
RC23694 (W0508-091) August 16, 2005
Computer Science

IBM Research Report

P.R.O.S.E. :
Partitioned Reliable Operating System Environment

Eric Van Hensbergen
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

PROSE White Paper

P.R.O.S.E.
Partitioned Reliable Operating System Environment

Eric Van Hensbergen
(bergevan@us.ibm.com)

IBM Research

Abstract

This document re-evaluates the software stack in the light of para-virtualization technology and
hypervisor support within next generation processors and operating systems. We describe an in-
frastructure enabling the use of logical partitions (LPARs) for the execution of stand-alone appli-

cations along side traditional operating systems. The design goal is to provide an environment
allowing normal users to execute, interact and manage these custom kernels in much the same

way they would with typical applications. The development environment is a set of modular com-
ponent libraries providing necessary system services, and a familiar debug environment provided
by exposing partition memory and control interfaces to a "controller" partition. We describe the
implementation of our prototype using the IBM research hypervisor along with the Linux kernel

and explore potential applications which could benefit from this new environment.

1. Introduction

Virtualization technology has existed since the early
days of computer science [Singh04] , providing mecha-
nisms to safely partition larger mainframes into dis-
crete virtual machines. There has been much recent in-
terest in applying virtualization technology to provide
an easy means of partitioning commodity clusters with-
in data centers to efficiently multiplex hardware re-
sources while providing security and quality of service
guarantees to customers. This has resulted in main-
stream interest in having virtualization support incor-
porated into microprocessor design. While architec-
tures such as the PowerPC have always provided some
level of support for virtualization, recent chips from
IBM, AMD, and Intel provide unprecedented support
for system partitioning [Tsao04][VTwp][Pacifica].

These new hardware virtualization features support
more efficient partitioning of system resources and cre-
ate an opportunity to rethink the systems software
stack. Hypervisors, the software agents which manage
partitioning of the system, subsume a substantial por-
tion of roles typically performed by an operating sys-
tem. By embracing this fact, one can engineer the hy-
pervisor to collaborate with operating systems in order
to provide a more efficient virtualized environment.
This approach is often called partial virtualization, or

para-virtualization [Whitaker02]. Recent research
projects such as Xen have shown minimal performance
degradation from running in such para-virtualized envi-
ronments for typical workloads even without extensive
hardware support [Barham03].

Virtualization techniques have been primarily limited
to providing private partitions allowing multiple oper-
ating systems (or multiple instances of the same operat-
ing system) to run simultaneously. If partitions com-
municate at all, they do so through virtual I/O devices
such as emulated Ethernet controllers. While this isola-
tion provides an excellent mechanism for server con-
solidation or the ability to run multiple environments
on a desktop, it doesn't leverage the full potential of the
technology.

We propose extending the use of hypervisors to pro-
vide partitions for application execution. By using a li-
brary-OS model combined with a unified resource
sharing mechanism, we enable practical “stand-alone”
application partitions. The rest of this paper summa-
rizes our design goals, describes our prototype imple-
mentation, explores potential applications which could
benefit from such an environment, and reports a pre-
liminary evaluation on hardware for a sparse memory
update benchmark.

1 02/03/05

PROSE White Paper

2. Design

The hypervisor forms the foundation of the system
software stack. It provides high-level memory, page ta-
ble and interrupt management as well as partition
scheduling policies.

Our approach extends the idea of hosting multiple op-
erating systems on a virtualized machine to using parti-
tions to host applications. These applications can be
services such as databases or they can be end-user ap-
plications such as the high performance computing
challenge workloads [HPCC]. Since they essentially
"own the virtual machine" there is an increased level of
control and determinism during execution. They can
also benefit from custom system components such as
specialized schedulers and memory allocators. This ap-
proach has the same motivations and intent as Exoker-
nels [Engler95], but leverages the more secure protec-
tion mechanisms of virtualization and enables interac-
tion with legacy operating systems and drivers execut-
ing in other partitions.

Application partitions are executable from the com-
mand line of a traditional "controller" operating system
and users interact with the application via familiar
mechanisms such as standard I/O. Likewise, the appli-
cation partition has full access to the controller's re-
sources such as the file system via familiar library in-
terfaces. To facilitate development and debug, parti-
tion memory and run-time control interfaces are acces-
sible to the end-user on the “controller”. A library of
system service building blocks such as thread support,
memory allocators, page table management, and other

components is provided to allow developers to build
more complicated custom application kernels.

3. Implementation

We have based our prototype on the architecture em-
ployed by the IBM research hypervisor, rHype. rHype
is a small (~10k lines of code), low-latency, modular,
multi-platform (supports x86 and PowerPC) para-virtu-
alization engine. Logical partitions (LPARs) access
rHype services through a "system call" like mechanism
known as a hcall.

A set of applications and scripts are used to create,
manage, and destroy partitions. A special device can
be memory mapped to provide a view into individual
partition memory regions. Shared memory channels
are established through static buffers compiled into the
application kernel executables.

I/O to and from these application partitions is resolved
by communication through these shared memory chan-
nels to the controlling partition. This same mechanism
can be used to directly share devices such as disks or
share system services such as networking stacks. In or-
der to minimize complexity and code size, we chose
Plan 9's 9P [9man] as a single unified resource sharing
protocol.

During partition initialization, helper applications are
executed to gateway system resources such as the con-
sole and IP stack via the 9P protocol. These resources
are then mounted using the Linux 9P client [v9fs] to a
private file name space. Another helper application,
u9fs, is used to export the private name space through
the shared memory channels to the application parti-
tion. Effort is underway to consolidate the gateways,
v9fs, and export functionality into a single kernel mod-
ule.

2 02/03/05

Illustration 1: Para-virtualized Software Stack

Kernel <-> Hypervisor Interface

Logical Partition

Hardware Platform

Hypervisor

Logical Partition Logical Partition Logical Partition

Hardware <-> Hypervisor Interface

DB2
lib OS lib OS

GUPS

9P9P

C
o

nt
ro

lle
r

C
o

nt
ro

lle
r

A
p

p

9p

Illustration 2: Partition Resource Sharing

u9fsdevcons

Private
namespace

in channel

out channel

Shared Memory

libfs

application

open
read
write
close

Network

tcp/ip

mpifs Ethernet

Disk
Partition

File
System

netfs

PROSE White Paper

In order to create a more traditional user environment
for these applications, a Linux binfmt module is used
to automatically manage launching of the partition con-
figuration utilities and helper applications. The binfmt
modules are the portion of the Linux kernel which
manage execution of different executable formats. We
simply create a new executable format for application
partitions and this mechanism together with the re-
source sharing infrastructure create a user environment
that appears identical to normal applications – includ-
ing standard I/O.

4. Application

We envision several potential applications for such an
infrastructure. We are most interested in exploring the
potential improvements by applying the hybrid model
to databases, high performance computing, real-time
and multimedia applications.

Applications with immense memory footprints, such as
databases or Java virtual machines, typically attempt to
manage their own memory and paging behavior. In
many cases, operating system facilities and policies in-
terfere with their ability to efficiently manage these re-
sources. During certain operations, such as sparse ac-
cess and update of data, page table miss penalties can
dominate overall performance. Large page support pro-
vides some relief, but is not readily available in stock
Linux environments and does not scale to the memory
hierarchies of the near future. Virtualization allows
these applications more explicit control of their memo-
ry hierarchy. Custom application partitions can even
operate with virtual memory disabled, removing the
overhead of page table operations and miss exceptions.

High performance computing (HPC) applications could
also benefit from more explicit control over hardware
resources. Like databases, they are characterized as
having large data sets with sparse access patterns. Ad-
ditionally, HPC workloads often employ custom pro-
gramming and threading models. Such customizations
benefit from being able to "push the operating system
out of the way" and interact directly with the hardware.

When HPC applications run on a cluster of machines,
tight timing constraints and short communication laten-
cies are vital to overall system productivity and perfor-
mance. Hypervisors can provide a very thin, low-laten-
cy control layer which can provide more deterministic
scheduling policies.

The top-level hypervisor scheduler can be configured
in such a way to isolate one partition from non-deter-
ministic behavior of other partitions. The policy can be
setup to allow a single partition to run to completion,
favoring its execution over all others. These same poli-
cies can be used to guarantee frame rates in a game or
meet latency constraints for an industrial control appli-
cation.

5. Evaluation

We have performed a preliminary evaluation using
identically configured IBM BladeCenter JS20 server
blades. One of the blades runs the benchmark on top
of a standard Linux kernel without a hypervisor. The
second blade uses rHype in order to run Linux as a
controller partition while running the application in its
own partition.

The benchmark we are using is the DARPA HPC Dis-
crete Math Benchmark, which does sparse access and
update of a large table. We evaluated the application
with a range of table sizes and recorded the amount of
time it took to perform the updates.

Our infrastructure starts out slightly slower than stan-
dard Linux, but then begins to outperform the standard
implementation for larger table sizes. Poor perfor-
mance at smaller table sizes is due to the overhead of
running virtualized infrastructure – the system must
context switch between the controller partition and the
application. These partition context switches carry a
higher overhead than the transition between user-space
and kernel-space. This penalty is worst-case in our test
configuration due to both partitions sharing a single
CPU. We expect better results when controller Linux
is modified to properly yield while idle and in multi-
processor configurations where I/O and application
partitions can each be given their own CPU.

3 02/03/05

Illustration 3: Sparse Memory Update Performance

1 2 4 8 16 32 64 128

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

Linux

PROSE

Size (MB)

T
im

e
(m

s)

PROSE White Paper

We take advantage of the fact that PowerPC virtualiza-
tion technology allows us to run our application parti-
tion without virtual memory translation. By running in
in Real Mode we avoid suffering any penalty for TLB
misses resulting in superior performance as table sizes
increase.

6. Future Work

We have only begun to evaluate the PROSE infrastruc-
ture with simple applications. Library support and
evaluation must be expanded to more complicated mul-
ti-threaded and cluster workloads in order to evaluate
the value of specialized OS components and I/O mod-
ules.

Our existing shared-memory I/O is somewhat primitive
and can be vastly improved by leveraging higher per-
formance communication mechanisms provided by the
hypervisors. Another major design goal which remains
to be implemented and evaluated is failure detection,
recovery, and fail-over of the I/O channels which pro-
vide resources and services to the application parti-
tions.

7. Conclusions

Commodity support for virtualization technology rep-
resents a paradigm shift in the computer industry. It
can support more effective utility models of comput-
ing. It is prudent we explore how to restructure our
system and application software stacks to take advan-
tage of new virtualization technology being introduced
into commodity hardware. It is our belief that coopera-
tive virtual partitions will lead to more stable, secure,
and productive computing environments.

8. Acknowledgment

This work would not be possible without the contribu-
tions of Jimi Xenidis, Michal Osterowski, Orran
Krieger, and the rest of the rHype team. This work was
supported in part by the Defense Advanced Research
Projects Agency under contract no. NBCH30390004.

9. References

[Barham03] Xen 2002, Paul R. Barham, Boris Dragov-
ic, Keir A. Fraser, and et al. , ucam-cl-tr-553, January
2003, University of Cambridge, Computer Laboratory.

[CellularDisco] Cellular disco: resource management
using virtual clusters on shared-memory multiproces-
sors, Kingshuk Govil, Dan Teodosiu, Huang
Yongqiang, and Mendel Rosenblum, 2000, ACM
Transactions on Computer Systems, vol 18:3 , 229-
262.

[devfs] Linux Devfs (Device File System FAQ),
http://www.atnf.csiro.au/people/rgooch/linux/docs/de-
vfs.html.

[Disco] Disco: Running Commodity Operating Sys-
tems on Scalable Multiprocessors, Edouard Bugnion,
Scott Devine, Kinshuk Govil, and Mendel Rosenblum,
1997, ACM Transactions on Computer Systems, vol
15:4 , 412-447.

[Engler95] Exokernel: An operating system architec-
ture for application-level resource management, Daw-
son R. Engler, M. Frans Kaashoek, and James O Toole,
Jr., 1995, Proceedings 15th Symposium on Operating
Systems Principles, 251-267.

[HPCC] High Performance Computing Challenge,
http://icl.cs.utk.edu/hpcc/.

[Love03] Linux Kernel Development, Robert Love,
2003.

[9man] Plan 9 Programmer s Manual, Volume 1, AT &
T Bell Laboratories, Murray Hill, NJ, 1995.

[Pacifica] AMD Virtualization Codenamed “Pacifica”
Technology, Secure Virtual Machine Architecture Ref-
erence Manual, AMD, May 2005

[procfs] Linux Kernel Procfs Guide, http://www.ker-
nelnewbies.org/documents/kdoc/procfs-guide/lkprocfs-
guide.html.

[Singh04] An Introduction To Virtualization, Amit
Singh, http://www.kernelthread.com/publications/virtu-
alization, 2004.

[Tsao04] Server Consolidation Using POWER5 Virtu-
alization White Paper, H. Tsao and B. Olszewski,
http://www- 1.ibm.com/servers/eserver/pseries/hard-
ware/whitepapers/570_serverconsol.html , 2004.

[VTwp] Enhanced Virtualization on Intel Architecture-
based Server, Intel Solutions White Paper, March
2005.

[Whitaker02] Denali: Lightweight virtual machines for
distributed and networked application, A. Whitaker, M.
Shaw, and S. Gribble, 2002, Proceedings of the
USENIX Annual Technical Conference.

4 02/03/05

