
RC23693 (W0508-088) August 15, 2005
Computer Science

IBM Research Report

A Best Practice Approach for Automating IT
Management Processes

Aaron B. Brown, Alexander Keller
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Best Practice Approach for Automating IT
Management Processes

Aaron B. Brown, Alexander Keller

IBM Thomas J Watson Research Center,
P.O. Box 704, Yorktown Heights, NY 10598, USA

{abbrown|alexk}@us.ibm.com

Abstract—In an effort to bring more structure to the task of
automating systems management, we introduce an approach for
incrementally introducing best-practice-based automation into IT
service delivery and management. Our approach is process-
centric, using best-practice processes to structure the automation,
scope out high-value automation opportunities, identify interac-
tion points between automation and its broader environment, and
expose the overall impact of automation on the service delivery
organization. We illustrate our approach by applying it to a spe-
cific example: reducing the cost of IT Change Management via a
system that automates changes in the domain of software lifecycle
management (such as installation/deployment and configuration).

Keywords-Change Management; IT Process Management;
ITIL; IT Process Automation

I.

A.

B.

C.

 INTRODUCTION
The economics of IT service delivery are rapidly becoming

dominated by labor costs: as IT environments grow in scale
and complexity, the human cost of the processes needed to
manage them are quickly growing and will soon dwarf the
costs of the environments themselves. To counteract this trend,
IT departments of enterprises and service providers are increas-
ingly looking to automation as a means of containing and even
reducing the labor costs of systems management. But creating
automation is not a trivial task, and successes to date have
mostly been point solutions to specific labor bottlenecks.

This paper attempts to provide some needed structure to the
task of automating IT service delivery. Using the key area of
change management as a running example, we illustrate a six-
step, process-centric methodology for going from ad-hoc,
manually-implemented service delivery processes to automated
best-practice service delivery. Our focus is not on total automa-
tion; rather, we recognize the difficulties of implementing such
drastic changes to an established service delivery process, and
instead provide a more incremental approach that targets the
highest-value automation opportunities.

Focus on Change Management
We choose to focus on IT Change Management—a process

by which information technology (IT) systems are modified to
accommodate considerations such as software fixes, hardware
upgrades and performance enhancements—as it is at the heart
of effective service delivery and a common focus of automa-
tion efforts. The importance of change management is under-
scored by widely reported outages of prominent Internet sites

due to misconfiguration of host systems and routers. In the case
of a large Internet service provider in the US, about 50% of
outages happen during maintenance windows. A study shows
that operator errors account for the largest fraction of failures
of Internet services [7] and hence properly managing changes
is critical to availability of IT services.

We choose Change Management as well because it is a
process that offers many automation challenges. The organiza-
tional frameworks behind existing change management proc-
esses tend to be ill-defined and highly variable in detail and
formality. This makes it difficult to identify tasks for automa-
tion or to reuse standardized automation across environments
within or between IT organizations (a particular problem for
corporate mergers). Additionally, effective change manage-
ment requires a great deal of accurate information on technical
constraints, such as dependencies between IT services and the
infrastructure supporting them. This information is rarely
documented formally or kept up to date, hindering change as-
sessment and change impact prediction. Indeed, service provid-
ers today find it necessary to set up staging areas where
changes are repeatedly tested to expose their potential impacts
(and adjusted accordingly) before they can be safely deployed
into production environments. This kind of ad-hoc analysis is
not immediately conducive to automation.

Use of the IT Infrastructure Library (ITIL)
In part to overcome these challenges and to provide a rigor-

ous structure around Change Management (or any other IT
service support & delivery process), our approach to automa-
tion is built upon the foundation of the Service Support Proc-
esses of the IT Infrastructure Library (ITIL) [5]. The IT Infra-
structure Library codifies a set of industry-wide best practices
by defining IT service management processes and providing
detailed descriptions of the various activities in each process,
along with their input and output data. It provides a universally
applicable blueprint for IT service management, which has
begun to receive considerable attention, both from customers
and from manufacturers of IT service management systems.
Note that, while we rely on ITIL in our approach, we believe
that the approach will generalize to other best-practice process
frameworks that provide a similar level of detail to ITIL.

Outline
In the rest of this paper, we first outline our best-practice

approach to automation in Section II. Sections III – V describe
our application of the best-practice approach to automating key

aspects of change management, focusing on process selection,
delegation of activities, and capturing information needed for
automation. Section VI describes CHAMPS, our implementa-
tion of automated change management that resulted from fol-
lowing the methodology we introduce. We evaluate the effec-
tiveness of CHAMPS automation in Section VII, and conclude
the paper with a discussion of related work, a summary of our
results, and consideration of areas for further research.

II. A PROCESS-BASED APPROACH TO AUTOMATION
We start our discussion of automating IT service delivery

by outlining the best-practice approach to automation that we
have developed. This approach is based on our experiences
with automating change management, along with insight we
have distilled from interactions and engagements with service
delivery personnel.

Our approach comprises six steps for transforming existing
IT service delivery processes with automation or for introduc-
ing new automated process into an IT environment. The first
step involves (1) identifying best practice processes for the
domain to be automated.

To identify these best practices we turn to the IT Infrastruc-
ture Library (ITIL), which over the past few years has estab-
lished itself as the most widely used process-based approach to
IT service management. ITIL comprises several disciplines
such as infrastructure management, application management,
service support and delivery. The ITIL Service Support disci-
pline [5] defines the Service Desk as the focal point for interac-
tions between a service provider and its customers. To be effec-
tive, the Service Desk needs to be closely tied into roughly a
dozen IT support processes that address the lifecycle of a ser-
vice. Some examples of IT service support processes for which
ITIL provides best practices are: Configuration Management,
Change Management, Release Management, Incident Man-
agement, Problem Management, Service Level Management,
and Capacity Management.

ITIL provides a set of process domains and best practices
within each domain, but does not provide much guidance as to
which domain should be an organization’s initial target for
automation. Typically this choice will be governed by the cost
of existing activities in these various process domains: for ex-
ample, an enterprise that finds itself spending large amounts of
labor dollars on Configuration Management should target that
process first for automation. Since we lack such a specific con-
text in this paper, we will focus on the Change Management
process domain, as it is a key ITIL domain that factors into
many day-to-day service operations.

After identifying a process domain and obtaining the ITIL
best practice, the second step of our automation pattern is to (2)
establish the scope of applicability for the automation. Most
of the ITIL best practice processes are quite broad in applica-
bility and cannot be reasonably automated in one fell swoop—
to do so would require a tremendous automation effort and
equally significant deployment and user acceptance challenges.
Thus, to bound the scope of automation it is best to target it to a
particular subdomain in which the best practice process is used.
For example, ITIL Change Management best practices can
apply across a spectrum of Change Requests: requests to install

or change software, requests to alter hardware configurations,
requests to deploy entirely new IT environments, facilities
management requests, documentation updates, and so on.

The most successful automation will be scoped to one or a
small subset of these subdomains—a “slice” through the entire
change management best practice process—for example han-
dling only software change requests automatically while defer-
ring other change requests to manual procedures. Once one
Change Management subdomain is successfully automated, the
others can follow suit, often reusing components of the existing
automation. Similar arguments apply with other ITIL best prac-
tices; for example, Configuration Management can apply to
managing configurations of servers, software licenses, docu-
ments, networks, storage, and sundry other components of an
IT infrastructure, any subset of which is likely to provide a
high-value automation opportunity.

The next step in our approach is to take the ITIL best-
practice as scoped above and (3) identify delegation opportu-
nities. Each ITIL best practice defines (explicitly or implicitly)
a process flow consisting of multiple activities linked in a
workflow. Some of these activities will be amenable to auto-
mation—such as deploying a change in Change Manage-
ment—whereas others will not (such as obtaining change ap-
provals from Change Advisory Boards). This third step in our
approach involves identifying the candidate activities for auto-
mation, determining whether the value of automating them
outweighs the cost of developing and maintaining the automa-
tion, and selecting a final set of process activities to automate.
Note that in some cases activities that appear non-automatable
can be delegated anyway. For example, if an automated
Change Management system is trusted enough, change approv-
als might be delegated, with the result that the change man-
agement system automatically approves all well-formed auto-
matable change requests.

The benefit of explicitly considering delegation is that it
brings the rigor of the best-practice process framework to the
task of scoping the automation effort. The best practice defines
the set of needed functionality, and the delegation analysis ex-
plicitly surfaces the decision of whether each piece of function-
ality is better handled manually or via automation. Using this
framework helps prevent situations like the one discussed in
[2], where the cost of an automation process outweighed its
benefits in certain situations.

With the delegated activities identified, the fourth step in
our automation approach is to (4) identify links between dele-
gated activities and external activities, processes, and data
sources. These links define the control and data interfaces to
the automation. They may also induce new requirements on
data types/formats and APIs for external tools. An example in
Change Management is the use of configuration data: if
Change Management is automated but Configuration Manage-
ment remains manual, the Configuration Management Data-
base (CMDB) may need to be enhanced with additional APIs
to allow for programmatic access from the automated Change
Management activities. Moreover, data that is currently pro-
vided by humans to manual processes may need to be codified
and standardized when those processes are automated.

The latter point motivates step 5 in our automation ap-
proach: (5) Identify, design, and document induced proc-
esses needed to interface with or maintain the automation.
As described in [2], automation induces extra processes for
tasks like data preparation, error recovery, and maintenance of
automation. In particular, induced processes may be needed to
handle the interfaces between automated activities and any
activities, tools, or data sources designed for manual use. For
example, if an automated software Change Management sys-
tem requires that software be packaged in a special format,
additional process is necessary to create the packages.

Step 5 is a key step since it surfaces some of the broader
implications (and potential costs) of automation. Documenting
and following those processes ensures that the automation will
run smoothly over time. It also allows the induced process to be
considered for its own automation treatment (following the
same pattern we have laid out for the primary process). Finally,
it encourages explicit consideration of the cost/benefit tradeoffs
of automation [2].

Finally, the last step in our automation approach is to (6)
implement automation for the process flow and the dele-
gated activities. Implementing the process flow itself is best
done using a workflow system to automatically coordinate the
best-practice process’s activities and the flow of information
between them. Using a workflow system brings the additional
advantage that it can easily integrate automated and manual
activities within the same overall workflow.

For the delegated activities, additional automation imple-
mentation is needed. This is a non-trivial task that draws on the
information gleaned in the earlier steps. It uses the best practice
identified in (1) and the scoping in (2) to define the activities’
functionality. The delegation choices in (3) scope the imple-
mentation work, while the interfaces and links to induced proc-
ess identified in (4) and (5) define needed APIs, connections
with external tools and data sources, and user interfaces. Fi-
nally, the actual work of the activity needs to be implemented
directly, either in new code or by using existing tools.

In some cases, step 6 may also involve a recursive applica-
tion of the entire methodology described here. This is typically
the case when a delegated ITIL activity involves a complex
flow of work that amounts to a process in its own right. In these
cases, that activity sub-process may need to be decomposed
into a set of subactivities; scoped as in steps (2) and (3), linked
with external entities as in (4), and may induce extra sub-
process as in (5). The sub-process may in turn also need to be
implemented in a workflow engine, albeit at a lower level than
the top-level best practice process flow.

One of the key advantages of our approach is that it can be
recursively applied as described above. At each level, our ap-
proach produces a set of automated activities implemented in a
workflow framework. These activities can potentially be reused
in other process automation efforts, particularly if they define
low-level automated functionality that applies across many
different sub-processes. Over time, as an organization migrates
to an automated best-practice process framework, a library of
automation elements will be built up, providing valuable sys-
tems management assets and reducing the effort of further
automation.

III.

A.

CASE STUDY: STEPS 1 AND 2 – SCOPING CHANGE
MANAGEMENT

We now turn to a detailed case study of applying the auto-
mation approach just described to Change Management. As
mentioned earlier, we choose to focus on Change Management
due to its importance in distributed systems management and
because it offers some thorny automation challenges. This sec-
tion considers the first part of the automation process: identify-
ing a best practice and scoping the possible automation.

Step 1: Identifying Best Practice
Step 1 of our approach tells us to turn to ITIL for best prac-

tice guidance in implementing and automating Change Man-
agement. ITIL defines the goal of Change Management as “to
ensure that standardized methods and procedures are used for
efficient and prompt handling of all changes, in order to mini-
mize the impact of change-related incidents upon service qual-
ity […]”. Change Management is central to ensuring the avail-
ability, reliability, and quality of information technology (IT)
services and processes. ITIL identifies the key major change
management activities, the roles and stakeholders that perform
them and input/output data that are either consumed or pro-
duced by the various activities in the change management
process.

A simplified version of the ITIL change management proc-
ess—along with its relationships to the configuration and re-
lease management processes—is depicted in Figure 1. It con-
sists of a set of linked activities, each associated with a role that
performs them and the shared data. The change management
process starts with the submission of a Request for Change
(RFC); many RFCs may be submitted concurrently. Other im-
portant inputs the change management process needs to con-
sider are Service Level Agreements, Policies and best practices.
Underlying the whole process is the Configuration Manage-
ment Database (CMDB), a conceptual repository that holds the
various change management artifacts and additional context
information to provide, among other, a change audit trail. The
CMDB also serves as the integration point of change manage-
ment with other ITIL disciplines, in particular Configuration
Management and Release Management.

From Figure 1, one can see that implementing a change
management process is a major undertaking: Information
stemming from various artifacts or stakeholders needs to be
passed between the many different parties participating in the
process in a coordinated way. The range of possible changes
may be very broad, and the requirements of different customers
with respect to the quality of service may differ greatly. It is
therefore not surprising that the roll-out of complex changes in
large-scale environments takes at least several days, and in
many cases lasts several weeks or even months. IT organiza-
tions of enterprises and service providers are therefore eager to
automate the change management process or, at least, its most
costly and time-consuming activities, to accomplish labor cost
reductions that are often in the double-digit million dollar range
per year for large enterprises.

Automating the change management process, however, re-
quires establishing a common context and a formal set of mu-
tual agreements and expectations between the various parties

Figure 1.

Accept
and

Classify
Change

Requests

Accept
and

Classify
Change

Requests
Assess Impact

of Changes
Assess Impact

of Changes

Approve
and

Schedule
Changes

Approve
and

Schedule
Changes

Coordinate
Change

Implementation

Coordinate
Change

Implementation

Review
and Close
Change
Request

Review
and Close
Change
Request

Monitor
and

Report
Change

Management

Monitor
and

Report
Change

Management

Distribute
and Install
Changes

Distribute
and Install
Changes

Report
Configuration

Status

Report
Configuration

Status
Verify and Audit

Configuration ltems
Verify and Audit

Configuration ltems

Plan
Release
Plan

Release
Design
Release
Design
Release

Build
Release
Build

Release
Test and
Accept
Release

Test and
Accept
Release

Plan
Rollout
Plan

Rollout

Communicate,
Prepare,
Train for
Release

Communicate,
Prepare,
Train for
Release

Distribute
And Install

Release

Distribute
And Install

Release

Release
Management

Report

Release
Management

Report

Change Management
Configuration
Management

Release Management

Request
for

Change

Forward Schedule
of Change

Service Level
Agreements

Policies and
Best Practices

Configuration Management Database (CMDB)

Identify and Control
Configuration ltems

Identify and Control
Configuration ltems

Activities, inputs and outputs of selected ITIL Service Support Processes

involved in the process, and the ITIL Service Support Proc-
esses play a key role in defining and exposing the necessary
information to the various stakeholders. Following a standard-
ized IT process model like ITIL yields the additional benefit of
being able to exchange the systems that implement each of the
building blocks of the IT service management process. This
helps customers become less dependent on specific products
and enables them to follow a “best-of-breed” approach by
combining products from different vendors while maintaining
interoperability.

B.

IV. STEP 3: DELEGATION FOR SOFTWARE LIFECYCLE
CHANGE MANAGEMENT

With our task of automating Change Management scoped
to software lifecycle changes, we can proceed with step 3 of
our automation approach. Recall that this step involves identi-
fying the key activities of Change Management to delegate to
automation. Typically, the most expensive and time-consuming
activities in Change Management are (1) assessing the impact
of a Change, (2) obtaining the necessary approvals, (3) sched-
uling changes and (4) installing the changes. These activities
(indicated in black in Figure 1) are the natural candidates for
delegation to an automated change management system.

Step 2: Scoping the Automation
As discussed in Section II, Change Management can cover

many different kinds of changes in an IT environment. Each of
these changes will follow the same overall process, but the
details may be radically different—consider the difference be-
tween automating documentation updates and facilities repairs.

We next describe how such an automated change manage-
ment system might operate, focusing in particular on how it
handles the delegation of the activities mentioned above. Fig-
ure 2 depicts the interactions of such a system with the various
stakeholders of the change management process in a data cen-
ter that hosts web applications for customers. Every customer
has signed one or more SLAs with the service provider that
specify profit and loss functions for key performance indicators
(response time, availability, throughput, etc.) as well as main-
tenance windows.

In our attempt to automate Change Management, we
choose to focus on one small but crucially important slice of
the overall problem: automating changes that affect the soft-
ware lifecycle. In particular, we focus on requests for changes
that involve deploying, upgrading, or decommissioning appli-
cations and their underpinning software stacks on distributed
systems. In doing so, we significantly reduce the scope of our
needed automation, both making it tractable to implement and
making it more likely to be incrementally deployable into real
IT service delivery environments.

As specified in ITIL, the change management process starts
with a customer submitting an RFC to the service provider’s
change management system. An illustrative example of such an
RFC from the software lifecycle domain is a request to roll out
two instances of the SPECjAppServer2004 enterprise applica-
tion along with its underlying middleware in a two-tiered envi-

ronment consisting of a web application server and a database
server.

The automated change management system executes the
ITIL change management process (cf. Figure 1) starting with
the first delegated activity: assessing the impact of a change,
both with respect to its technical requirements and its financial
impact. Examples for the former are software compatibility
constraints that are expressed in deployment descriptors (see
the discussion in the next section on IUDDs and SMDs),
whereas the existing SLAs are used to assess the monetary im-
pact. This latter step is needed in shared resource environ-
ments, such as on-demand data centers, since the roll-out of a
change for one customer may impact the systems hosting the
services of another customer.

The second delegated activity handled by the change man-
agement system is to Approve and Schedule Changes. We as-
sume in this case that approval is delegated entirely to the
automated system, with the understanding that in the software
lifecycle domain the change management system is capable of
making such decisions using its impact analysis results. The
scheduling task is also delegated: the change management sys-
tem must determine the best point in time to carry out a change
and the best available resources on which the change will hap-
pen, according to the service provider’s policies (e.g., minimize
the downtime, maximize the profit, etc.) and best practices
(e.g., a firewall must be placed between the web application
server and database server tiers). The automated computation
of the Forward Schedule of Change takes all the aforemen-
tioned parameters into account to find the best possible solution
to this optimization problem.

To achieve the delegation of scheduling changes and com-
puting the Forward Schedule of Changes, the Change Man-
agement System in our construction implements several major
components, as shown in Figure 2. First, the Workflow Gen-
erator breaks down an incoming RFC into its elementary steps
and determines the order in which they have to be carried out.
The output is a workflow, expressed in a general-purpose
workflow language, such as WS-BPEL [3], consisting of tasks
and precedence constraints that link these tasks together. Con-
sequently, workflows can be modified and aggregated by an
administrator using general-purpose workflow editors. In addi-
tion, they can be stored in a Workflow Repository for subse-

service provider’s data center. If an incoming RFC relates to
software artifacts for which a workflow already exists, the
workflow is loaded from the workflow repository and directly
submitted to the Scheduler. The Scheduler consumes one or
more workflows and assigns tasks to available resources (ob-
tained by querying the Provisioning System), according to the
aforementioned constraints, such as Service Level Agreements
(SLAs) and Policies.

Once the Forward

quent reuse as they are not bound to specific target systems in a

Schedule of Change has been computed
by

V. STEPS 4 & 5: EXTERNAL INPUTS AND INDUCED PROCESS

Now t ment ac-
tivit

A. The Importance of Deployment Descriptors to Automated
C

rs describe compatibility require-
me

e relationship to tradi-
tion

Change Management System

Scheduler

Workflow
Generator

Deployment
Descriptor

Request for
Change

Service Level
Agreement

Service Provider

Provisioning System

Forward Schedule
of Change

Customer

Customer

Administrator

Policies and
Best Practices

RequirementStakeholder

Developer

Data Center Resources

Workflow Workflow
Repository

the Scheduler, it is handed as input to the Provisioning Sys-
tem, which executes the requested changes on the data center
resources. This accomplishes delegation of the Distribute and
Install Changes step of the ITIL change management process.
An important part of this process is the ability of the provision-
ing system to keep track of how well the roll-out of changes
progresses on the targets, and to feed this status information
back into the Scheduler.

Figure 2. Stakeholders, building blocks and input data of a sample Change
Management System

FOR AUTOMATED CHANGE MANAGEMENT
hat we have identified the Change Manage

ies to be delegated and structured the architecture of an
automated change management system, the next challenge is to
implement step 4 of our approach. Namely, we need to iden-
tify the external information and data needed for the delegated
activities to operate successfully. Figure 2 provides some guid-
ance: the key data inputs are Requests for Change, Deployment
Descriptors, and SLAs. All of these inputs need to be provided
in machine-readable form or otherwise extracted from the IT
environment for automated change management to function
properly. In this paper, we will focus primarily on Deployment
Descriptors as an illustrative example; Requests for Change in
the software lifecycle domain are simply represented as a com-
bination of software name plus lifecycle operation (e.g., install,
configure, upgrade, uninstall) and there is already a significant
body of existing work on machine-readable representations of
SLAs.

hange Management
Deployment descripto
nts between a variety of (software) products that can be

composed into a solution that typically spans multiple target
systems. They play a key role in guiding the automated change
management system as it assesses the technical impact of
changes and develops them into a feasible and efficient forward
schedule of changes: the information they provide on compati-
bility between software products enables the change manager
to establish an appropriate sequence of activities for requested
lifecycle changes, and also provides the key dependency in-
formation needed to determine the impact of altering one or
more pieces of software in a solution.

Deployment descriptors have som
al software installers, such as InstallShield by Macrovision

or Microsoft installer, but these basic installers are insufficient
for multi-system, solution-oriented change management sce-
narios because (1) their usage is confined to single systems;
consequently, installers are unable to coordinate the change

activities that happen on different systems; (2) installers ad-
dress only a subset of the software lifecycle, namely the instal-
lation, upgrade and removal of individual software packages. In
particular, no changes to the configuration of an already in-
stalled system can be made as the vast majority of configura-
tion parameters are contained in response files; and (3) because
single system installers only need to take the containment hier-
archy of a software product into account, they represent instal-
lation topologies by means of tree-like data structures, whereas
the topology of distributed systems typically is graph-like.

Thus to successfully automate software lifecycle change
ma

t introduce
the

B. Case Study: The SPECjAppServer2004 Enterprise

dy is based on the scenario of installing and
con

C.

nagement, we need a more complete approach to deploy-
ment descriptors than traditional installers provide. To achieve
this, we will use technology from Solution Installation for
Autonomic Computing (Solution Install, for short).

Before diving into Solution Install, we will firs
 SPECjAppServer2004 enterprise application, which we will

use as the driving scenario to explain how the Solution Install
technology can be applied to describe and process dependen-
cies between components of a solution. Then, we illustrate how
Solution Install checks can be used to describe additional, fine
grained compatibility requirements that will guide the change
management system in the process of assigning previously
identified tasks to resources.

Application
Our case stu
figuring a multi-machine deployment of a J2EE based en-

terprise application and its supporting middleware software
(including IBM’s HTTP Server, WebSphere Application
Server, WebSphere MQ embedded messaging, DB2 UDB da-
tabase and DB2 runtime client) on his behalf. The specific ap-
plication we use is taken from the SPECjAppServer2004 enter-
prise application performance benchmark [9]. It is a complex,
multi-tiered on-line e-Commerce application that emulates an
automobile manufacturing company and its associated dealer-
ships. SPECjAppServer2004 comprises typical manufacturing,
supply chain and inventory applications that are implemented
with web, EJB, messaging, and database tiers. We jointly refer
to the SPECjAppServer2004 enterprise application, its data,
and the underlying middleware as the SPECjAppServer2004
solution. Our example of a SPECjAppServer2004 solution
spans a multi-system environment, consisting of two systems:
one hosts the application server along with the
SPECjAppServer2004 J2EE application, whereas the second
system runs the database system that hosts the various types of
SPECjAppServer2004 data (catalog, orders, pricing, user data,
etc.). One of the many challenges in deploying such a distrib-
uted solution consists in determining the proper order in which
its individual components need to be deployed, installed,
started and configured. This, in turn, requires a detailed under-
standing on how the various components need to be ‘wired
together’ and how their requirements and capabilities can be
matched.

Specifying Dependencies in Solution Install
Solution Installation for Autonomic Computing (Solution

Install) is a recent technology whose goal is to facilitate the
provisioning and change management of multi-tiered applica-
tion systems. Solutions comprise multiple levels of potentially
nested Installable Units (IU). Each IU has an associated de-
ployment descriptor (IUDD), an XML file that describes the
content of an installable unit, its checks (required system re-
sources, prerequisites), its dependencies and its (configuration)
actions [4] [10].

There are three different types of IUs: Smallest Installable
Units (SIU), Container Installable Units (CIU), or Solution
Modules (SM). An SIU consists of a deployment descriptor
and one software artifact; it is intended to be deployed to a sin-
gle hosting environment. A hosting environment is a container
in which artifacts are deployed and executed: typical examples
of hosting environments for applications and middleware are
operating systems, Web and EJB containers hosting J2EE ap-
plications, tablespaces of a DBMS hosting database tables etc.
A CIU is an aggregated installable unit that is intended to be
deployed to a single hosting environment. It consists of a de-
ployment descriptor and one or more SIUs. A Solution Module
is an installable unit that aggregates SIUs, CIUs, and other so-
lution modules for deployment in one or more hosting envi-
ronments. It is described by a deployment descriptor (SMD)
that describes the aggregated installable units (SIUs, CIUs, and
other solution modules) and the logical target environment for
these aggregated installable units.

As an example, the overall SPECjAppServer2004 solution,
comprising the J2EE application, user data, and the underlying
middleware would be described by means of an SMD, which
references five IUDDs for the following artifacts: the
SPECjAppServer2004 J2EE application, the
SPECjAppServer2004 data, WebSphere Application Server
(WAS) 5.1, DB2 UDB 8.2 and the DB2 Runtime Client. Each
IUDD contains CIUs that represent the logical units of de-
ployment, which in turn aggregate SIUs that correspond to the
physical deployment units. Each individual software product is
represented by a separate IUDD, whereas the logical and
physical components that belong to the same product are fur-
ther described within the product’s IUDD. In the example of
WebSphere Application Server, the highest-level CIUs are the
HTTP Server, the Web and EJB containers, and the messaging
component, which are further broken down into the various
fine-grained SIUs. As all of them make up the WAS product,
their descriptions are contained in the WAS IUDD. The set of
deployment descriptors for SPECjAppServer2004 and the un-
derlying middleware stack reflects the structure depicted in
Figure 3.

One can see that a set of Solution Install deployment de-
scriptors represents a directed, acyclic graph. While dependen-
cies between the CIUs and SIUs describe a software contain-
ment hierarchy, Solution Install provides additional IU types,
such as the referenced IU. Whenever an IU depends on another
IU belonging to a different product—and therefore specified in
a different IUDD—the latter is referenced in the IUDD of the
former. For example, the SPECjAppServer2004 data IU is de-
fined in the IUDD of the J2EE application as a referenced IU.

SPECjAppServer2004
J2EE Solution

WebSphere
Application
Server v5.1

DB2 UDB
Server 8.2

SPECjApp2004
J2EE Application

Embedded
Messaging

HTTP
Server

SPECjApp2004
Data

HostedBy HostedBy

HasComponents

Uses

DB2 Runtime
Client v8.1

Federates

Federates

HasComponents

WAS 51
Core

HasComponentsHasComponents

HasComponents

SMD

IUDDIUDD

IUDDIUDDIUDD

Figure 3. Modeling SPECjAppServer2004 and its underlying Middleware
with Solution Install

SI classifies dependencies into various types (such as hosts,
uses, contains, supersedes, etc.). Such dependencies, which
apply to a multi-system scenario (and therefore don’t exist in
currently available single-system installers), provide a means of
augmenting dependencies with meta-information that helps a
change management system take the proper decisions. E.g., a
‘supersedes’ relationship indicates that a software artifact re-
places the referenced software artifact, while a ‘hosts‘ relation-
ship indicates that a software artifact resides in the referenced
hosting environment. The ‘uses’ and ‘federates’ relationship
types are often applied in conjunction with referenced IUs.
Consequently, each dependency type needs to be handled dif-
ferently by a change management system.

Figure 4. Expressing requirements of the DB2 Runtime Client 8.1 on other
artifacts

Sometimes, there are several alternative configurations that
meet the requirements, which broadens the options of a change
management system to fulfill a Request for Change. For exam-
ple, a web application server can specify that it is able to inter-
act with any database system implementation (DB2, Cloud-
scape, etc.) as long as the latter can be accessed via JDBC.
Several alternative database systems can be expressed in an
IUDD as well as requirements on the state in which the data-
base system must be so that the operation succeeds: Figure 5
provides an example of a requirements definition that provides
alternatives for prerequisite software along with their manda-
tory state. In order to configure the JDBC data source of an
web application server, the database system referenced by the
data source definition must not only be installed, but also run-
ning.

In addition to specifying a common format for deployment
descriptors, Solution Install defines a set of change manage-
ment operations (create, update, delete, configure, verify, etc.)
and provides a runtime environment. The runtime takes a de-
ployment descriptor as input, decomposes aggregate units, and
builds an installable unit graph.

D. Expressing Requirements in Solution Install
The previous section has shown how dependencies between

various resources can be expressed in our
SPECjAppServer2004 scenario. However, in order to achieve a
workable solution, dependencies need to be refined further to
address the compatibility requirements each software artifact
has on other installable units and hosting environments. Solu-
tion Install provides this by defining various types of checks
that are subsequently executed against the hosting environment.
A check may either refer to various capacity parameters of the
overall system such as CPU speed, consumption parameters
such as RAM and disk space, properties of the hosting envi-
ronment, or other software along with its possible version
ranges and fixpack levels. Figure 4 depicts how Solution Install
allows one to express that the DB2 Runtime Client 8.1 has the
following requirements on other resources: The CPU clock
speed must be at least 1.6 GHz, there have to be at least
130MB free space in the temporary file system, the operating
system needs to be Windows 2000, whereas its version needs
to be in a specific range. In addition, the DB2 runtime client
requires the presence of DB2 UDB Server, whose version must
be within the range of 7.2 and 8.1.

Despite the fact that the example depicted in Figure 4 is
fairly simple and leverages only a few of the checks that we
have defined for each of the components of our
SPECjAppServer2004 example (for the sake of space), one can
see that Solution Install allows the definition of very fine-
grained requirements for a wide variety of parameters. The
Solution Install runtime environment automatically performs
this requirements checking and is therefore able to match, e.g.,
the version definition of one artifact with the version require-
ments of another.

Figure 5. Compatiblity and Lifecycle requirements in Solution Install

E. Induced Process Implications
From our discussion, it is clear that the creation of IUDDs

for large software products may require a significant effort to
ensure all the necessary information is present and accurate.
The processes necessary to create these IUDDs, and the SMD
ultimately submitted to the change management system, repre-
sent induced process that results from our delegation of the
core change management activities to automation. Thus we
have arrived at step 5 in our methodology, where we must con-
sider the impact of these additional induced activities and un-
derstand whether they decrease the value of our automation.

In the case of generating IUDDs, it is likely that the re-
quired process can itself be relatively easily automated. In
analogy to J2EE deployment descriptors, the fairly complex
and detailed IUDDs for individual products can be automati-
cally generated during the product’s build process and bundled
with the product install image. IUDDs are also defined once at
build time and can be reused over and over again in processing
multiple change requests, amortizing any extra development
cost.

 Thus only the SMD—the topmost deployment descriptor
containing references from the overall solution to the products
it is made of—is defined manually by an administrator at solu-
tion design time. This is extra induced process, but its impact is
mitigated by use of a graphical editor, such as SolutionArchi-
tect by ZeroG/Macrovision, to simplify SMD construction.
Also, as with IUDDs, SMDs can be defined once and reused
over and over again, amortizing their creation cost. However,
while the extra effort of creating a single, fairly simplistic SMD
for provisioning a multi-tiered solution seems negligible—
especially in large data center environments with significant
reuse—there still may be cases where the extra effort does not
pay off, as discussed in [2].

VI.

A.

STEP 6: IMPLEMENTATION: CHAMPS – A SCHEDULE-
OPTIMIZING AUTOMATED CHANGE MANAGER

Step 6 of our automation approach is to implement the
automation for the delegated activities. In Section III we began
outlining a high-level architecture for an automated change
management system—starting with Workflow Generator,
Workflow Repository, and Scheduler components. Figure 6
fleshes that architecture out in terms of an implementation de-
veloped at IBM Research. Our automated change management
system, CHAMPS (CHAnge Management with Planning and
Scheduling), automates change impact assessment, approval,
and scheduling, and is able to generate a Forward Schedule of
Change with a very high degree of parallelism for a set of
change management tasks by exploiting detailed factual
knowledge about the structure of a distributed system from
dependency information, provided by Solution Install deploy-
ment descriptors. Its optimization techniques are based on
mathematical scheduling theory. Once the forward schedule of
changes is generated, CHAMPS interfaces closely with a multi-
layer provisioning system to automate the implementation of
that forward schedule of changes. For the detailed architecture
of CHAMPS and the mathematical formulation of the change-
scheduling optimization problem, the reader is referred to [6].

Figure 6 illustrates as well the pattern laid out in Section II,
where workflow technology is used to coordinate overall
automation of a best-practice process such as Change Man-
agement. The left-hand side of the figure shows a workflow
engine being used at the top level to coordinate the flow of
work between manual and automated activities: a Request for
Change kicks off the ITIL-based Change Management work-
flow, which coordinates manual tasks such as change classifi-
cation. If the change is classified as a software lifecycle
change, the workflow engine can directly invoke CHAMPS to
automatically handle the next several change management ac-
tivities (accomplishing the desired delegation), returning con-
trol back to the workflow for the final manual step in change
management (reviewing and accepting the change). For Re-
quests for Change in other (non-software-lifecycle-related)
domains, the workflow engine will coordinate the manual exe-
cution of the change management process without using
CHAMPS.

Note as well that Figure 6 illustrates the use of the Configu-
ration Management Database (CMDB) to persist all the rele-
vant artifacts involved in the automated change management
process, including the Request for Change, the Forward Sched-
ule of Changes, and any relevant SMDs and IUDDs. This fol-
lows the ITIL best practice for change management, where
ITIL Configuration Management and the CMDB are used to
store and persist process-related artifacts.

The CHAMPS Change Manager: Generating the Forward
Schedule of Changes
The CHAMPS change manager incorporates the Workflow

Generator, Workflow Repository, and Scheduler components
mentioned earlier in Section III. CHAMPS relies on Solution
Install to parse a set of submitted deployment descriptors in
order to build an in-memory model of the various artifacts and
their dependencies. This dependency model is the input data to
the CHAMPS Workflow Generator component, which uses the
dependency model to assess the technical impact of the soft-
ware change request and thereby to structure an initial change
workflow that can effectively implement the desired change. To
do so, it carries out the necessary requirement checks, evaluates
the dependencies, and derives the proper order in which change
management operations need to be carried out. Based on the
dependencies (or lack thereof), the Workflow Generator is able
to determine the order in which change implementation activi-
ties need to be carried out, and whether activities may happen
concurrently. The change manager uses the Change Plan Re-
pository to store generated change workflows for possible fu-
ture reuse; if an appropriate change workflow is found in the
repository for a given change request, that plan can be used
directly, bypassing the workflow generator.

The CHAMPS Scheduler component takes advantage of the
requirements expressed in Solution Install when trying to as-
sign tasks identified by the Workflow Generator to suitable
resources. For an identified candidate resource, the check defi-
nitions within each deployment descriptor are submitted to the
Solution Install runtime to carry them out. If a check fails, the
Scheduler picks a different, more suitable resource. Once the
scheduler completes its work, it has transformed the initial

WebSphere Process Choreographer

Software.Install Request.getStatus

Target Systems

Forward
Schedule of

Change
Forward

Schedule of
Change

CHAMPS
Change Manager

Plan and Task StatusForward Schedule
of Change

Change Plan
Repository

Install

S
tart

C
onfigure

S
top

U
ninstall

SoftwareLogical Devices

Logical Device Operations
(in WSDL)

Automation Packages

C
reateP

artition

C
reateN

IC

A
ddU

ser

A
ddToC

luster

C
reateV

LA
N

TurnP
ortO

n

A
ddPortToV

LA
N

TurnP
ortO

ff

R
em

oveV
LA

N

…

Server Switch …

getS
tatus

DB2

WebSphere v5

Lotus Notes pSeries

BladeCenter

Cisco 6500

Cisco IOS

Tivoli
Provisioning

Manager

Resource
Pools

Request
for

Change

Resource Availability

Look up
Change PlanSMD

Configuration Management
DataBase (CMDB)

WORKFLOW ENGINE
(WebSphere Process Choreographer) Developer

Customer

IUDD

Administrator

Change Management Process

M
an

ua
l

A
ut

om
at

ed

Classify
Change

Accept
Change

Assess
Impact of
Change

Approve
Change

Schedule
Change

Implement
Change

Review
Change

Figure 6. Architecture of a workflow-driven change manager prototype

change workflow into a Forward Schedule of Changes, which
we refer to as the change plan in our implementation.

B.

Manager uses so-called “automation packages”, which are

 workflow engine inputs the change plan and starts each
pro

Implementing the Change Plan
Recalling the architecture depicted in Figure 2, the change

plan is next submitted to a provisioning system for implemen-
tation of the delegated Distribute and Install Changes ITIL
process activity. The provisioning system coordinates the
change management activities documented in the change plan
across the hosting environments that comprise the target IT
environment affected by the change. In our prototype system,
we chose to treat the change plan as a workflow, represented in
WS-BPEL, the Business Process Execution Language, and we
use a general-purpose workflow engine—the IBM WebSphere
Process Choreographer—to interpret and execute the change
plan.

The Process Choreographer in turn invokes a lower-level
provisioning system, IBM Tivoli Provisioning Manager, which
in turn maps the actions defined in the change plan to opera-
tions that are understood by the target systems. As visible in
Figure 6, the Provisioning Manager’s object-oriented data
model is a hierarchy of logical devices that correspond to the
various types of managed resources (e.g., software, storage,
servers, clusters, routers or switches) present in the target IT
environment. The methods of these logical device types corre-
spond to Logical Device Operations (LDOs) that are exposed
as WSDL interfaces, which allows their inclusion in the change
plan as BPEL partnerLinks. The IBM Tivoli Provisioning

product-specific implementations of logical devices: e.g., an
automation package for the DB2 DBMS would provide scripts
that implement the software.install, software.start, soft-
ware.stop, etc. LDOs. An automation package consists of a set
of Jython scripts, each of which implements an LDO. Every
script can further embed a combination of PERL, Expect and
bash shell scripts that are executed on the remote target sys-
tems.

The
visioning operation by directly invoking the LDOs of the

provisioning system. These invocations are performed either in
parallel or sequentially, according to the flows, sequences and
links defined in a change plan. A major advantage of using a
workflow engine for our purposes is the fact that it automati-
cally performs state-checking, i.e., it determines whether all
conditions are met to move from one activity in a workflow to
the next. Consequently, there is no need for us to develop addi-
tional program logic to perform such checks. Additionally, the
provisioning system reports the status of each operation execu-
tion back to the workflow engine. This status information is
used by the workflow engine to check if the workflow con-
straints defined in the plan (such as deadlines) are met and to
inform the change manager whether the roll-out of changes
runs according to the schedule defined in the change plan. Note
that when an error occurs during the change management op-
erations or when the deployment is canceled, the runtime envi-
ronment ensures that the various operations are rolled back
across the involved hosting environments.

C. Discussion: Recursive Application of the Automation
Pattern
Our automation implementation essentially makes use of

three levels of workflow engine: once for the top-level coordi-
nation of the Change Management workflow, again for imple-
mentation of the generated change plan, and finally a third time
inside the provisioning manager where the LDOs implement
miniature-workflows within their defined scripts. This use of
multiple levels of workflow engine illustrates a particular pat-
tern of composition that we expect to be common in automa-
tion of best-practice IT service management processes, and
recalls the discussion earlier in Section II of recursive applica-
tion of the automation approach.

In particular, the delegated Change Management activity of
Distribute and Install Changes involves a complex flow of
work in its own right—documented in the change installation
plan produced by CHAMPS. We can see that our approach to
automating this change plan follows the same pattern we used
to automate change management itself, albeit at a lower level.
For example, the creation of the change workflow is a lower-
level analogue to using ITIL best practices to identify the
Change Management process activities. The execution of
change plan tasks by the provisioning system represents dele-
gation of those tasks to that provisioning system. The provi-
sioning system uses external interfaces and structured inputs
and APIs to automate those tasks—drawing on information
from the CMDB to determine available resources and invoking
lower-level operations (automation packages) to effect changes
in the actual IT environment. In this latter step, we again see
the need to provide such resource information and control APIs
in the structured, machine-readable formats needed to enable
automation. The entire pattern repeats again at a lower level
within the provisioning system itself, where the automation
packages for detailed software and hardware products represent
best practice operations with delegated functionality and exter-
nal interfaces for data and control.

One of the key benefits of this type of recursive composi-
tion of our automation approach is that it generates reusable
automation assets. Namely, at each level of automation, a set
of automated delegated activities is created: automated ITIL
activities at the top (such as Assess Change), automated change
management activities in the middle (such as Install the DB2
Database), and automated software lifecycle activities at the
bottom (such as Start DB2 Control Process). While created in
the context of change management, it is possible that many of
these activities (particularly lower-level ones) could be reused
in other automation contexts. For example, many of the same
lower-level activities created here could be used for perform-
ance management in an on-demand environment to enable cre-
ating, activating, and deactivating additional database or mid-
dleware instances. It is our hope that application of this auto-
mation pattern at multiple levels will reduce the long-term
costs of creating system management automation, as repeated
application will build up a library of reusable automation com-
ponents that can be composed together to simplify future auto-
mation efforts.

VII. EVALUATION
To evaluate the efficiency and effectiveness of our automa-

tion approach with respect to scheduling and rolling out
changes, we measured the time it would take to manually pro-
vision SPECjAppServer2004 (excluding human think time)
and compared it to a CHAMPS-driven version of the
SPECjAppServer2004 scenario. In the CHAMPS scenario, a
user first fills out an RFC and submits an associated deploy-
ment descriptor, supplies the values for the requested parame-
ters, and kicks off the automated process by submitting the
RFC.

In the first case, we assume that an administrator—not be-
ing aware of the dependencies between the various parts of the
overall SPECjAppServer2004 solution—would carry out each
individual step in the provisioning process only after the prior
step has completed successfully, e.g., first, the database server
would be set up, and only once this is done, an administrator
would initiate the deployment, installation and configuration of
the application server. The total time for such a strictly sequen-
tial flow is 50 minutes and 25 seconds, which is an optimistic
number, given the fact that we do not take the think times of
the administrator into account.

In the second case, CHAMPS generates the provisioning
workflow by taking the (non-)existence of dependencies be-
tween the artifacts of the solution into account, which are ex-
pressed by deployment descriptors. The possibility of carrying
out multiple activities in parallel, which CHAMPS automati-
cally identifies, allows it to significantly reduce the total time
for provisioning the SPECjAppServer2004 application and its
middleware stack because the deployment and installation of
the large middleware packages (the size of the install image for
DB2 UDB v8.1.6 is 535 MB, the size of WebSphere Applica-
tion Server v5.1 is 415 MB) are by far the most time-
consuming activities. Using two 2.4 GHz Intel Pentium ma-
chines, we were able to collect the times depicted in Figure 7
for the various activities of the workflow. The machines were
connected through 100MBit/s Ethernet to a 2-way SMP Intel
2.4 GHz Pentium system running CHAMPS that also hosted
the install images of the software.

As depicted in Figure 7, the realized time savings (a reduc-
tion of more than 30% overall provisioning time on average)
are quite significant as the times for the deployment and instal-
lation activities are fairly high, compared to the durations of the
start and configuration activities. However, the former activi-
ties can be carried out concurrently as they happen on two dif-
ferent systems. The total provisioning time for the execution of
the overall workflow is 34 minutes on average over multiple
runs, thus realizing a speedup of 1.5.

In addition to evaluating the performance improvements
from automated software change management, we also in pre-
vious work examined the implications of automation on admin-
istrative complexity—complexity that contributes to human
administrative burden, required human skill, and the possibility
of erroneous configurations. Our results showed a significant
complexity reduction from CHAMPS-based automation of
installing and configuring SPECjAppServer2004; a detailed
evaluation is provided in [1].

16 min 25 sec (~33%)Total savings (time seq.–time CHAMPS)/time seq.

34 min 00 sec.Total time (CHAMPS workflow)

50 min 25 sec.Total time (strictly sequential, no think time)

n/a1.365.28Configuration (incl. DB creation and loading of data)

n/a0.480.16Start

4.5414.316.42 / 1.34Installation

1.345.525.56 / 1.14Deployment (file transfer and unpacking of install image)

SPECjAppServerWAS 5.1DB2 UDB 8.1 / RT Client

Average times [minutes.seconds] for:Activity type

16 min 25 sec (~33%)Total savings (time seq.–time CHAMPS)/time seq.

34 min 00 sec.Total time (CHAMPS workflow)

50 min 25 sec.Total time (strictly sequential, no think time)

n/a1.365.28Configuration (incl. DB creation and loading of data)

n/a0.480.16Start

4.5414.316.42 / 1.34Installation

1.345.525.56 / 1.14Deployment (file transfer and unpacking of install image)

SPECjAppServerWAS 5.1DB2 UDB 8.1 / RT Client

Average times [minutes.seconds] for:Activity type

Figure 7. Times for CHAMPS-based SPECjAppServer2004 provisioning based on multiple runs

VIII.

IX.

RELATED WORK
While there is a great deal of existing work describing ad-

hoc automation of aspects of service management, there is very
little work that (like this paper) describes a general automation
approach starting from best practices such as ITIL. One rele-
vant piece of work in the latter category is eTOM, the enhanced
Telecom Operations Map, which provides a top-down hierar-
chical view of business processes. eTOM does not itself ad-
dress how processes are supported by human or automated
actions, although work is underway as part of the broader Next
Generation Operations Support System (NGOSS) program of
TM Forum to address this. While the focus of ITIL is on the
operational side, it is fair to say that eTOM is more geared to-
wards product/service aspects. One of the notable differences is
that eTOM does not have the concept of a Configuration Man-
agement Database (CMDB); instead, eTOM assigns configura-
tion items to categories that reflect managed resource types.
Nevertheless, both approaches overlap in scope. For a detailed
discussion of eTOM and ITIL and a mapping between the two
approaches, the reader is referred to [11].

Another relevant piece of work is the Quartermaster system
from HP, which provides tools for design, deployment, and
operation of utility-computing applications [8]. Quartermaster
in part provides a framework for automation of service delivery
in a utility/on-demand environment, although it focuses more
on composition, resource allocation/scheduling, and system
modeling than the operational aspects of service management
covered by ITIL best practices. Quartermaster offers some
change management capabilities and maintains an equivalent of
the CMDB in its CIM-based system models; it offers schedul-
ing and resource allocation capabilities along the lines of those
in CHAMPS. But, unlike the automation components devel-
oped for CHAMPS, Quartermaster is not built around standard
best-practice activities for IT service management such as those
defined by ITIL. Thus while Quartermaster provides a rich
framework for utility computing, it does not directly address
the problem that we tackle here, namely automating IT service
delivery in the context of a best-practice process framework.

SUMMARY AND CONCLUSIONS
With labor costs increasingly dominating the economics of

IT service delivery, automating IT service management has
never been more important. But automation is a tricky busi-
ness: without the right organizational framework and standard

process behind it, automation can “bake in” suboptimal proc-
esses and furthermore can be difficult to reuse and apply
broadly. We have attempted to address those concerns in this
paper by introducing a best-practice approach to automating IT
service management, starting with ITIL best-practice processes
and proceeding through a six-step approach for refining those
ITIL processes to practical automated service management
implementations.

We demonstrated this approach through a case study of
automating IT Change Management in the software lifecycle
domain; IT Change Management has become one of the most
labor-intensive and time-consuming activities in Service Man-
agement and thus automating it is a top priority for many IT
service delivery environments. Our approach brings to auto-
mated change management an organizational framework that
clearly defines standardized processes for carrying out changes,
a standardized method of providing needed information on
technical constraints such as software compatibility require-
ments by means of formal deployment descriptors, and an im-
plementation architecture based on multi-level workflows pro-
duced through recursive application of our automation pattern.

The system that resulted from our automation efforts is
CHAMPS, a schedule-optimizing Change Manager. CHAMPS
takes an optimization-centric approach to developing and
scheduling the ITIL Forward Schedule of Changes process
artifact, and is able to generate change plans with a very high
degree of parallelism for a set of change management tasks by
exploiting detailed factual knowledge about the structure of a
distributed system from dependency information at runtime.
Our empirical results suggest that exploiting parallelism can
lead to substantial time savings, such as about 33% reduction in
the installation time of a complex Java based enterprise appli-
cation.

While these results are encouraging in showing the value of
process automation and the effectiveness of our approach, they
are a starting point. Significant work is needed to apply our
methodology to automate the many more remaining processes
and steps in the ITIL Service Support best practices. Further-
more, within the change management domain itself, more work
is needed to extend the automation we describe here, and the
Solution Install framework on which it is built, to other entities
of the IT infrastructure beyond software applications, including
hardware components, storage systems, operating systems, and
networking components.

REFERENCES
[1] A. Brown, et al. A Model of Configuration Complexity and its

Application to a Change Management System. In Proceedings of the 9th
IEEE/IFIP Network Operations and Management Symposium
(IM’2005), pages 631 – 644, Nice, France, May 2005. IEEE Publishing.

[2] A. Brown and J. Hellerstein. Reducing the Cost of IT Operations--Is
Automation Always the Answer? In Proceedings of the 10th Workshop
on Hot Topics in Operating Systems (HotOS 2005), Santa Fe, NM, June
2005.

[3] Business Process Execution Language for Web Services (WS-BPEL)
Version 1.1. Second Public Draft Release, BEA Systems, International
Business Machines Corp., Microsoft Corp., SAP AG, Siebel Systems,
May 2003.
http://www6.software.ibm.com/developer/software/library/ws-bpel.pdf.

[4] H. Chu (Editor), Installable Unit Package Format Specification, Version
1.0., W3C Member Submission, IBM Corp., ZeroG Software,
InstallShield Corp., Novell, July 2004,
http://www.w3.org/Submission/2004/SUBM-InstallableUnit-PF-
20040712

[5] IT Infrastructure Library. ITIL Service Support, version 2.3, Office of
Government Commerce, June 2000.

[6] A. Keller et al. The CHAMPS System: Change Management with
Planning and Scheduling. In Proceedings of the 9th IEEE/IFIP Network

Operations and Management Symposium (NOMS’2004), pages 395 –
408, Seoul, Korea, April 2004. IEEE Publishing.

[7] D. Oppenheimer, A. Ganapathi, and D.A. Patterson. Why do internet
services fail, and what can be done about it? In Proceedings of the 4th
Usenix Symposium on Internet Technologies and Systems, Seattle,WA,
USA, March 2003. USENIX Association.

[8] S. Singhal, et al.: Quartermaster – a Resource Utility System. In
Proceedings of the 9th IEEE/IFIP Network Operations and Management
Symposium (IM’2005), pages 265 – 278, Nice, France, May 2005. IEEE
Publishing.

[9] SPECjAppServer2004 Design Document, Version 1.01, January 2005,
http://www.spec
bench.org/osg/jAppServer2004/docs/DesignDocument.html

[10] M. Vitaletti (Editor), Installable Unit Deployment Descriptor
Specification, Version 1.0., W3C Member Submission, IBM Corp.,
ZeroG Software, InstallShield Corp., Novell, July 2004,
http://www.w3.org/Submission/2004/SUBM-InstallableUnit-DD-
20040712/

[11] An Interim View of an Interpreter’s Guide for eTOM and ITIL
Practitioners, enhanced Telecom Operations Map (eTOM), Document
GB921V, version 1.1, release 4.6, TeleManagement Forum, February
2005

	Introduction
	Focus on Change Management
	Use of the IT Infrastructure Library (ITIL)
	Outline

	A Process-Based Approach to Automation
	Case Study: Steps 1 and 2 – Scoping Change Manage
	Step 1: Identifying Best Practice
	Step 2: Scoping the Automation

	Step 3: Delegation for Software Lifecycle Change Management
	Steps 4 & 5: External Inputs and Induced Process for Automated Change Management
	The Importance of Deployment Descriptors to Automated Change Management
	Case Study: The SPECjAppServer2004 Enterprise Application
	Specifying Dependencies in Solution Install
	Expressing Requirements in Solution Install
	Induced Process Implications

	Step 6: Implementation: CHAMPS – A Schedule-opti
	The CHAMPS Change Manager: Generating the Forward Schedule of Changes
	Implementing the Change Plan
	Discussion: Recursive Application of the Automation Pattern

	Evaluation
	Related Work
	Summary and Conclusions
	
	
	
	References

