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ABSTRACT

Autonomic computing is a grand-challenge vision of the ffietun
which computing systems will manage themselves in accaglan
with high-level objectives specified by humans. The IT irtdus
recognizes that meeting this challenge is imperative;ratise, IT
systems will soon become virtually impossible to admimisi&ut
meeting this challenge is also extremely difficult, and weljuire

a worldwide collaboration among the best minds of academik a
industry. In the hope of motivating researchers in relewapas
to apply their expertise to this vitally important problehgutline
some of the main scientific and engineering challenges tiketoe
tively make up the grand challenge of autonomic computimg, a
provide pointers to initial efforts to address these cinajéss.

Categories and Subject Descriptors

A.1[General Literature]: Introduction and Survey; H.Qifformation
System$: General; H.4[nformation Systems Applicationg: Gen-
eral; 1.0 [Computing Methodologieg: General; 1.2.11Distributed
Artificial Intelligence ]: [intelligent agents, multiagent systems];
K.6 [Management of Computing and Information System§ Gen-
eral

General Terms
Management, Measurement, Performance, Reliability

Keywords

Autonomic computing, self-managing systems, researdfectyes

1. INTRODUCTION

Typical present-day ITenvironments are complex, heteroge-
neous tangles of hardware, middleware and software frortipteul
vendors that are becoming increasingly difficult to intégranstall,
configure, tune, and maintain. At the present rate of gromttom-
plexity, even the most skilled IT professionals may find ipossi-
ble to administer IT environments within a few years. Mosthaf
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IT industry recognizes that the only viable solution to tlbisming
crisis is to endow systems and the components that compese t
with the ability to manage themselves in accordance withegel
objectives specified by humans [38]. IBM introduced thisornsof
self-managing systems in 2001 when it launched the Autooomi
Computing initative [24]. Hewlett-PackardAdaptive Enterprise
initiative [23] and Microsoft'sDynamic Systemisitiative [44] are
related industry efforts that recognize that self-manggiompo-
nents and systems are vital to the future of IT.

The purpose of this paper is to decompose the grand chalténge
autonomic computing into several of its constituent sdfienand
engineering challenges. Even incremental steps towarestime
some of these individual challenges are likely to be beradficiin-
dustry in the near-term, long before the vision of autonooain-
puting is realized fully. As evidenced by over 20 workshops a
conferences devoted to the topic over the last two yearsnautic
computing offers a rich application domain for researciersany
branches of computer science, including software ardhitecsys-
tems, artificial intelligence, and human-computer integfa It is
also likely to benefit from advances in applied mathematicsel
applications of economic mechanisms, and even ethnograpid-
ies. It is hoped that this brief survey of autonomic computia-
search challenges will encourage researchers in releveas o
join this movement, and lend their expertise to problemssetsn-
lution would have an enormous impact on the IT industry.

The paper is organized as follows. First, in section 2, | de-
scribe a framework that has proved to be useful in defining and
describing IBM’s autonomic computing research programerfh
in sections 3, 4, and 5, | use this framework to highlight ssstibf
challenges that define fruitful avenues for research—thmeypuof
which could yield significant practical benefits in the imediate
to long term. | close with a summary and some final comments in
section 6.

2. FRAMEWORK

Autonomic computing draws upon an enormous diversity ofi§iel
within and beyond the boundaries of traditional computérsme.
Therefore, any attempt to categorize and describe the wiesle
search effort and its associated challenges is bound tofberfect.
The architecturally-flavored framework that | use in thipgahas
proven to be helpful in defining and growing IBM’s own autoriom
computing research program, which now comprises the divefrs
forts of at least 100 researchers, and can thus be viewed &s@& m
cosm of the broader worldwide effort on self-managing syste

At the very coarsest level, | divide the research space hret
basic parts: autonomic elements, autonomic systems, andriu
computer interactions.

Autonomic elements are the basic building blocks of autdnom



systems, which through their mutual interactions prodbeeover-
all self-managing behavior of autonomic computing systefs
sentially any type of computing resource can be viewed asin a
nomic element: a storage device, a database or applicaivers
a middleware component, a load balancer, a workload manager
resource broker, etc. One can think of these autonomic elisme
as services within a service-oriented architecture. Ablgvely,
and in many cases more accurately, one can identify aut@nomi
elements as software agents, and autonomic computingnsyste
multiagent systems. For more detail on autonomic elemémg,
behavior, and their interrelationships, see referenck [38

Within the autonomic element branch of the research framewo
| distinguish three sub-branches:

e Specific autonomic elements Research directed towards
improving the self-managing capability of specific compo-
nents such as databases, storage systems, servers, etc.

Generic autonomic element technologiedResearch on tech-
nologies that are generally applicable to autonomic eléspen
including planning, modeling, forecasting, optimizatietc.

Generic autonomic element architectures, tools, and pro-
totypes Research on the internal structure of autonomic el-
ements, tools to help create autonomic elements, and refer-
ence implementations of autonomic elements built witheéhes
tools.

Within the autonomic systems branch of the research framewo
| distinguish three sub-branches:

e Autonomic system technologiesResearch on generic tech-
nologies that entail interactions among multiple autorcomi
elements to achieve system-level goals, including problem
determination and remediation, automated provisioniraykw
load management, automated installation and configuration
integrity management, etc.

Autonomic system architectures and prototypesResearch
on system-level architectures that effectively govereriac-

tions among autonomic elements, and prototypes that assem-

ble the many other pieces described in this framework to
demonstrate systems with improved self-management rela-
tive to existing systems.

Autonomic system science Research on fundamental sci-

ence of large-scale autonomic computing systems, address-

ing questions of learning, stability, control and emerdmst
havior in multiagent systems, and also addressing question
of how to quantify the degree of self-management in systems.

Finally, within the human interaction branch of the reshdrame-
work, | distinguish two sub-branches:

e Human studies Research on present and future interac-
tions between human administrators and other users and self
managing systems, to determine what interfaces and other
modes of interaction are most effective.

e Policy. Research on methods for eliciting high-level poli-
cies from people, representing and appropriately transfor
ing those policies within autonomic systems, and managing
behavior with respect to those policies.

In the remainder of this paper, | will structure a survey of re
search challenges in all of these areas around this frarkeaod |
will provide pointers to initial efforts to address thesalbdnges.
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3. AUTONOMICELEMENT CHALLENGES

3.1 Specific autonomic elements

For many years, researchers have striven to make indiviysal
tem components more self-managing, especially servetahatse
management systems, and storage systems. Certainlysiortes
search programs in all three of these areas had been unddomway
decades at IBM and other research institutions when therentic
computing initiative was first announced by Paul Horn in 2081
steady stream of new self-managing capabilities has ehtema-
mercial products over the last several years, and trend wexa
pect to continue into the foreseeable future. The challemgthin
these individual domains are numerous but well-understaiod it
would be presumptuous to attempt to catalog them here.

The mainnewresearch challenge introduced by the autonomic
computing initiative is to achieve effective interopeoatiamong
autonomic elements. In order for this to happen, productidgers
must look beyond their natural product-centric tendenarescul-
tivate a more holistic, system-level point of view. In othesrds,
specific autonomic elements must be designed with a gresteea
ness of the fact that they will be situated in autonomic systand
intercommunicating and interacting cooperatively withestauto-
nomic elements. One requirement is that individual comptme
must adopt standard interfaces defined by autonomic systgm a
tectures, as discussed further in Section 4.2. A secondresgent
is that individual components must generate and supplyateed
formation to other components, and must be capable of régges
and using such information from other components. For eXamap
database component might need to answer what-if questions f
application server middleware that is trying to add extrpaciy
to the application tier. Or an application server middlezveom-
ponent might be asked by a provisioning manager to estimiadé w
would be the benefit of adding an additional server to the haidd
tier. The basis for this second set of capabilities will becdssed
further in Sections 3.2 and 3.3.

3.2 Generic autonomic element technologies

Autonomic elements will draw upon a number of common tech-
nologies, including monitoring, event correlation, rubeeution,
modeling, optimization, forecasting, planning, feedbacktrol,
and machine learning. Here | outline special challengesaha
tonomic computing creates for some of these technologies.

Autonomic elements will need to share common methods for
collecting and representing monitored data. The challergze
are mainly ones of standardization. One notable effort fmde
consistent, common format for monitored events and log fite f
mats is the Common Base Event format [25], which is being de-
veloped under the auspices of the OASIS Web Services Distdb
Management Technical Committee. Legacy components can gen
erate events and log files in their traditional formats, asditable
Generic Log Adaptor can convert these events or log filestheo
CBE format, whereupon they can be stored in a common repgsito
and/or sent to subscribers.

Rule engines and correlation engines (with their assatiate
guages) are useful technologies for analyzing monitored dad
log files to identify trends or situations that warrant deepeami-
nation. One serious challenge in this space is to determgood
set of rules and/or correlation expressions that deschibedondi-
tions under which particular automated actions or analghesid
be triggered, or humans should be alerted (presumably sthiha
can take action manually). One complication is that the itimrcs
may require correlation across multiple components, so ege
sembling the requisite data in one place may be an issue. eAt th



very least, human experts are likely to need assistancethoiru
ing a potentially large set of rules. Ideally, a good portadrthe
rule authoring should be based on some form of machine legrni
and based on system-level goals coupled with historicativias
tion. Promising initial efforts that automatically dise@wvcorrela-
tions between low-level system measurements and high-$are
vice Level Objectives include work by Hewlett-Packard L§b3)
and IBM Research [9].

The forementioned research on extracting correlationsdet
low-level system measurements and high-level Service [L@le
jectives is based on statistical regression and/or magleliviod-
els, and methods for learning them automatically, are keth¢o
functioning of autonomic elements in several respectsoiainic
elements need models that map potential actions into pleloai-
comes so that they can make decisions about the right action o
action sequence. They need models of workload so that they ca
forecast future demand and plan accordingly. In some ctses,

Optimization challenges overlap a good deal with thoseafie
ing. Autonomic elements inhabit a highly dynamic world. Re-
gardless of whether they are using deterministic or stachap-
proaches to optimization, they must cope with nonstatitnain
other words, due to either extrinsic effects such as changurk-
load or intrinsic effects such as adaptative behavior byrotu-
tonomic elements, an individual autonomic element’s ojaidtion
landscape is bound to change over time. Many traditional opt
mization techniques assume implicitly that the objectivection is
static, and do not bother to resample it. This assumptiorbbas
observed to lead to pathological behavior in multiagentesys,
even when the external environment is static, because attapt
by individual agents changes their behavior in a way thatrsthe
objective functions of the other agents [37].

Over the last few years, the planning community has begun to
recognize that, to be truly practical, planners must takersé
real-world issues into account, many of which are relevardau-

may need models of other system components with which they tonomic computing [32]. One real-world issue is that autoito

have relationships, or with which they are contemplatingriog
a relationship. And, as mentioned above, models are importa
because they establish useful relationships between gjtelével
terms in which humans wish to express goals and prioritiesyfs-
tem behavior and the low-level control parameters and shbts
that autonomic elements can control and/or monitor. A mejai-
lenge for all types of modeling is to learn and re-adjust thuelets
continually on the fly. Models must adjust quickly to obséiomas
with a minimum of data and training time, and they must adapt t
conditions that are noisy and prone to fluctations that anénsic
or intrinsic to the system. Queuing models, once used madamly
the essentially static role of capacity planning, are istgrto be
used for performance optimization and resource allocatidgrch
require continual readjustment of queuing model pararagtee
work of Menasce [3] and Chess et al. [17] exemplify this trend
Three additional learning challenges are worth mentiankicst,
many types of learning utilize random exploration to seekeno
profitable regions of parameter space. In simple classichinac
learning problems, extensive trial and error is acceptsbleng as
the asymptotic performance is good. However, in autonoryse s
tems, system components are unlikely to have such a luximgy T
are expected to work well from the beginning and adapt themse
seamlessly to environmental changes. Too much trial aod exay
cause poor average performance. Thus the classic explonai
exploitation tradeoff is likely to be biased more towardgplexa-
tion. Finding principled ways to explore parameter spacdewh
still capitalizing on what has already been learned remaicisal-
lenge. Second, there may be several hundred tunable pamamet
in modern-day databases like Oracle and IBM DB2, or in web ap-
plication server middleware. In order for any learning aiin to
train sufficiently quickly, this number must be reduced tonmare
than one or two dozen of the most relevant parameters. felienti
which are most relevant in a given situation is highly nawit.
Third, traditional convergence guarantees that hold fochimee
learning by single agents in stationary environments [4Yhdt
apply when multiple agents are learning simultaneouslythei
actions are coupled. The very act of learning by one agemiggsa
the environment experienced by other agents, raising thsilpit
ity that the learning process may never converge [39]. The die
multiagent learning is still in its infancy, with a handful ch-
niques and even fewer theoretical analyses. The naiveoagipr
of endowing autonomic elements with single-agent learaiigg-
rithms and hoping for convergence sometimes works, bue tisea
limited understanding of the conditions under which thiprapch
is successful.
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elements must conduct their planning in open environméatsatre
not completely understood. This calls for planning tecbhagthat
gracefully handle incomplete domain specifications, ilee fre-
conditions and/or postconditions for actions are not fldipwn.
Moreover, since planning takes place in dynamic envirornierat
may change during the course of executing a plan, it is vial t
continually assess progress towards completion of a plah,t@
replan whenever plans go awry. Finally, generating and pusgaui-
ing plan metadata describing capabilities and conditidnsse is
very important, as this provides a way to catalog, reuse asd p
sibly merge plans that have proven successful in the paser&e
workshops are devoted to exploring these challenges, Iyatab
IJCAI-05 Workshop on Planning and LearningarPrioriUnknown

or Dynamic Domainsand theAAAI 2005 Workshop on Exploring
Planning and Scheduling for Web Services, Grid and Autooomi
Computing

3.3 Generic autonomic element architectures,
tools, and prototypes

In addition to the challenges of developing individual auttimic
element technologies, as outlined in Section 3.2, thereeichal-
lenge of bringing them all together coherently to createnglsiau-
tonomic element that functions competently in an autonaroio-
puting system. In their ultimate realization, autonomiene¢nts
will be software agents that concurrently and asynchrogcice-
cute multiple threads of activity that are directed by gahtt are
either intrinsic to the element or derived from servicetiefesships
with other elements [38]. A typical autonomic element might
multaneously be providing service to several other elesyamn-
suming services from several others, and planning taskeiassd
with these service relationships. This challenge beardmoom-
mon with that of developing a competent software agent, whic
requires an effective marriage of technology with architez

A good autonomic element (or software agent) architectuvelsl
effectively support the need to manage and coordinate pheilti
threads of execution within the element. A single task suschacan-
oring the terms of a service agreement with another elemagittm
entail monitoring the variables of interest, analyzing ¢xéent to
which they are being kept within agreed-upon bounds, anall if
is not satisfactory, invoking a planner to determine a seqei®f
actions that is likely to improve performance. Concurngritie el-
ement may use the monitored data to improve its internal irafde
the relationship between performance and control parameateit
may revise its forecast of future workload, or even the mogein
which it bases such forecasts.



When one considers that there will be multiple tasks exaguti
simultaneously, all of them requiring coordination acrdgterent
monitoring, analysis, modeling, learning, optimizatiamd plan-
ning modules, it is clear that the challenge of developinguatio-
nomic element architecture capable of managing such codtyple
is great. One fundamentally hard problem is to develop ahi-arc
tecture (and accompanying functionality) for detectind egsolv-
ing conflicts that are bound to occur when an autonomic elemen
cannot meet all of its obligations. For example, consideaan

will help improve the ability of autonomic elements to exgs¢heir
needs, capabilities, and properties, and to reason abeutetbds,
capabilities, and properties of other autonomic elememetsabling
them to discover and use one another more effectively.

A more complex and challenging self-configuration scenixio
the automated deployment of a large-scale applicationghvén-
tails much more than merely running the self-configuratioe-s
nario of the previous paragraph several times. There ar@leam
interdependencies among autonomic elements that muskée ta

tonomic database element that needs to serve a given nurhber ointo account in the detailed choreography that typifiesdeggale

queries per minute, and which is required to run full bacleyery
24 hours. An optimizer may determine that the query procesds

25% more bandwidth and 10% more memory to perform satisfac-

torily, while a planner may determine that, in order to cogtglin
time, the backup needs to start immediately and run at hiipn-pr
ity until completion. These actions may or may not be in confli
with one another. Given that they are not expressed in the sam
terms, and given that the decisions behind them may not hese b
generated at exactly the same time, how is a possible cotuflbz
detected? And if a conflict exists, what mechanisms can be use
to change one plan or the other (or both) so that the confliet-is
solved?

Autonomic element architecture is important, but architex
alone will not suffice. Software developers need tools thiat p
vide a good set of autonomic element technologies, mearia-for
terconnecting them in accordance with the architecture easily
integrable interfaces that permit the autonomic elemeirteyact
appropriately with other autonomic elements. (The detdHilshat
these interfaces should be are a matter of system-levetectire,
to be discussed further in Section 4.2.) One early effortrts p
vide some of this functionality to developers is the IBM Anbonic
Computing toolkit [29], which is available for trial by sefare de-
velopers. Itis encouraging that, despite the lack of mangtions
that one would like to have ultimately, the toolkit is alrggmtoving
to be useful. An account of its use in developing self-comfigu
network services at Intel can be found in reference [43].

Finally, it is worth stating that building and refining progpes,
preferably ones grounded in real applications, is an eisdquart
of the process of developing architectures and tools fayrarhic
elements. Simple autonomic elements built with the extdrrde
search version of the IBM Autonomic Computing Toolkit are de
scribed in reference [18], which also gives an account of btey
ments so constructed can interact to form a system that @etm
configures, and heals itself. The process of using the todisitd
architecturally-compliant elements provided severafuldessons
that led to refinements in the tool and the architecture.

4. AUTONOMIC SYSTEM CHALLENGES

4.1 Autonomic system technologies

Technologies associated with system-level self-confifpmaself-
healing, self-optimization, and self-protection [38] deto entall
interactions among multiple autonomic elements.

First, consider self-configuration. Suppose there is astiexj
system to which a single new element (say a new server) igladde
The challenge in this case is for the new element to integpset
seamlessly into the system with minimal human interventiom
most schemes that have been proposed [18], this requiresna fo
of bootstrapping in which the element interacts with a regim
two ways: it discovers other elements in the system that efmih
complete its configuration, and it registers itself so thheosys-
tem elements can find it and learn of its capabilities. Adeanc
in OWL [19] and other efforts to develop Web Services seneanti
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solution deployment. The details of what servers will besgm
how they will be arranged in multiple tiers, and where rositend
firewalls will be placed will be derived automatically fromgan-
eral specification of the application and its service leegjuire-
ments, supplemented with knowledge of the existing infeastre
and appropriate metadata on the various system resourdéisein
mutual interdependencies. To make this work in a realigtitirg
will require clever integration of capacity planning, cam and
use of human expert knowledge about system configuratioh [21
and planning and scheduling technologies [35] that geaavatk-
flows describing the detailed installation and configuratibore-
ography. A workflow so generated must be robust to changes in
hardware and software license availability that may ocaurng
the course of executing the workflow. This suggests thatrebe
on continual replanning and other new directions in pradtie
oriented planning will be important in this context [41]. dRzally
different approaches to self-configuration are worth evipépas
well, such as the more decentralized paradigm of goal-dideself-
assembly [18] or other ideas inspired by emergent computatid
self-organizing systems [46].

Next, consider self-healing. The problem managementydiec
begins with a stage in which selected metrics of individwethpo-
nents are monitored and perhaps aggregated. In a subsstpgat
the stream of low-level events is processed into highestl@ssess-
ments of the health of individual components or the systera as
whole. This is followed by problem localization and/or deténa-
tion, and finally by problem remediation.

The first two stages, monitoring and analysis, have alreaéy b
discussed somewhat in Section 3.2. Rule and correlatidmtéa-
gies are typically applied at the analysis stage becaugectrebe
applied efficiently to voluminous event streams. Howeverdis-
cussed in section 3.2, the number of rules required can be,lar
and authoring is difficult. Any technologies that reduce hie-
den on humans to write low-level rules and correlation rutesld
be helpful (more detailed thoughts on human-computeranten
appear in Section 5.1.) In addition to developing machiaeniag
techniques that automatically determine thresholds byamich
high-level events, actions, or alerts are generated, tdopies that
assist humans with rule authoring are needed, including miéav
interfaces and mechanisms for capturing expert knowledge.

At the third stage, problem localization and/or determaoratthe
challenges become especially interesting. Note that,enthéick-
ing a problem’s exact origin down to the offending line of eod
is a wonderful ideal, even coarse localization to a bad roote
unresponsive server can be quite valuable in autonomiersgst
Even if an individual autonomic element cannot determinetwh
ails it and heal itself, the system as a whole can still extsbif-
healing by replacing, rebooting, or otherwise working awbthe
faulty component. Thus problem localization is a key inggatiof
self-healing. In complex, highly interconnected systeatsjbut-
ing the cause of a failure to a particular component can lokytri
For example, suppose you are connected to a web site andgsur s
sion suddenly dies. The source of the problem could be pedlsti



anywhere—on your machine (and even then it could be a haedwar tune control parameters (e.g. the proportion of memory odba

failure of a bug in any of a number of software modules), ooitld width allocated to a specific workload or job class) so as twige

be somewhere at the website (a hardware or software proltlem o the best possible service to a given workload or set of waddo

any of a large number of servers or routers that support the we taking into account any tradeoffs that have been specifigublin

site), or it could even be somewhere in the network that coisne  cies. Automated provisioning works in conjunction with Wwioad

you to that web site. management to provide additional resources (e.g. new rsgrve
One approach to problem localization uses probe signathePr  when they are needed to meet performance objectives, ared to r

failures, such as a ping timeout or unresponsiveness ta ades- move those resources when they are needed elsewhere more ur-

action, can be used to infer a set of possible candidate bapa@o
nents, and that set can be narrowed down by using multipktepse

ping probes. Since probes can create extra load on systeeys, t

should be used as sparingly as possible. One interestiagofin
research [11] uses information theoretic techniques totityeop-
timally small and efficient sets or sequences of probes trapn-
point problems; efforts are being made now to extend the wmrk
scale to larger systems and handle multiple simultaneolusea.

Problem localization techniques such as these rely on a lknow

edge of patterns of interconnection, or dependencies, grags:
tem components. This brings up yet another challenge thz-is

gently. In both cases, decisions about control parametiénge or
resource allocation must be based on objectives (or psjisigeci-
fied by humans. Performance models (as discussed in Sec#ipn 3
play a key role in this context, as they establish a relatigmbe-
tween the control parameter settings or resource allatatia the
expected service performance level in which policies tente
expressed. Machine learning techniques are likely to ptaina
creasingly prominently role in self-optimization, buitdj on early
results by Stone et al. [51, 52].

Perhaps the most difficult challenge in system-level sysiptia
mization is one of coordination. Database, storage, warkiman-

ginning to be addressed [22]: how to extract these depereenc agement, provisioning, and other self-optimizing elermatithave
automatically as the system’s configuration continualiftsh their own independent means for expressing optimizatideréa
The final stage, automated remediation of a problem oncesit ha and for tuning themselves in accordance with those critexial
been localized, is perhaps the most difficult. One approadb i these criteria are often mutually incompatible, makingipossible
compile a large database of known symptoms and associated re  to coherently express and manage to system-level goalge The
dial actions. When a problem is localized and/or diagnotiesl, an urgent need to establistirrgua francafor expressing optimiza-
symptom database is consulted, and if there is an adequath ma tion goals in self-managing systems, a point that will bewulksed
to a known symptom then the associated action is taken. Here t further in Section 5.2. Further compounding the problemnof i

main challenges are to populate the knowledge base andetogev
methods for searching it effectively. Effective technigder cap-

turing human expert knowledge of problems would be very use-

ful, as would automated techniques for harvesting logs toaek

problem signatures, which Brodie and colleagues have be&gun

develop [10].

Another promising avenue of research on problem remediatio

is the recursive micro-rebooting concept of Fox et al. [Idjjch
seeks to reengineer the rebooting bludgeon into a scalpehid
scheme, software components at varying levels of grarylare
designed to be crash-only, i.e. the only recourse if theysase
pected of not functioning properly is to reboot them. Rathan
rebooting an entire system or application, which could tekeec-
onds to several minutes, a faulty Enterprise Java Bean (EdiB)

be rebooted in mere tenths of a second. It remains to develep i

proved statistical techniques that distinguish cleartyieen work-

ing and failing states, as false positives lead to poor sygier-

formance due to excessive unnecessary reboots and falstvesg
leave the system in a nonfunctional state. Moreover, otherer

diation techniques must still be applied in cases wheresthee

hard failures, configuration problems that cause pergiseerits,

or persistent state is corrupted.

Littman et al. [42] have taken a radically different apptodcat
completely bypasses diagnosis and localization. They dtata
autonomic network repair as a reinforcement learning j@mbin
which numerous different fault types are injected into théwork
during training. The reinforcement learning algorithm lexes
several alternative test and repair actions. Over timealgarithm
learns which repair actions lead to the highest reward witlearn-
ing any intermediate problem diagnosis representationinfgor-
tant question is whether this technique can scale to largere
complex systems in which the range of possible faults, ehlsne
and remediation actions is significantly larger.

Next, consider self-optimization. Workload managementaun
tomated provisioning (or re-provisioning) are canonicaraples
of system-level self-optimization. Workload managemesaks to
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compatible optimization goals and procedures, some antanel-
ements have only limited interfaces for specifying goatsi mmuch
of their self-optimization is driven by built-in assumpt® For ex-
ample, a self-optimizing database element may try to meparttie
number of queries it can process per unit time, independéype,
yet business needs establish differential priorities agrdifferent
types of query. Fortunately, such shortcomings are begintu be
recognized and addressed, notably in the area of storagé§].6

Finally, consider self-protection. Several general thasgon
self-protection in autonomic computing systems can be daan
[38]; here I shall briefly touch upon two aspects of self-pobdion.
First, autonomic systems must proactively protect theweseby
continually monitoring all parts of the system for comptarto se-
curity policies, such as correct security settings on fitlsywauffi-
ciently current antivirus updates, etc. and taking appadpreme-
dial action such as blocking network access to noncomptiant-
ponents or automatically updating those components to Itieke
compliant. A recent security offering by Cisco and IBM is one
recent effort to provide some of these capabilities [26]cdpd,
autonomic systems will need to protect actively againsteieed
threats as they occur. This will require system elementssirase
and handle specific types of threats within their domain pketise
to not just do their individual jobs, but to intercommuniEamong
themselves when they detect suspicious behavior, indumtingr
elements to be more vigilant, at least temporarily.

4.2 Autonomic system architectures and pro-
totypes

An autonomic computing system must exhibit all of the self-
management capabilities described in Section 4.1. In @e8t3 |
suggested that the development of competent autonomiceatsm
requires an effective marriage of technology with architee Ar-
chitecture is even more critical to autonomic computingteays

than it is to autonomic elements. Just as a 1.3-kg pile of neu-
rons is not a brain unless the neurons are wired together prop

erly, an assortment of perfectly self-managing autonongments



will not yield an autonomic computing system unless the elets
share a set of common behaviors, interfaces and intergmiberns
that are demonstrably capable of engendering system-$algl
management. In other words, no system-level architecturauto-
nomic computing is credible unless it (together with an appate
set of technologies) can be demonstrated to support a hderaf
self-management capabilities in a prototype or—stilléretta real
deployed system.

The existing literature on multiagent systems will likelsope
to be a rich source of good ideas about system-level arthrtsc
and software engineering practices [30, 31] for autonomimput-
ing. Continued advances in the field of multiagent systersige-€
cially as it has recently begun to recognize the importaria®o-
verging with modern trends in service-oriented computstguld
be taken seriously. An early effort to develop an architecthat

specifically addresses the needs of autonomic computingdsy m

rying some of the concepts of agent-oriented and serviegvead
architecture is described in reference [50]. This work esgs and

validates the architecture by means of an autonomic dat&rcen

prototype called Unity that employs three design patteenself-
configuration design pattern for goal-driven self assendblyelf-
healing design pattern that employs sentinels and a sinhpé¢ec
re-generation strategy, and a self-optimization desigtepathat
uses utility functions to express high-level objectives.

4.3 Autonomic system science

Several fundamental research questions pertaining toantic
systems are discussed in [38], including the control andoiap
tion of emergent behavior and the potential uses of econoraah-
anisms such as auctions and bilateral negotiation.

To date, some of the relevant work on emergent behavior in

self-managing systems has been concerned with self-aafion
of networks of sensors and pervasive devices [5], or pepe&s

networks of services [45]. Other work has been concernell wit

system robustness and its dependence upon network sewatdr
other properties [1, 15, 4]. In their work on Astrolabe [6Pathe
more recent QuickSilver project, Birman et al. have studied
bust, decentralized information management based onrajids-
gorithms [20]. | believe that more unified and concentratiéolts
to understand and exploit emergent behavior in autononsiesys
could have a radical and profound influence on their archite¢
and could lead to much more decentralized and robust system s
tures than have yet been imagined.

web-based e-commerce environment) is perhaps the bestnknow
The Standard Performance Evaluation Corporation (SPEC)&a
fined several benchmarks such as SPECjAppServer to measure t
performance of web application servers. Benchmarks arkiluse
both for quantifying and for spurring progress in the meatticat
they cover. Yet benchmarks for self-management propestiesr
than self-optimization, such as self-configuration, $eléling, and
self-protection, are largely lacking. It is crucial to fikis gap.
Recent notable efforts in this space include the developufete-
pendability benchmarks [33] as well as incipient autonob&nch-
marks for self-configuration and self-healing [12, 13].

5. HUMAN-COMPUTER CHALLENGES

5.1 Interfacing with humans

Autonomic computing is intended to reduce the burden of man-
agement for administrators by allowing them to express tiwls
and let the system take care of the details of managing tethos
goals. To determine how we can best support and improve their
practices, it is critically important to understand how é&uistra-
tors manage systems today. A research team led by Paul Maglio
of IBM’s Almaden Research Center has been conducting ethno-
graphic studies of system administrators, observing thetiavior
as they plan and rehearse complex system upgrades and skagno
problems [2]. Although this work is still in a preliminaryagte, it
has led to some important insights about the nature of potiay
suggest that it will be a much more iterative process tharyrhame
imagined. While a simple policy such as “Update the curremtip
level of the operating system every 4 months” might seemsplau
ble and easily programmable, in reality there will be alltsaf
mitigating circumstances that might argue for postponerotthe
patch, such as concerns about software compatibility,eosylstem
being too overloaded to bring it down for an upgrade. Sujnpgrt
iterative development and flexible interpretation of piekcwill be
a major challenge that could keep HCI researchers busy fosye

In general, there is a need to develop new languages andimoesap
that will enable humans to monitor, visualize, and contnaioa
nomic systems. Humans will need to specify their goals and ob
jectives in a natural manner, and they will need to visuatiwsr
potential effect. The techniques must be sufficiently esgike of
preferences regarding cost vs. performance, securikyarid reli-
ability, etc. Yet on the other hand they must be sufficientiycs
tured and/or naturally suited to human psychology and cmgni

The main influence of economic mechanisms upon the design of as to keep specification errors to a minimum—especially leea

autonomic computing systems has come in two flavors. Fhst, t

idea that autonomic elements should negotiate serviciéaedhips
plays a prominent role in the autonomic computing architecof
White et al. [50]—an idea that can be traced to a substaittaa}
ture on negotiation in multiagent systems. Second, Chaake [&,

27] and my colleagues and | at IBM [7, 49, 40] have explored the

concept of using utility functions as a means for specifyingh-

level objectives. A more general use of economic mechanisms
autonomic computing systems may not occur for a few moresyear

because the interactions among autonomic elements widirigelly
cooperative in nature. However, at the point when autonaeric-
puting systems grow beyond the boundaries of individuahoig
zations, issues of economic incentive will become very irtg,
and ideas and concepts from economics will provide a ricincgou
of inspiration for autonomic system architectures and rapigms.
A third area of autonomic system science that is worth natng

benchmarking. Benchmarks for system performance aboured: t

Transaction Processing Performance Council has definedstt4
different benchmarks, of which TPC-W (which simulates ddgp
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high-level policies will provide a greater leverage ovestsyn be-
havior than traditional lower-level forms of control. Inrggral, this
is a very rich and at present little-studied field of studyd @nis
critical that more HCI researchers become involved.

Finally, returning to a point made in Section 4.1, another im
portant HCI challenge for autonomic computing is to provgded
intuitive interfaces that make it as easy as possible tacagixpert
knowledge about rules, constraints, and system models.

5.2 Policies

Policies are essential to the autonomic computing visisthey
are the form in which humans will express their objectivesite
tonomic systems. The good news is that there has been an enor-
mous amount of research in the field of policy extending baakyn
years; the bad news is that the bulk of it has been concerntbd wi
lower-level action-based policies that directly exprdss actions
that should be taken when given conditions are satisfied.K&fe
to the future lies in higher-level forms of policy based omlgaand
utility functions. Goal-based and utility-function-basgolicies are



much more in the spirit of autonomic computing in that thegu®
on the desired states, leaving it to the system to obseneuthent
state and plan how to reach a desired state [40].

Utility-function policies, which are receiving growingtantion
from researchers [8, 27, 36, 49] can be viewed as extensfguab
policies. Rather than merely performing a binary clasdificaof
possible system states into “desirable” and “undesiralbhesy as-
cribe a scalar value to each possible state, so that duringatlrse
of operation the system has the freedom to select the hightstd
state. In other words, utility functions express an optatin
objective—a prerequisite for true self-optimization. hingiple, if
objectives for self-healing, self-configuration, andef-grotection
can be defined and included in the utility function, the systan
seek the feasible system state that realizes the best tradeang
all of these properties. (Of course, this presumes tha¢ thes rea-
sonable metrics and benchmarks for these properties).

Utility functions are an attractive candidate for a mucleced
lingua francafor high-level objectives in autonomic computing
systems. All objectives would be expressed in terms of aascal
function of service-level attributes, and these objestigeuld be
transformed into a notion of value for lower-level resosices has
been shown in the case of resource allocation in a prototgpe d
center [49]. However, the difficulty with utility functioris that hu-
mans find them difficult and awkward to specify. Utility furaris
will not be truly useful until suitable interfaces and aligoms for
preference elicitation are developed for them. It may besibtes
to adapt preference elicitation techniques that have beeslabed
for electronic commerce [34, 28].

6. CONCLUSIONS

Autonomic computing is a grand challenge, requiring adeganc
in several fields of science and technology, particularistays,
software architecture and engineering, human-systennfacts,
policy, modeling, optimization, and many branches of aitfiin-
telligence such as planning, learning, knowledge reptatien and
reasoning, multiagent systems, negotiation, and emebgédaivior.
Integrating these technologies and embedding them in aldeit
system architecture so as to achieve the desired self-raareag
properties is a research challenge in itself.

It is vital that, as we advance towards the ultimate vision of
autonomic computing, we keep our research honest by bgildin
prototypes that quantifiably demonstrate an ever-inongasapa-
bility for self-management. In this regard, | believe it idie
helpful to establish an open-platform autonomic compugrao-
type that would serve as a nucleus for autonomic computing re
searchers around the world. In the field of multiagent system
competitions such as Robocup and the Trading Agent Corgoetit
have successfully brought researchers around the worktheg
to focus their skill on a common problem. The TREC competi-

the vision of autonomic computing is necessarily a worldnio-
operative enterprise, one that will yield great societatls in the
near-term, medium-term and long-term.
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