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Abstract
Existing floorplanning algorithms compact blocks to the left and
bottom. Although the compaction obtains an optimal area, it may

not be good to meet other objectives such as minimizing total wire

length which is the first-order objective. It is not known in the liter-
ature how to place blocks to obtain an optimal wire length. In this

paper, we first show that the problem can be formulated as linear
programming. Thereafter, instead of using the general but slow lin-

ear programming, we propose an efficient min-cost flow based ap-

proach to solve it. Our approach guarantees to obtain the minimum
total wire length in polynomial time and meanwhile keep the mini-

mum area by distributing white space smarter for a given floorplan

topology. We also show that the approach can be easily extended
to handle constraints such as fixed-frame (fixed area), IO pins, pre-

placed blocks, boundary blocks, range placement, alignment and
abutment, rectilinear blocks, soft blocks, one-dimensional cluster

placement, and bounded net delay, without loss of optimality. Prac-

tically, the algorithm is so efficient in that it finishes in less than 0.4
seconds for all MCNC benchmarks of block placement. It is also

very effective. Experimental results show we can even improve the
wire length of very compact floorplans by 4.2%. Thus it provides

an ideal way of post-floorplanning (refine floorplanning).

1. Introduction
Floorplanning is to decide the positions of circuit blocks or IP blocks

on a chip subject to various objectives. It is the early stage of phys-
ical design and determines the overall chip performance. Due to

the enormous complexity of VLSI design with continuous scaling-

down of technology, a hierarchical approach is needed for the cir-
cuit design in order to reduce runtime and improve solution quality.

Also, IP (module reuse) based design methodology becomes widely
adopted. This trend makes floorplanning even more important.

Floorplanning has been studied for many years. Floorplan can

be classified into two categories: slicing and non-slicing. Among
slicing representations, there are binary tree[16] and normalized

Polish expression[20]. For non-slicing structure, many represen-
tations have been invented recently, such as topology representa-

tion (BSG[15], sequence pair[14], TCG[12]), packing representa-

tion (O-tree[8], B*-tree[5]), and mosaic representation (CBL[9], Q-
sequence[17], twin binary tree[23], twin binary sequence[24]). All

of these algorithms compact blocks to the left and bottom, subject to

the given topological constraints. Recently, additional constraints
have been addressed in floorplanning, such as fixed frame[18, 1],

alignment and performance (bounded net delay)[19], buffer plan-
ning in floorplanning[13], etc.. Again, within the approaches, the

floorplan is compacted to lower-left (or upper-right) corner and then

evaluated. In general, compaction implies minimum area. How-
ever, it may be sub-optimal for other objectives, such as minimizing

wire length, routing congestion, and buffer allocation. As we can
see, even with the same minimum area and the same topology, there

exist lots of different floorplans that have different distribution of

white space and thus have different values on other objectives. We
illustrate the problem by a simple example in Figure 1.
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Figure 1: (a) The floorplan compacting blocks to the lower-left cor-
ner. However, the wire length is not optimal. (b) The floorplan with

optimal wire length, which has the same topology and area but dif-
ferent distribution of white space. The dimensions for the 3 blocks

are: b1(4 � 4), b2(2 � 2), b3(4 � 2).

We observe that in floorplanning and placement, minimizing to-

tal wire length is the first-order objective. If a floorplanner/placer
can minimize total wire length very well, then there is much free-

dom and space to consider and tradeoff other concerns such as
routability and timing. Thus in the paper, we study the problem

of minimizing total wire length in floorplanning, while leaving the

consideration of routability and timing optimization (including buffer
insertion) for future work.

It is not known in the literature how to place blocks to obtain
an optimal wire length. We first show that the problem can be for-

mulated as linear programming. Then, we find it can be solved

by efficient min-cost flow implementation instead of general but
slow linear programming. The approach guarantees to obtain the



minimum total wire length for a given floorplan topology. We

also show that the approach is capable of handling various con-
straints such as fixed-frame (fixed area), IO pins, pre-placed blocks,

boundary blocks, range placement, alignment and abutment, recti-

linear blocks, soft blocks, one-dimensional cluster placement, and
bounded net delay, without loss of optimality. It is an exact algo-

rithm to minimize wire length and meanwhile keep the minimum
area by distributing white space smarter, as well as to optimize the

composite cost of both area and wire length. The algorithm is so

efficient in that it finishes in less than 0.4 seconds for all MCNC
benchmarks of block placement. It is also very effective. Ex-

perimental results show we can even improve the wire length of
very compact floorplans by 4.2%. Thus it is worth applying as a

step of post-floorplanning (refine floorplanning). It is noted that

researchers have studied the problem of allocating white space in
placement for various objectives[10, 22, 4, 2]. These methods are

heuristics in terms of minimizing wire length. Our approach op-

timally minimizes wire length for a given floorplan, and may be
applicable to mixed-cell placement (behaving as a post-placement

step, which is left as future work).
Most floorplanning algorithms use simulated annealing to search

for an optimal floorplan. The implementation of simulated anneal-

ing scheme relies on a floorplan representation where a neighbor
solution is generated and examined by perturbing the representa-

tion. In the paper, we use sequence pair representation to present
the approach. The reason we choose sequence pair is that it is sim-

ple and widely adopted. However, our approach is not limited to

sequence pair representation. For any floorplan represented by any
other presentation, we can derive a constraint graph and thus apply

the approach to redistribute white space for minimizing total wire
length. As we will discuss in the paper, our approach can take any

input of floorplan or block placement even with a large set of addi-

tional constraints. The optimality of the approach still holds for a
given floorplan topology (it does not change topology). The topol-

ogy can be extracted from a floorplan/block placement, or specified
by a representation such as slicing, BSG, sequence pair, TCG, O-

tree, B*-tree, CBL, Q-sequence, twin binary tree and twin binary

sequence.
The rest of the paper is organized as follows. Section 2 briefly

reviews sequence pair and constraint graph construction to evaluate
a sequence pair. Section 3 formulates the problem of minimizing

total wire length, and presents a min-cost flow based approach to

solve it. The capabilities of handling various constraints such as
fixed-frame, IO pin, pre-placed block, boundary block, range place-

ment, alignment and abutment, rectilinear block, soft block, cluster

placement, bounded net delay, etc., are discussed in Section 4. Ex-
perimental results are reported in Section 5, followed by concluding

remarks in Section 6.

2. Preliminary
A sequence pair is a pair of sequences of n elements representing a
list of n blocks. The two sequences specify the geometric relations

(such as left-of, right-of, below, above) between each pair of blocks

as follows:

�������
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�����

b j
�������������
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����� �	�

bi is to the left of b j (1)�������
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�����
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�������������
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Figure 2: Sequence pair (b3 b1 b2, b1 b2 b3) specifies an oblique
grid.

The sequence pair structure can be shown as an oblique grid (re-
fer to Figure 2). The original paper which proposed sequence pair

[14] presented an algorithm to translate a sequence pair to a place-

ment by constructing two constraint graphs, Gh and Gv. Both Gh

and Gv have n 
 2 vertices representing n blocks plus source node

and sink node (representing boundaries). Gh has a directed edge�
bi
�
b j
�

if block bi is to the left of block b j . Similarly, if block bi

is below block b j , Gv has the corresponding directed edge
�
bi
�
b j
�
.

For any pair of blocks (e.g. bi
�
b j), there exists exactly one edge

connecting the two nodes either in Gh or in Gv. Both Gh and Gv

are vertex weighted, directed, acyclic graphs. The weights in Gh

represent the widths of blocks, and the weights in Gv represent the
heights of blocks. Given that the coordinates of a block are the

coordinates of the lower-left corner of the block, a longest path al-
gorithm can be applied to determine the coordinates of each block

and the total width and height of the bounding box. As an example,

the sequence pair specifying the placement in Figure 1 is (b3 b1 b2,
b1 b2 b3), as shown in Figure 2.

3. Problem and Solution
Sequence pair specifies the topological relation between blocks.

Given a sequence pair, previous algorithm compacts blocks to lower-

left corner to minimize area. Even with the same minimum area,
there exist different placements of blocks satisfying the topological

constraint imposed by the sequence pair. It is very common that
white space exists even in the floorplan packed to minimum area.

The problem is to find a floorplan that fairly distributes white space

and minimizes the total wire length, as defined as follows:

Problem 1. Given a sequence pair
�
X
�
Y
�

with a set of m macro

blocks B= � b1
�
b2
���������

bm � where wi
� hi specifies the dimension of

block bi (wi: width, hi: height), and a set of nets N �� N1
�
N2
���������

Nn �
where Ni

�
i  1

�
2
���������

n describes the connection between blocks,

find a placement of blocks B satisfying the topological relation im-



posed by the sequence pair, such that the total wire length

n

∑
i � 1

λiW
�
Ni
�

is minimized where W
�
Ni
�

denotes the wire length of net Ni and λi

is its weight.

Without loss of practicality, we assume that all λi are integers.
This is true in almost all actual applications. Even in the application

where some λi are floating numbers, we can scale them to integers.
In the following we use xi and yi to denote the x and y coordinate of

block bi referring to the lower-left corner of the block respectively.

For simple representation and easy understanding, we assume all
pins are located in the center of the block. Actually as we can see

later, our approach has no restriction that pins should be in the cen-
ter of the block. It is common to use half perimeter of bounding

box as an estimate of wire length for a net. Let us consider a net Ni

connecting a set of z blocks � bi1
�
bi2
���������

biz � , and use
�
Li
�
Bi : Ri

�
Ti
�

as its bounding box where
�
Li
�
Bi
�

and
�
Ri
�
Ti
�

refer to the bottom-

left and top-right corner of the bounding box respectively. Thus we
have

�
j � � 1 � 2 ��������� z �

Li � xi j 
 wi j

�
2 (3)

Ri � xi j 
 wi j

�
2 (4)

Bi � yi j 
 hi j

�
2 (5)

Ti � yi j 
 hi j

�
2 (6)

Note that the coordinate
�
xi j 
 wi j

�
2, yi j 
 hi j

�
2
�

is the center of

the block bi j where pin is located. When pin is not at the center,
we can use the actual pin location to substitute the coordinate. In

addition, the geometric constraint imposed by sequence pair can be
written as follows:

�������
bi
�����

b j
�������������

bi
�����

b j
����� �	�

xi 
 wi � x j (7)�������
b j
�����

bi
�������������

bi
�����

b j
����� �	�

yi 
 hi � y j (8)

Thus the problem can be stated as:

min
n

∑
i � 1

λi
�
Ri � Li 
 Ti � Bi

�
(9)

subject to the set of constraints as stated in (3) (4) (5) (6) (7) (8).
Since the evaluation of x and y coordinates can be done indepen-

dently, the problem can be decoupled into two subproblems:

min
n

∑
i � 1

λi
�
Ri � Li

�
(10)

subject to the set of constraints as stated in (3) (4) (7), and

min
n

∑
i � 1

λi
�
Ti � Bi

�
(11)

subject to the set of constraints as stated in (5) (6) (8). The problems
(10) and (11) can be solved separately. The reason for decoupling

is that it makes the algorithm faster. As we can see, all of the three

problems, (9), (10) and (11), are linear programming. However,
all of them have special property that all constraints are difference

constraints[3]. Thus its dual problem is a min-cost flow problem,

since in the constraint matrix of the dual problem, each column
has exactly one “1” and “-1”. As we know, linear programming is

more general but much slower than min-cost flow algorithm. Let us

first consider the problem (10). We can construct a network graph
(called horizontal network graph) GH  �

VH
�
EH

�
as follows.

1. VH  � s � t � x1
�
x2
���������

xm
�
L1
�
R1
�
L2
�
R2
���������

Ln
�
Rn � , where s is

the source node, t is the sink node, xi represents the x coor-

dinate of block bi, and Li and Ri represent the left and right
boundary of bounding box of net Ni as denoted above.

2. EH  � � s � Ri
���

i  1
�
2
���������

n �
	 � � xi
�
x j
���

block bi is to the right

of block b j ��	 � � Ri
�
x j
� � �

x j
�
Li
���

net Ni connects block b j ��	� � Li
�
t
���

i  1
�
2
���������

n � , where
�
s
�
Ri
�

is the edge from source

to right boundary of bounding box,
�
xi
�
x j
�

is the edge im-

posed by the sequence pair as in constraint (7),
�
Ri
�
x j
�

is the
edge imposed by net connection as in constraint (4),

�
x j
�
Li
�

is the edge imposed by net connection as in constraint (3),

and
�
Li
�
t
�

is the edge from left boundary of bounding box to
sink.

3. Edge Capacity: UH
�
s
�
Ri
�  UH

�
Li
�
t
�  λi

� �
i � � 1 � 2 ��������� n � ;

for any other edge e � EH , UH
�
e
�

is unlimited.

4. Cost Function: CH
�
s
�
Ri
�  0, CH

�
Li
�
t
�  0, CH

�
xi
�
x j
� 

� w j , CH
�
Ri
�
x j
�  � w j

�
2, and CH

�
x j
�
Li
�  w j

�
2.

It should be noted that the subgraph, which contains only the
vertices xi

�
i  1

�
2
�������

m and the edges
�
xi
�
x j
�

imposed by sequence

pair, is similar to the horizontal constraint graph mentioned in [14].
The difference is that the direction of edges is inverted and the edge

cost is negative. Thereafter, in [14] a longest path algorithm is ap-

plied to compute the positions of blocks, while in the paper we shall
use min-cost flow algorithm in the sense of shortest path. It should

also be noted that the transitive edges on the subgraph can be safely
omitted, which will speed up the computation considerably.

Thus we compute the min-cost flow of amount ∑n
i � 1 λi on the

graph GH , which solves the dual problem. Our goal is to com-
pute the positions of blocks subject to the constraints and minimize

the total wire length (the primal problem), which can be done as
follows. We first compute the residual graph derived from the min-

cost flow. Then a shortest path algorithm applied on the residual

graph would give the positions for all blocks. If necessary, a com-
mon source node connecting to all other nodes can be added to the

residual graph for shortest path computation. 1

Analogously, we can construct another network graph and solve

the problem (11) by min-cost flow approach. The graph (called

vertical network graph) is denoted as GV  �
VV

�
EV

�
.

1Actually, the results of positions are the node potentials (or called
“price”). Many of min-cost flow algorithms compute both edge
flows and node potentials at the same time. Thus in this case, the
steps of deriving residual graphs and applying shortest path algo-
rithm to compute positions can be skipped.



We use the example as shown in Figure 1 to illustrate the ap-

proach. The input of the problem is: sequence pair (b3 b1 b2, b1

b2 b3) with 3 blocks, and nets N1  � b1
�
b2 � with weight λ1  2,

N2  � b2
�
b3 � with weight λ2  1. Then the problem (10) to mini-

mize wire length in x dimension can be stated as follows:

min � 2 � R1 � L1
� 
 �

R2 � L2
� �

subject to

x1 
 4 � x2

x1 
 2 � L1

x1 
 2 � R1

x2 
 1 � L1

x2 
 1 � R1

x2 
 1 � L2

x2 
 1 � R2

x3 
 2 � L2

x3 
 2 � R2
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Figure 3: (a) The horizontal network graph. (b) The vertical net-

work graph. The pair of numbers, “c,u”, on the edge represent cost

and capacity respectively, and “U” means unlimited capacity (the
same meaning on the graphs that follow).

Then this can be transformed to min-cost flow problem in the

network graph GH as shown in Figure 3(a). Similarly, the prob-

lem (11) to minimize wire length in y dimension is transformed to
min-cost flow problem in the network graph GV as shown in Figure

3(b). Then we compute the min-cost flow of amount: 3 (because
λ1 
 λ2  3) on the two graphs, GH and GV . The results are il-

lustrated in Figure 4(a) and Figure 4(b) respectively. Based on the

flow results, we derive the residual graphs of GH and GV , as shown
in Figure 5(a) and Figure 5(b) respectively. Then we apply short-

est path algorithm on the residual graphs to compute the positions
of blocks by adding a common source node connecting all other

nodes. Thus the results are: x1  � 5, x2  � 1, x3  � 2, y1  � 5,

y2  � 4, and y3  � 1. The placement with minimum wire length is
shown in Figure 6. The overall approach is summarized as follows.
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Figure 4: (a) The min-cost flow on the horizontal network graph.
(b) The min-cost flow on the vertical network graph. The high-

lighted lines represent flows. Their widths are proportional to the
amount of flow.

x x

R

RL

L

x

t s

0,1

0,2

−2,U

−1,U

−1,U0,2

0,1

2,U

−2,U

−4,U

1,U

1,U
2,U

−2,1

1,2

4,2
−2,2

2,1

1 2

1

2
2

1

3

y y

y

t

s

TT

BB

0,2 0,1

0,2 0,1

2,U
1,U

1,U

−1,U
−1,U

−2,U

−4,U −2,U
4,1

2,1

−1,1

1,1

1,1

−2,2 1,U

−1,U

1 2

3

21

21

(a) (b)

Figure 5: (a) The horizontal residual graph. (b) The vertical residual
graph.

Algorithm Min-wire

1. Construct the network graphs GH and GV

2. Apply min-cost flow algorithm on GH and GV

3. Derive the residual graphs of GH and GV

4. Apply shortest path algorithm on residual graphs
to compute positions of blocks

b1 b2

b3

Figure 6: The placement with minimum wire length.

The min-cost flow based algorithm, Min-wire, optimally solves

the problem of minimizing total wire length, as stated in the follow-
ing theorem.

Theorem 1. The algorithm, Min-wire, generates a placement of



all blocks such that the total wire length is minimized optimally for

the given sequence pair.

Note that we show here how to obtain minimum wire length. The
capability of minimizing wire length and meanwhile keeping min-

imum area (with a fixed-frame constraint) will be discussed in the

next section.
The complexity of the algorithm, Min-wire, is determined by

min-cost flow, since other steps are smaller portions compared to
min-cost flow algorithm. Finding a min-cost flow in a network is

a classical problem for which several polynomial-time optimal al-

gorithms are available [3]. The number of vertices in either GH

or GV is O
�
m 
 n

�
where m is the number of blocks and n is the

number of nets. The number of edges on the subgraph, which
contains only the vertices representing blocks and the edges be-

tween, is O
�
m logm

�
on average[11]. The rest of edges includes the

edges introduced by net connections, and the edges incident from/to
source/sink. The number of edges incident from source and to sink

is O
�
n
�
. The edges introduced by net connections in the graph is

proportional to the number of pins in all nets. Typically in practice,

we can assume that the number of pins is a constant on average

in a net. Thus the number of edges introduced by net connections
is typically O

�
n
�
. In total, the number of edges is O

�
m logm 
 n

�
.

Therefore, if we adopt Orlin’s algorithm in [3] to compute the min-
cost flow, the time complexity of the algorithm Min-wire is typ-

ically O
� �

E
�
log

�
V
� � �

E
� 
 �

V
�
log

�
V
� ���  O

���
m logm 
 n

�
log

�
m 


n
� �

m logm 
 n 
 � m 
 n
�
log

�
m 
 n

�����  O
���

m logm 
 n
� �

m 
 n
�
log2�

m 
 n
���

. Practically, we can assume that net weight λi is O
�
1
�

(for example, 1-10), which is true in most applications. We ob-

serve that too large weight is unnecessary in actual applications.
When net weight is beyond some threshold, it behaves the same

in minimizing wire length. Then we can apply successive shortest
path augmenting algorithm in computing min-cost flow[3] which

is faster in the case. Thus, the complexity is O
�
nS
�
m
�
n
���

where

S
�
m
�
n
�

denotes the time taken to solve a shortest path problem. We
can associate each node i with a distance label d

�
i
�
. Then the “re-

duced” cost for edge
�
i
�
j
�

is defined as C
� �

i
�
j
�  C

�
i
�
j
� 
 d

�
i
�
�

d
�
j
�
. Since in the shortest path computation, it is always true that

d
�
j
�
� d

�
i
� 
 C

�
i
�
j
�
, thus C

� �
i
�
j
�
� 0. Therefore the graph with

“reduced” costs has no negative cost edge. We can get initial d
�
i
�

using Bellman-Ford algorithm. After that, we can apply Dijkstra

algorithm to the graph with “reduced” costs, since the “reduced”
costs C

� �
i
�
j
�
� 0. Note that Dijkstra algorithm is faster but can

not handle negative cost. Thus S
�
m
�
n
�

is the complexity of Dijk-

stra algorithm. Finally the complexity is O
�
n
� �

E
� 
 �

V
�
log

�
V
� ��� 

O
�
n
�
m logm 
 n 
 �

m 
 n
�
log

�
m 
 n

�����  O
�
n
�
m 
 n

�
log

�
m 
 n

���
.

4. Discussion of Capabilities
It is useful and important in applications that floorplanning handles

constraints[25]. As we can see, the approach is capable of handling

various constraints without loss of optimality.

4.1 Fixed-frame
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Figure 7: The modification of graphs to handle fixed-frame where

the frame is 6 � 6. (a) The horizontal network graph. (b) The verti-
cal network graph.

In some applications, floorplanning is confined in a given frame,

W � H, where W and H represent width and height respectively. In
addition, if we still want to keep the minimum area in minimizing

wire length, we can solve the problem with a frame of minimum

area. When a frame is taken into account, we modify the graphs as
follows. To horizontal network graph GH , two nodes, fL and fR, are

added where fL and fR represent the left and right boundary of the
frame respectively. We have xi 
 wi � fR, xi � fL and fR � fL � W .

Accordingly, a set of edges are added,
�
fR
�
xi
�

with cost � wi and

unlimited capacity,
�
xi
�
fL
�

with cost 0 and unlimited capacity, i 
1
�
2
���������

m, and
�
fL
�
fR
�

with cost W and unlimited capacity. Again,

the transitive edges in
�
fR
�
xi
�

and
�
xi
�
fL
�

can be omitted. Similarly,
two nodes, fB and fT representing the bottom and top boundary of

the frame respectively, and the corresponding edges are added to

vertical network graph GV . Figure 7 illustrates the two modified
graphs for the example above. The frame is 6 � 6 (minimum area).

Thus the algorithm Min-wire can still be applied to minimize the
total wire length and place blocks in the given frame. Note that the

node fR ( fT ) will act as the source node in the step of shortest path

computation in GH (GV ) to obtain the positions of blocks. In the
computations, we assign fR  W and fT  H. Figure 1(b) actually

gives the optimal placement within the frame.

4.2 Composite Cost Function
We have talked about fixed-frame constraint that blocks are con-
fined within a given frame. Actually, the method is an exact al-

gorithm to optimize the composite cost function of area and wire
length:

min � α � W 
 H
� 
 n

∑
i � 1

λiWi �
Note that existing methods can only minimize area, and use com-

pacted blocks’ locations to compute the cost of wire length. By
introducing fL

�
fR
�
fB
�
fT as in handling fixed-frame constraint, we

can convert the objective function to:

min � α � fR � fL 
 fT � fB
� 
 n

∑
i � 1

λi
�
Ri � Li 
 Ti � Bi

� �



Note that W and H become variables and W  fR � fL
�
H  fT � fB.

The network-flow-based approach can still be used to optimize the
composite cost, by modifying the graphs, GH and GV .
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Figure 8: The modification of graphs to minimize composite cost
where α  3. (a) The horizontal network graph. (b) The vertical

network graph.

It is similar to the modification that handles fixed-frame con-

straint, except that there is no edge
�
fL
�
fR
�

on graph GH and no

edge
�
fB
�
fT
�

on graph GV . Instead, we add edges,
�
s
�
fR
�

with cost
0 and capacity α and

�
fL
�
t
�

with cost 0 and capacity α, to graph

GH ; and we add edges,
�
s
�
fT
�

with cost 0 and capacity α and
�
fB
�
t
�

with cost 0 and capacity α, to graph GV . Figure 8 illustrates the two

modified graphs for the example above to optimize the composite

cost function, where α  3. Thus the min-cost flow based algorithm
can be used to optimally minimize the composite cost. It should be

noted that the amount of flow is α 
 ∑n
i � 1 λi in the case.

4.3 Handling IO Pins
Usually there exist IO nets which connect to pins on the boundary

of the frame (IO pins or IO pads). Let us consider a net Ni connects

an IO pin at location
�
px
�
py
�
. Thus Li � px � Ri and Bi � py �

Ti. Assume the frame is W � H. We let fR  W and fT  H.

Then equivalently, Li � fR � px � W � Ri � fR and Bi � fT � py �
H � Ti � fT . As a result, we add two edges,

�
fR
�
Li
�

(with cost

px � W and unlimited capacity) and
�
Ri
�
fR
�

(with cost W � px and

unlimited capacity), to graph GH , and add two edges,
�
fT
�
Bi
�

(with
cost py � H and unlimited capacity) and

�
Ti
�
fT
�

(with cost H � py

and unlimited capacity), to graph GV . Thus the algorithm Min-wire
can be applied. In this way, fixed pin can be handled where the pin

location may not be on the boundary of the frame.

4.4 Pre-placed and Boundary Blocks
In the case when some blocks are to be placed at fixed location or
on the boundary of the frame, our algorithm should be applied to a

graph with additional edges. For example, a block bi is placed at
a location

�
lx
�
ly
�
, i.e. xi  lx and yi  ly. Thus xi � fR  lx � W

and yi � fT  ly � H. Equivalently, xi � fR � lx � W , xi � fR � lx �
W , yi � fT � ly � H, and yi � fT � ly � H. These are transformed
to edges

�
fR
�
xi
�

and
�
xi
�
fR
�

on graph GH , and edges
�
fT
�
yi
�

and

�
yi
�
fT
�

on graph GV . Boundary blocks can be handled similarly in

the sense that boundary blocks fix locations in x or y coordinate.

4.5 Range Placement
Range constraint specifies that a block is to be placed within a given

range. Pre-placed constraint is a special case of range constraint.
Similarly, we can add additional edges to graph GH and GV to en-

force the computation of position in algorithm Min-wire such that

the block is placed within the range.

4.6 Alignment and Abutment
Alignment constraint specifies several blocks to be aligned in a row

within a range[19]. It can be transformed to a set of difference
constraints that keep the relative positions between them. Thus we

can add additional edges to the graphs accordingly. Abutment is a
special case of alignment.

4.7 Rectilinear Blocks
A rectilinear block is partitioned into a set of rectangular subblocks.
Then a set of constraints are used to keep the relative positions,

which can be transformed to the additional edges in the graphs ac-

cordingly[7].

4.8 Soft Blocks
In floorplanning, the shapes of some blocks may not be fixed. For

example, the areas of some blocks are fixed, but their width/height
ratio can be changed in some range. These kinds of blocks are

called soft blocks. To handle soft blocks, a move (perturbation) can
be introduced in simulated annealing to change the shape of soft

block, as in [9]. In this way, the move is random. In another way

(more intelligent) as in [1, 21], each time a soft block on a critical
path (“critical” means that the path determines the size of the chip)

is selected and its shape is optimized. Our approach can be applied
to minimize wire length in both ways.

4.9 Cluster Placement
It is useful in applications that several blocks are placed close to
each other (cluster placement). In other words, the distance be-

tween any two of the blocks should not be too far away. This can

be written as a set of constraints that specify the distance bound be-
tween any two of the blocks. One-dimensional cluster placement

specifies the distance bound either in x or in y dimension, which

can be written as a set of difference constraints. Thus we can solve
the problem by adding the corresponding edges to the graphs.

In general case of two-dimensional cluster placement, the dis-
tance bound is specified on the summation in x and y dimensions.

We can use a heuristics to break two-dimensional cluster placement

proportionally into two one-dimensional cluster placement prob-
lems in x and y dimensions, based on compaction result or original

block placement. In other way, we can also solve the problem using
Lagrangian relaxation. We treat the cluster placement as a “virtual”

net, and adjust the weight of the net (Lagrangian multiplier) to make

it satisfy the distance bound. Thus each iteration of Lagrangian re-
laxation is still to solve a min-cost flow problem.



4.10 Bounded Net Delay
The approach is to minimize the total wire length, which can not

guarantee bounded delay for critical nets. To address bounded net
delay, we use a linear function in terms of distance to estimate delay.

Although interconnect delay is quadratic in terms of wire length,

with appropriate buffer insertions the actual delay is close to linear
in terms of source-sink distance. In this way we convert bounded

net delay into bounded net wire length. Thus as in [19], we impose
constraints on the bounding box of the net, which results in the

additional edges in the graphs accordingly.

We have the following necessary and sufficient condition with
respect to all these constraints.

Theorem 2. There exists a feasible placement that satisfies all

these constraints if and only if there is no negative cycle in graphs

GH and GV .

When a graph has a negative cycle with unlimited capacity, there
does not exist min-cost flow. As we can see, in the graph GH and

GV , the edges except the edges incident from source node or to sink
node have unlimited capacity, and the edges incident from source

node or to sink node can not be part of any cycle. Thus any negative

cycle will have unlimited capacity. If there is no negative cycle,
then the algorithm Min-wire can be used to compute a placement

that satisfies all constraints and has the minimum wire length.
Although the condition is similar to that in [7], there exist im-

portant differences. (i) The graphs are different. The graph in [7]

contains only nodes representing blocks/subblocks. (ii) The ap-
proach in [7] operating on its graph thus does area packing only,

while our approach can minimize both area and wire length. (iii)
Longest path algorithm is used in [7], while longest/shortest path

can not solve our problem and instead main part of our algorithm is

min-cost flow.

4.11 Applications to Block Placement
Although we take input of sequence pair in the problem defini-
tion, the approach can be applied to any floorplan/block placement.

Given a floorplan/block placement, we can first extract the topolog-

ical relation for any pair of blocks and describe as “left of”/“below”.
For the pair with diagonal relation, we can choose one of “left

of”/“below” based on which of the two distances in x and y di-

mension is longer. This is because choosing the longer one gives
us more freedom in moving blocks around. For example, in Figure

1(a), we specify that block b2 is below block b3, rather than block
b3 is to the left of block b2. Then we can construct the constraint

graphs and network graphs. Thereafter, we can apply the approach

to minimize wire length.
For the floorplan specified by representation other than sequence

pair (such as slicing, BSG, TCG, CBL, Q-sequence, twin binary
tree and twin binary sequence), we can also construct constraint

graphs which are equivalent to the topology specified by the repre-

sentation. Thus the approach can still be applied. Note that the ap-
proach does not change the topology. The topology information in

O-tree and B*-tree is incomplete (only x-dimension relation is spec-

ified and floorplan is obtained by packing). However, we can derive
block placement from O-tree and B*-tree and then build constraint

graphs from the placement. We summarize the result as follows.

Theorem 3. The algorithm, Min-wire, is optimal in minimizing

total wire length for a given floorplan topology. The topology can

be extracted from a floorplan/block placement, or specified by any

floorplan representation.

5. Experimental Results
We have implemented the algorithm and integrated with the floor-
planner, FAST-SP[18]. Our program can also read an existing floor-

plan and redistribute white space to optimize wire length. Assum-

ing that λi  O
�
1
�
, we use successive shortest path augmenting al-

gorithm in min-cost flow computation.

We have tested the program as a post-floorplanning step with
two floorplanner, FAST-SP[18] and Parquet 3[1]. The test problems

are derived from MCNC benchmarks for block placement. We first

run FAST-SP or Parquet 3 to obtain a floorplan with option of “min-
imize wire length”. Note that both FAST-SP and Parquet 3 compact

blocks to the left and bottom. Then the algorithm Min-wire is ap-

plied to further optimize wire length. For all tests, we use the cen-
ter of block as pin’s location, and impose a fixed frame constraint.

The locations of IO pins (IO pads) are resized proportionally to the
frame boundaries. Table 1 lists the experimental results for min-

imizing wire length, where all blocks are hard blocks. It should

be noted that our program does not change floorplan topology and
area. Thus area is omitted from the table. The experiments were

carried out on a laptop of Pentium 4 Mobile(2.4Ghz). As we can
see, the algorithm is very efficient in that it takes less than 0.4 sec-

onds for all of the benchmarks. It is also very effective in that it can

further improve the wire length of even very compact floorplans
by 4.2% on average. As illustrations, Figure 9 and 10 display the

placement results of original and after optimization for ami33 and
ami49 in FAST-SP respectively.

6. Concluding Remarks
In the paper, we have presented a novel method to minimize wire
length in floorplanning. The method optimally distributes white

space among blocks and guarantees to obtain the minimum total

wire length for a given floorplan topology. It is also an exact al-
gorithm to optimize the composite cost function of area and wire

length: min � α � W 
 H
� 
 ∑n

i � 1 λiWi � . We have also shown that the
method can handle various constraints such as fixed-frame, IO pins,

pre-placed blocks, boundary blocks, range placement, alignment

and abutment, rectilinear blocks, soft blocks, one-dimensional clus-
ter placement, and bounded net delay, without loss of optimality.

Experimental results show it is very efficient and effective. Thus it
provides an ideal way to refine floorplanning (post-floorplanning).

The future work is to extend the method to consider routing conges-

tion and buffer insertion in floorplanning and to apply it in mixed-
cell placement.



Table 1: Results of improving wire length in post-floorplanning of FAST-SP and Parquet 3.
FAST-SP Parquet 3

circuit block net wire(mm) improve time(s) wire(mm) improve time(s)
original after original after

apte 9 97 426.7 418.9 1.8% 0.02 476.3 458.0 3.8% 0.03

xerox 10 203 486.1 462.8 4.8% 0.07 581.6 550.6 5.3% 0.06

hp 11 83 170.0 161.5 5.0% 0.02 161.1 152.4 5.4% 0.02

ami33 33 123 60.0 58.0 3.3% 0.03 77.2 74.1 4.0% 0.03

ami49 49 408 790.1 760.2 3.8% 0.38 857.8 818.9 4.5% 0.36
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Figure 9: (a) The original ami33 placement in FAST-SP. (b) The new placement result when minimizing wire length in the same frame.
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