in terms of a scalar
function of service-level attributes, and these objectives could be
transformed into a notion of value for lower-level resources, as has
been shown in the case of resource allocation in a prototype data
center [49]. However, the difficulty with utility functionsis that hu-
mans find them difficult and awkward to specify. Utility functions
will not be truly useful until suitable interfaces and algorithms for
preference elicitation are developed for them. It may be possible
to adapt preference elicitation techniques that have been developed
for electronic commerce [34, 28].

6. CONCLUSIONS
Autonomic computing is a grand challenge, requiring advances

in several fields of science and technology, particularly systems,
software architecture and engineering, human-system interfaces,
policy, modeling, optimization, and many branches of artificial in-
telligence such as planning, learning, knowledge representation and
reasoning, multiagent systems, negotiation, and emergentbehavior.
Integrating these technologies and embedding them in a suitable
system architecture so as to achieve the desired self-management
properties is a research challenge in itself.

It is vital that, as we advance towards the ultimate vision of
autonomic computing, we keep our research honest by building
prototypes that quantifiably demonstrate an ever-increasing capa-
bility for self-management. In this regard, I believe it would be
helpful to establish an open-platform autonomic computingproto-
type that would serve as a nucleus for autonomic computing re-
searchers around the world. In the field of multiagent systems,
competitions such as Robocup and the Trading Agent Competition
have successfully brought researchers around the world together
to focus their skill on a common problem. The TREC competi-
tions have done the same for researchers in the field of text re-
trieval. However, because autonomic computing is fundamentally
a cooperativeendeavor rather than a competitive one, I envision
an open-platform autonomic computing platform to which collab-
orators can contribute algorithms and services for others to experi-
ment with and build from—something akin to the PlanetLab effort
at www.planet-lab.org.

In summary, I hope this article serves its intended purpose of
providing researchers with a broad overview of the diverse research
challenges of autonomic computing and the initial efforts that many
have made to address them. Frustratingly incomplete as it is, I hope
this survey conveys that autonomic computing is an excitingand
important application area, and I hope it will motivate researchers
to lend their expertise to this growing worldwide effort. Realizing

the vision of autonomic computing is necessarily a worldwide co-
operative enterprise, one that will yield great societal rewards in the
near-term, medium-term and long-term.
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