
RC23696 (W0508-096) August 17, 2005
Computer Science

IBM Research Report

Illustrating Macros with Existing Documentation

Eugene R. Creswick
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331

Lawrence Bergman, Tessa Lau, Vittorio Castelli, Daniel Oblinger
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Illustrating Macros with Existing Documentation

Eugene R. Creswick
School of Electrical Engineering and

Computer Science
Oregon State University

Corvallis, OR 97331
creswick@eecs.oregonstate.edu

Lawrence Bergman, Tessa Lau, Vittorio Castelli,
Daniel Oblinger

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
{bergmanl,tessalau,castelli,oblio}@us.ibm.com

ABSTRACT
This paper presents an approach that enlivens existing doc-
umentation, to efficiently support users performing procedu-
ral tasks. We describe an approach that automatically cre-
ates, in real-time, correspondences between the actions per-
formed by users and the steps described in online documen-
tation for the procedure being performed. Using these cor-
respondences, our Macro Illustrator system can highlight the
relevant portions of the documentation and provide the user
with a visual indication of the progress being made. Users
are therefore offered in-context documentation, which helps
them track their current position in the procedure, and an-
swers questions about the next steps to be taken. This ap-
proach works with existing documentation, requiring no ad-
ditional markup on the part of the documentation author. We
present an algorithm for extracting actions from documenta-
tion and aligning these extracted document actions with ob-
served user actions through a system of similarity metrics.
Empirical evaluation of this algorithm shows that it performs
significantly better than a strawman approach.

ACM Classification: I.2.7 [Artificial Intelligence]: Natural
Language Processing - Text Analysis. K.6.1 [Management
of Computing and Information Systems]: Project and People
Management - Training.

General Terms: Algorithms, Documentation, Human Fac-
tors

KEYWORDS: computer-based training, information extrac-
tion, online documentation, online help systems

1. INTRODUCTION
Computer users are routinely confronted with ancillary tasks,
such as configuring network settings, setting up a develop-
ment environment, and creating e-mail filters, that can affect
their productivity. Some rare tasks are performed so infre-
quently that users must resort to documentation or to exter-
nal help to be able to accomplish them. Collectively, these
tasks impose a burden on time and resources that can have a
negative impact on the users’ actual responsibilities. There

are two approaches that are commonly used to mitigate this
problem: documentation and automation.

Detailed documentation, in either electronic or printed form,
typically consists of formatted text accompanied by images
of the graphical user interface (GUI), and provides a vi-
sual representation of the associated procedure. These doc-
uments, however, are static sources of information and lack
the interactive nature of the interface with which the user is
working. A user who relies on documentation is required to
make the correspondence between the document and the ap-
plication’s GUI. This task can be challenging even for mod-
erately complex procedures, and is further complicated by
the all too common phenomenon of documentation obsoles-
cence, and by the variability of the application’s appearance
due to differences in user preferences and environment con-
figuration. In a previous study [14] we observed that these
discrepancies between the documentation and the interface
have a detrimental effect on users’ ability to complete docu-
mented procedures successfully. Moreover, users tended to
miss portions of the instructions, particularly instructions in-
volving conditional branches. In the study, we noticed that
users had difficulty completing tasks successfully in general,
and that in particular they commonly lost track of their posi-
tion within the procedure.

The need for good documentation or for external support
could be completely obviated if effective task automation
were widespread. There are two main approaches to task au-
tomation: programming (e.g., scripting) and macro record-
ing. Building a program that guides a user through a pro-
cedure, for example, by means of a scripting language, is in
general an onerous task. The programmer must be careful
to account not only for the procedure structure, but also for
the variability of the user interfaces required by the proce-
dure. Macro recording provides a cheaper and quicker al-
ternative to automation, but comes with severe limitations.
A macro recorder observes a user performing a task by in-
teracting with a GUI. It records every user action, and pro-
duces a “macro”, namely, a description of the actions that can
be repeated at a later time. Macro recorders do not require
programming, and building a macro is only as expensive as
performing the corresponding procedure. However, macro
recorders are typically not robust with respect to variations
in the appearance of the application’s GUI, and can capture
only trivial procedure structure.

Widespread task automation is not a reality at this point in

1

time, and therefore the need for good, effective documenta-
tion is very much a reality.

The presence of documentation alone, however, does not re-
solve all of the problems that plague users when performing
these ancillary tasks, there is a need for more intelligent help
systems. The root of such an intelligent help system is in
the ability to convey what is going on to the user, and what to
do next. Users manually performing procedures may become
lost and need assistance to find their location in the documen-
tation they are using. Static instructions could benefit from a
tie between documentation and the actions being performed
on the interface. Currently, an enormous amount of online
documentation exists for myriad tasks; however, as men-
tioned above, the user is required to build correspondences
between steps in the documentation and the relevant portions
of the application interface. Some intelligent help systems,
such as Follow-me wizards [2] and HelpTalk [19, 20] remove
this burden from the user by generating documentation au-
tomatically. These dynamically generated documents are in
the form of human-readable scripts, in the case of Follow-me
wizards, or in the form of answers to very specific questions
about the user interface, in the case of HelpTalk.

This paper addresses the problem of incorporating existing
documents for use in intelligent help systems. Our approach
provides users with a guide as they perform actions, this
guide is based on documentation. To accomplish this, we
have designed algorithms that autonomously extract actions
from legacy documentation as well as align user actions with
the extracted actions. The implementation of these algo-
rithms, Macro Illustrator, is also presented here along with
an empirical evaluation of the alignment algorithm applied
to a corpus of on-line documentation.

The organization of the rest of the paper is as follows. Sec-
tion 1.1 describes the Macro Illustrator interface and outlines
the benefits of such a system. In Section 2 we discuss the re-
lated work, Section 3 describes the algorithm developed and
Section 4 presents a comparison of our algorithm with two
straw-man approaches. Section 5 contains conclusions and
describes areas for future work.

1.1 The User Experience
Macro Illustrator has been implemented as a plug-in for the
Eclipse Workbench1. This plug-in behaves similarly to the
Eclipse help system, Figure 1 shows the Macro Illustrator
interface with a simple procedure loaded.

For example, Alice is a software engineer who periodically
needs to modify build settings to account for changes in an
ongoing project. When this happens she opens a help docu-
ment for configuring projects in Eclipse. This starts Macro
Illustrator. As she performs the first step, by choosing “Pref-
erences” from the “Window” menu, Macro Illustrator high-
lights the first step in the procedure (shown in Figure 1). Af-
ter each action is performed, the highlighted portion of the
document moves along with Alice’s actions, keeping track
of her location in the procedure. When Alice reaches Step 4,
rather than adding or removing projects, she instead selects

1The Eclipse Workbench [10] is an application platform developed by
IBM.

Figure 1: The Macro Illustrator interface, displaying a
procedure that a user is performing. The first step in
this procedure was performed by the user and subse-
quently highlighted by the system.

a project and clicks the “Up” button to change the project’s
build order. Macro Illustrator realizes that she has skipped
Step 4, and highlights Step 5, correctly keeping pace with
Alice. Alternatively, Alice’s build order may have already
been correct, in which case she would perform Step 6 by
clicking “Ok”. Macro Illustrator then skips over both steps 4
and 5, highlighting Step 6.

By watching the user, Macro Illustrator follows in this man-
ner as long as it is activated. The example above addresses
a relatively simple procedure, however with more complex
tasks we anticipate that the benefits of an automatic guide
will increase greatly. Complex conditional actions and sub-
tasks can both cause confusion with users, however either
case could be managed with Macro Illustrator.

Macro Illustrator provides the following benefits over current
technology:

• Macro Illustrator can help the user keep track of his or her
progress though the procedure, of the accomplished sub-
tasks, and of the steps that still need to be taken.

• Macro Illustrator processes documentation autonomously,
extracting actions from the documents without requiring
any additional markup. This allows legacy documentation
to be used without modification.

• Macro Illustrator connects user actions directly to action

2

descriptions in documentation by providing immediate vi-
sual feedback after each user action.

2. RELATED WORK
The intent of Macro Illustrator is to make software proce-
dures easier to perform. This goal is shared by various on-
line help systems that range in complexity from static docu-
mentation to complex architectures that monitor a user’s ac-
tions to predict his or her motives. The distinctions between
Macro Illustrator and static documentation should be clear
from the introduction and the example. Here we examine
more complex computer help systems.

The Apple Guide [1], presents users with a step-by-step pro-
cedure. The method of interaction with the Apple Guide
is different from that of Macro Illustrator, our system en-
hances existing documentation, but the Apple Guide is pri-
marily intended to provide automation. Despite the automa-
tion of Apple Guide scripts, user interaction can still be
guided by “coach-marks” that highlight on-screen widgets
during procedure execution. These coach-marks are similar
to the highlighting provided by Macro Illustrator; however,
Apple Guide scripts must be carefully hand-authored by ex-
perts. The coaching provided by the Apple Guide is also
independent of legacy documentation.

Eclipse provides a tool similar to the Apple Guide called
Cheat-sheets [9]. Cheat-sheets engage users in a dialog,
guiding them through instructions. These two approaches
to automation and documentation differ in that Cheat-sheets
can be used in a mixed-initiative manner. Users may either
play each step of the cheat-sheet by clicking on a “Play” but-
ton, or he or she may perform the step manually. In either
case, the cheat-sheet will keep pace with him or her. Like
Apple Guide scripts, cheat-sheets must be meticulously cre-
ated by experts, melding the procedure steps with documen-
tation manually. Macro Illustrator autonomously performs a
task similar to that of a cheat-sheet programmer, on existing
documentation.

Horvitz, et al. created Lumière [8], an agent that retrieves
appropriate documentation when the user exhibits specific
behaviors. Lumière utilizes a Bayesian network that was
built by observing user behaviors in Microsoft Excel. The
agent watches all the user actions, predicting the user’s goal
at each step. When the user appears to be pursuing certain
goals, such as searching the Excel menus, Lumière interrupts
the user and offers relevant documentation. This behavior is
complementary to Macro Illustrator; once the documentation
has been located and presented to the user, Lumière’s task is
over. Lumière identifies documentation, while Macro Illus-
trator helps the user once the appropriate documentation has
been retrieved.

Other techniques for assisting users with tasks have also
been explored. Forms/3, a spreadsheet programming lan-
guage [3, 4], focuses on integrating techniques from the area
of professional software engineering with end-user program-
ming languages. This approach, termed End-User Software
Engineering, uses primarily visual techniques to help users
validate their spreadsheets. One technique, called Surprise-
Explain-Reward uses a system of intelligent tool tips to pro-

vide in-context help that changes dynamically based on the
state of the system. Wilson et al. have demonstrated that the
Surprise-Explain-Reward system is sufficient to educate end-
users in the software engineering devices built into Forms/3
[21]. This type of education bridges the gap between docu-
mentation and the interface at the expense of specificity. The
tool-tips provide very general assistance regarding the inter-
face, unlike Macro Illustrator, which offers help with execut-
ing specific procedures.

Sukaviriya presents a dynamically generated help on specific
interface widgets in Cartoonist [18, 19], and later HelpTalk
[20]. Based on a model of the user interface, these systems
are meant to answer user questions about specific widgets in
the interface. The Whyline [13] answers similar questions
about program behavior in the Alice programming environ-
ment. In Alice, users are able to ask “Why did...” and “Why
didn’t...” questions about runtime failures. Ko and Myers
have shown that the Whyline improves debugging perfor-
mance, however no work has been done to extend this ap-
proach to standard computer use.

3. APPROACH
Our goal is to enliven documentation without requiring any
special markup in the documentation. To this end, Macro
Illustrator needs the ability to automatically extract actions
from the documentation and then match these document ac-
tions with the corresponding actions performed by a user
(termed user actions). Because of the dynamic nature of
the visual feedback, each user action must be immediately
aligned with the corresponding document action and dis-
played to the user. The process of performing this mapping
between document actions and user actions is decomposed
into a sequence of subgoals, which are briefly described here
and discussed in further detail in the following sections.

First, a Document Preprocessor analyzes the documentation
to find locations in the documented procedure that are likely
to be procedure steps. Second, the interactions between the
user and the application are recorded by an Instrumented En-
vironment that abstracts them into user actions. The most
recently demonstrated user actions and the annotated doc-
ument are then correlated by an Alignment Engine, which
creates the desired correspondence. Finally, the Document
Viewer highlights the section of text identified by the Align-
ment Engine, visually indicating the action in the procedure
that the user just performed. Figure 2 shows the interactions
and dependencies between these modules.

3.1 Document Preprocessor
The first functionality of Macro Illustrator is to process ev-
ery new document, to extract action descriptions from the
text. Typically, documentation is created with human read-
ers in mind, and is therefore only semi-structured. In order
to support legacy documentation, Macro Illustrator must act
fully autonomously, extracting information from these semi-
structured documents without any additional input. Because
these documents are not strictly structured, and because of
the ambiguous nature of the English language, this step ini-
tially appears as difficult as the general natural language
processing problem, the description of which is beyond the
scope of this paper. As a reference for the reader, we men-

3

Figure 2: The four-part architecture of Macro Illustra-
tor. Modules are depicted as rectangles, and commu-
nication between modules follows the arcs.

tion McCord’s system [16, 17], which uses slot grammars to
build deep parsers for natural language processing.

A deep parser, such as the slot grammar approach mentioned
above, can extract detailed information about the steps in a
procedure. However, such a parser is also prone to errors
due to required background knowledge or poor English in the
documentation. (Translated documentation is a prime exam-
ple of the later case.) One example where McCord’s deep
parser fails to meet the needs of our domain is the action
description: “Open the print dialog and select preferences.”
This command is ambiguous, and the term “select” is often
parsed as an adjective, but it is actually being used as a verb.

The parsing problem is further complicated because many
documented procedures contain meta-information about the
procedure, or background information about the task at hand.
This additional information may help the user determine
when a possible procedure is applicable, or direct actions that
are outside the scope of the environment (for example, con-
figuring hardware). This additional content is not directly
applicable to the procedure steps, and should not be high-
lighted for the user. (Such information may still be of value
to the user, and is displayed.) The Document Preprocessor
filters this meta-information by annotating the portions of
the document that appear to be instructional. These anno-
tated portions of the document are then further processed to
extract the action(s) described in those sections of the doc-
ument. The annotated portions are later highlighted by the
Document Viewer when the document actions are aligned
with demonstrated user actions.

To avoid the issues with deep language parsing (described
above), we chose to take advantage of the semi-structured
nature of online documentation to extract actions. Through
an informal examination of instructional documentation from
various sources, including 18 procedures from the Eclipse
online help system, randomly selected IBM RedBooks2, and
various web-based documentation sources, we found that
nearly all instructions are presented in bulleted or enumer-
ated lists. Based on this, our approach first identifies ele-

2RedBooks are exhaustive documents describing complex procedures
such as configuring database systems and web servers.

ments of such lists. Each list item is considered a potential
document action. In the case of nested lists, the content of the
outer list prior to the first element of the nested list is iden-
tified. This filters much of the meta-information from the
documentation, leaving only the potential document actions.

These potential document actions are then searched for the
occurrence of verbs from a list of action verbs, termed go-
verbs. (The creation of this list is discussed in Section 4.)
Each occurrence of a go-verb becomes one action in the an-
notated document, and that action is associated with the text
from the list item containing the go-verb. When there is
more than one occurrence of a go-verb in a list item, a docu-
ment action is extracted for each instance of a go-verb. List
items that contain no go-verbs are not annotated, and there-
fore these items are not considered by the Alignment En-
gine. Each annotated step contains one go-verb and the cor-
responding text from the documentation. Included in these
annotations is the location and length of the descriptive text
for each action.

3.2 Instrumented Environment
To determine what step the user is on, Macro Illustrator com-
pares the two types of actions previously described: docu-
ment actions and user actions. Each widget, such as a button,
menu, or checkbox, triggers an event when it is activated.
These basic widget events correspond to the instructions in
online documentation. For example, the instruction: “Click
Ok” is commonly found in instructional documents, and it
corresponds directly to the event of a user clicking on a but-
ton labeled “Ok”.

Each recorded action consists of two parts: The type of ac-
tion performed, which is dependent on the type of widget
that was activated, and the descriptive text associated with
that particular widget. As each action is performed the ac-
tions are stored in a list, which we term a trace. This trace
(or partial trace, if the demonstration is not yet complete) is
then given to the Alignment Engine to be aligned with the
documentation.

3.3 Alignment Engine
The core challenge of Macro Illustrator is the creation of a
correspondence between the user actions, recorded by the en-
vironment, and the document actions extracted by the Docu-
ment Preprocessor. The module devoted to this task is called
the Alignment Engine.

This task is similar to many string-alignment tasks—the in-
put to the Alignment Engine consists of two strings (se-
quences) of actions. Each “character” is either a user action
or a document action. There has been a wealth of research
[5, 6, 12] in string matching when the characters of each
string can be immediately checked for equivalence, however,
user actions and document actions are rarely exactly equal.
Jagadish, et al. address the topic of similarity-based queries,
in which characters are similar, but not identical [11]. Their
approach, however, requires specification of a pattern lan-
guage of bounded complexity.

Recall that the Alignment Engine must provide the user with
immediate visual feedback when aligning user actions and

4

document actions. Because of this, each alignment must be
based on the extracted document actions and the user actions
performed so far—the alignment of user actions and docu-
ment actions is of no use to the user after his or her task is
complete, so this alignment must be performed as soon as the
user actions are performed.

We have designed an algorithm that performs this alignment
by calculating a similarity score for each possible pairing of
demonstrated user actions with document actions from the
documentation. The calculated similarity scores are used to
determine the document action that corresponds to the last
user action. This similarity score is determined by the prod-
uct of three similarity metrics:

SimAlign(U, D) = temporal sim(U, D)

× description sim(U, D)

× action type sim(U, D)

Where U and D are a user action and document action, re-
spectively. The three similarity metrics, temporal similar-
ity, description similarity and action type similarity, are de-
scribed below.

Temporal similarity: Software help procedures are predom-
inantly designed to be read and performed in order. There-
fore, intuitively the nth action performed by the user is
likely to correspond to an action near the nth action de-
scribed in the documentation. This intuition is maintained
by the Alignment Engine through a temporal similarity
metric. The index of the user action is known, and can be
used to determine a likely window of actions in the doc-
umentation. A Gaussian distribution is used to calculate
a similarity between the current user action and all doc-
ument actions. The mean and standard deviation for this
Gaussian distribution are chosen in the following way: To
account for optional steps, such as Step 4 in Figure 1, the
temporal similarity metric uses a mean equal to the index
of the document action immediately after the document ac-
tion aligned with the previous user action. Specifically, if
the user action Ak is aligned with the document action Dl,
then the temporal similarity metric for action Ak+1 will
center on the document action Dl+1. In all cases, the stan-
dard deviation of the distribution is set to be one third the
length of the documented procedure because this ensures
a positive temporal similarity score for all document ac-
tions (a similarity score of 0 would nullify the effects of
the other two similarity metrics).

Description similarity: Recall from Section 3.2 that each
document action consists of a section of text taken directly
from the documentation. This text often describes the wid-
get with which the user should interact, and some of the
context for that widget. Additionally, each widget in the
interface typically has a textual label, or other descriptive
text associated with it (for example, tool-tips). This de-
scriptive text is collected by the instrumented environment
when the user demonstrates an action. In this way two lists
of descriptive words are collected, one list for the docu-
ment action (Wd) and one list for the user action (Wu).

The description similarity (Sd) of two actions is the nor-
malized word-overlap between these two lists of words:

| Wd ∩ Wu |

| Wd | + | Wu |

Word overlap was used to calculate description similar-
ity because the widget titles (such as the words “Ok” and
“Cancel” commonly found on buttons) are usually written
verbatim in documentation, but occur relatively uncom-
monly in the associated explanatory text.

Action type similarity: Instructional documentation for soft-
ware procedures typically uses a fixed vocabulary when
describing actions. We collected a set of these action words
through examination of 18 software procedures from the
Eclipse on-line help documentation. This set then formed
the list of go-verbs (mentioned in Section 3.1 and used to
inform the Document Preprocessor). Because the num-
ber of widgets is relatively small, and most widgets are
acted upon in unique ways, this collection of verbs is also
useful in predicting the similarity of actions. While the
user’s physical action is usually the same (depressing the
left mouse button), the name given that action by the doc-
umentation is often unique to the type of widget the action
is to be performed on. For example, users are instructed
to click on buttons, and check check boxes. We combined
the go-verbs with more specific actions collected from the
interface to build an ontology of actions, in which the hi-
erarchy represents the the intuitive relationships between
action types. This ontology is shown in Figure 3.

Action type similarity is calculated by indexing two ac-
tion types into the ontology in Figure 3. One action type
is extracted from the documentation (a go-verb), the other
action type comes from the user’s action on the interface.
Indexing into the ontology returns a pointer to the cor-
responding node for that action type. The length of the
shortest path between two nodes in the ontology can be
easily computed. This length is calculated for all pairings
of the current action and document actions and the result-
ing scores are normalized. Because similar actions are near
each other in the ontology the normalized scores are com-
plemented to obtain a similarity score.

Each similarity metric estimates the probability that the user
action matches the given document action. The final similar-
ity score for a particular pairing of user action Uk and docu-
ment action Di is the vector of values of SimAlign(Uk, Di)
for all i. This generates a similarity score for each Di for
a given Uk. Next, the user action Uk is aligned with the
document action Dm that has the highest similarity score.
The system then instructs the Document Viewer to highlight
the section of the documentation corresponding to the chosen
document action Dm.

3.4 Document Viewer
The user interface to Macro Illustrator is a window termed
the Document Viewer, that takes the place of the standard
Eclipse on-line help browser. Through the interface provided
by the Document Viewer, the user is able to load and navi-
gate HTML documentation in a manner similar to that of the

5

Figure 3: The action type ontology.

Eclipse help system. In addition to this standard function-
ality, the Document Viewer provides the visual ties between
the user’s actions and the static images and text of the proce-
dure documentation. It is this visual, interactive guidance—
provided in the context of the user’s working environment—
that sets the Macro Illustrator apart from other on-line help
systems such as RoboHelp [15].

Figure 1 shows the Document Viewer after a user has recorded
the first step of the selected procedure. The user has selected
the “Preferences” menu item from the “Window” menu. As
the user performs a procedure, the highlighted region follows
along with each step the user takes, highlighting the relevant
portions of the documentation and scrolling the document to
keep pace with the user.

4. EVALUATION AND RESULTS
To evaluate the usefulness of the Macro Illustrator system,
we have initially evaluated the Alignment Engine on a corpus
of documented procedures for the Eclipse workbench. This
evaluation provides a quantitative measure of the success of
action alignment, and gives insights into the areas that need
improvement before conducting an in-depth empirical eval-
uation. The SIMILARITY-BASED algorithm was compared
with two other approaches described below.

Many documented procedures are designed to be read from
start to finish, and performed in a linear sequence. Therefore,
it seems reasonable that software procedures would have few
branches, and a very simple algorithm would suffice for the
alignment step of Macro Illustrator. One such algorithm sim-
ply aligns the first user action with the first document ac-
tion, the second user action with the second document ac-
tion, and so on. This algorithm, termed the PURE TEMPORAL
alignment algorithm, generates a temporal mapping between
the demonstrated procedure and the documentation. In this
section we describe a performance comparison between the

SIMILARITY-BASED algorithm and the PURE TEMPORAL al-
gorithm on a test corpus. For a baseline comparison, we also
tested a RANDOM alignment algorithm.

4.1 Data Collection
We randomly selected 50 documents from the Eclipse on-
line help system. The documents selected met the following
criteria:

• Documents must be instructional procedures. Many of the
documents in the Eclipse on-line help contain only ex-
planatory text or reference material (such as tables of short-
cut keys).

• Our instrumentation must support all actions required to
complete the procedure. Drag and drop and editing of file
content are the most common features that our instrumen-
tation does not support.

These documents describe simple procedures in Eclipse. Ex-
ample procedures are: opening files, creating projects, cre-
ating CVS repositories and configuring the Eclipse environ-
ment. While these tasks may seem simple, they are represen-
tative of two key types of procedures: Essential tasks that
may prove problematic to novice users, such as file man-
agement in Eclipse, and; Complex tasks that are performed
rarely, such as configuring a development environment to
make use of local version control systems or modifying the
visual interface of your environment.

The algorithm in Section 3 includes two tunable parameters:
the list of go-verbs and the creation of the action type on-
tology. Because of this, data collection was broken into two
phases: initially a training set of procedures was collected,
then, after tuning the algorithm a test set of procedures was
collected.

The training set consisted of 18 documents, containing pro-
cedures that ranged in size from 3 to 12 steps, with an average
length of 6.44 and standard deviation of 2.43.

The algorithm was tuned in the following way: To collect the
list of go-verbs, the training procedures were read by one of
the authors to collect the action verbs that pertained to actual
actions on the interface. This was done manually to avoid
the erroneous results that may have resulted from automating
this process with a natural language parser. This set was also
relatively small, and the actions found are consistent across
many applications. The selected verbs were: click, check,
uncheck, select, deselect, clear, enter, choose, type, browse
and expand.

The second tunable parameter of the algorithm is the action
type ontology discussed in Section 3.3. The structure and
content of this ontology was based upon the experience of
an expert (one of the authors) performing the procedures as
described in the training set of documentation. The content
of the ontology consists of the list of go-verbs, with some
specialization of certain actions. For example, the go-verb
select can be applied to various types of objects. Lists, tree
objects, and menu items are all “selectable” objects. The
information about which type of selection action occurred is
recorded by the instrumentation and used when indexing into
the ontology. After collecting the content for the ontology,

6

the structure was determined from the expert’s background
knowledge about interfaces and action types.

After the algorithm was tuned, a test set was used to evalu-
ate our approach. This test set consisted of the remaining 32
procedures. To preserve validity, no algorithm modifications
were made after viewing the test set. These 32 documents
ranged in size from 2 to 12 steps, with an average length of
5.25 and standard deviation of 2.32. These procedures were
used to test three algorithms, the SIMILARITY-BASED align-
ment algorithm, the PURE TEMPORAL alignment algorithm,
and the RANDOM alignment algorithm.

4.2 Evaluation
The SIMILARITY-BASED alignment algorithm was evaluated
by running it on the test set of 32 sample procedures and
comparing its performance with that of the PURE TEMPO-
RAL and RANDOM approaches. The RANDOM algorithm
aligns each user action Ui to a document action Dr uniformly
at random. The PURE TEMPORAL approach, as discussed
above, aligns each user action Ui with the document action
at the same index, Di. Given that the Eclipse on-line help
procedures are relatively short, and describe simple proce-
dures, it seems reasonable that the PURE TEMPORAL algo-
rithm should perform well. But whenever branching does
occur, we expect the SIMILARITY-BASED algorithm to stay
on track, keeping pace with the user’s actual behavior when
document actions are skipped. Whenever the user performs
additional steps not described in the document, skips steps,
or performs steps out of order, the PURE TEMPORAL algo-
rithm will fail to maintain pace with the user.

To validate the algorithms, sample user input and oracles
for each test procedure were created. Each procedure was
recorded once, without feedback from Macro Illustrator. Af-
ter recording a procedure, an oracle was created by manu-
ally inspecting the recorded data from the step performed,
the text of the document, and the document annotations cre-
ated by the Document Preprocessor. Each oracle consists
of a mapping from user actions to document actions. Each
user action is represented by its index in the demonstrated
procedure. Similarly, each document action is represented
by that action’s index in the documented procedure. Due
to discrepancies between the documentation and the inter-
face, some user actions may have no corresponding docu-
ment action. These are represented in the oracle by mapping
to a document index -1. For example, the sequence of pairs:
(0, 0)(1, 0)(2, 2)(3, 3)(4,−1) is an oracle for a five step pro-
cedure. The first two demonstrated user actions both corre-
spond to the first document action (this could occur due to
obsolete documentation, or parsing errors). The third and
fourth user actions map to the third and fourth document ac-
tions, and the last user action (U4) is not represented by any
of the steps extracted from the documentation.

As shown above, it is possible that multiple user actions
match the same document action, in which case that docu-
ment action is simply used multiple times. If the user actions
are adjacent, the ideal behavior of the Document Viewer is to
keep the user guide (the highlighting) stationary.

A drawback to all of the algorithms tested is that they do not

RANDOM PURE SIMILARITY-
TEMPORAL BASED

Correctly aligned:
Steps/Total 32/168 90/168 103/168

(19.05%) (53.57%) (61.31%)
Procedures/Total 0/32 2/32 6/32

(0.00%) (6.25%) (18.75%)

Table 1: The number of steps and complete proce-
dures correctly aligned by each of the three algorithms
evaluated.

allow for actions that are not described by the documentation
(such as U4 above). Therefore, these user actions are always
aligned incorrectly.

Each algorithm was applied to the original documentation for
each procedure along with the demonstrated user traces. The
alignment algorithms were supplied with traces one action at
a time to simulate the way the trace would be seen by the
algorithms if a user were actively using the system. In this
manner, every user action was aligned to a document action.
The resulting alignments were then compared with the hand-
generated oracles.

Each alignment was considered individually—a predicted
alignment that would have yielded the desired user experi-
ence was considered to be correct. Recall from Section 3.1
that some document actions are represented by the same por-
tion of the document. When this is the case, the correct be-
havior is to maintain the same highlighting for both steps.
Consider two document actions Da and Db that are contained
in the same sentence in the document. If the user performs
the action described by Da, and it is mistakenly aligned with
action Db, the visualization remains the same as if the ac-
tion had been correctly aligned. It is also possible that the
user’s next action is also aligned with the document action
Db. Our evaluation is based on the user experience, allow-
ing for a shifted alignment like the one described above as
long as the user experience is unchanged. Consider the ora-
cle given above: (0, 0)(1, 0)(2, 2)(3, 3)(4,−1). If the docu-
ment actions D2 and D3 are both described by the same sen-
tence (such as “Check the ’print to file’ checkbox and click
Ok”) then both of the following alignments are also valid:
(0, 0)(1, 0)(2, 2)(3, 2)(4,−1) and (0, 0)(1, 0)(2, 3)(3, 3)(4,−1).
Neither of these alignments match completely with the ora-
cle, but all three alignments (the oracle and the generated
alignments) generate the same user experience. Therefore,
all three alignments are considered correct in our evaluation.

4.3 Results
Table 1 displays the number of steps and procedures accu-
rately aligned by each of the three algorithms. Recall that a
step is correctly aligned if the alignment causes the same vi-
sualization as the alignment stated in the oracle. A procedure
is correctly aligned if and only if every step in the procedure
is correctly aligned.

The RANDOM alignment algorithm failed to correctly align
any procedures, as expected. The performance of RANDOM
should come as no surprise. Since the average procedure
length was just over five steps, and RANDOM uses a uni-

7

form distribution for alignment, roughly 20% accuracy is ex-
pected. The PURE TEMPORAL algorithm performed much
better, classifying 53.57% of the steps correctly. However,
only two of the 32 procedures were classified correctly. This
indicates that the procedures are actually not predominantly
linear procedures. Rather, nearly every procedure contained
at least one optional step. Recall that whenever the user per-
forms additional steps not described in the document, skips
steps, or performs steps out of order, the PURE TEMPO-
RAL algorithm will fail to maintain pace with the user. The
SIMILARITY-BASED algorithm is more robust to these per-
turbations, and this is reflected in its performance.

The SIMILARITY-BASED algorithm outperformed both the
RANDOM and PURE TEMPORAL algorithms both in correctly
classified steps, and correctly classified procedures. The
performance of the SIMILARITY-BASED algorithm is sig-
nificantly better than both the RANDOM algorithm (p =
2.8031 × 10−6) and the PURE TEMPORAL algorithm (p =
0.024776)3.

The SIMILARITY-BASED algorithm, with 61.31% accuracy
made a number of errors, many of which may be preventable.
We have identified the following four causes of error:

Unlabeled widgets: Some widgets in the Eclipse workbench
do not have any descriptive text associated directly with the
widget. Text fields are a prime example of this. Semantic
labels are present in the interface; however, there is no syn-
tactic tie between the text on the label and the widget that
generates the user event that is recorded. Gaeremynck, et
al., addressed a similar problem with MORE [7], a sys-
tem for extracting the semantic relationships from HTML
forms. However, designing a general-purpose algorithm to
find the relationships between labels and widgets is still an
open question.

Similar adjacent actions: The presence of adjacent docu-
ment actions that are very similar, such as repeated instruc-
tions to “Click Next” frequently cause difficulty. This is
most problematic when one or more of the actions are op-
tional. It is not always possible for the similarity metrics
to differentiate between actions that are similar. Incorpo-
rating contextual information, such as the full state of the
interface, may mitigate this problem. Documented actions
often include some contextual information, such as win-
dow titles, to help users disambiguate on-screen widgets.
The same information could be used by a similarity met-
ric.

Aggregate actions: Some steps in a procedure are concisely
described, yet tediously executed. For example, the in-
struction: “Select the project(s) you wish to delete.” is
extracted as one document action, however, the user may
need to select a large number of projects, generating a new
user action with each selection. If the number of extra ac-
tions is large enough, the temporal similarity metric will
dominate the similarity calculation resulting in an incor-
rect alignment.

3A single-tailed Wilcoxon test was used to test for significance.

Figure 4: The number of procedures classified with a
given number of errors.

Parsing difficulties: Many documents are written in a well-
controlled manner, with consistent use of verbs and ob-
jects throughout the text. Some instructions, however, do
not fit this pattern. The instructions: “Finish entering your
search options, for example, to scope the search to speci-
fied working sets.” translates to checking and unchecking
a number of checkboxes, but there is no indication in the
text of the type of action needed. Because of this, the Doc-
ument Preprocessor did not extract an action for this step
in the documentation.

Figure 4 shows the accuracy of the SIMILARITY-BASED al-
gorithm in detail. The 32 procedures aligned have been di-
vided into groups based on the number of errors made during
the alignment. Six procedures were aligned correctly (0 er-
rors), eleven procedures were aligned with one error, and so
on. 24 of the 32 procedures (75%) were aligned with two or
fewer errors, indicating that the number of correctly aligned
procedures could be increased greatly by resolving some of
the issues above. For example, incorporating a larger portion
of the screen state when comparing words with the docu-
mentation may provide the description similarity metric with
enough information to differentiate similar widgets. This
would be of greatest benefit when aligning similar adjacent
actions, and when dealing with text fields (a problematic wid-
get because of the absence of labels).

5. CONCLUSIONS
This paper has presented a system for assisting users in per-
forming software procedures, and in particular, an approach
for integrating documentation with the procedure. This ap-
proach keeps track of a user’s position in the documentation
as he or she performs each task and communicates this infor-
mation to the user through visual indicators in the document.
The described approach does not require additional markup,
and can illustrate procedures with existing documentation as
they are performed. This novel use of legacy documentation
provides users with visual assistance when performing com-
plex procedures.

There are a number of directions for future work. We plan
to evaluate the Macro Illustrator system with user studies

8

to compare our approach with standard training techniques,
and to determine users’ tolerance for error. The findings
from these studies will drive the refinement of Macro Illustra-
tor. Our evaluation of Macro Illustrator also brought to light
four elements of documentation that proved to be difficult
for our approach to handle. These difficulties present areas
for improvement. Incorporation of the context of each user
action into the similarity calculations may improve perfor-
mance with unlabeled widgets and similar adjacent actions.
The difficulties with aggregate actions are due to the tem-
poral similarity metric; weighting the contribution of each
similarity metric would reduce this issue. Finally, additional
experience with natural language processing techniques is re-
quired to ease the problems encountered when extracting ac-
tions from documentation.

6. ACKNOWLEDGMENTS
This work has been funded in part by the EUSES Consortium
via the National Science Foundation (ITR-0325273). Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Founda-
tion.

REFERENCES
1. Apple Computer Inc. Apple Guide Complete: Design-

ing and Developing Onscreen Assistance. 1996.

2. Lawrence Bergman, Vittorio Castelli, Tessa Lau, and
Daniel Oblinger. DocWizard: A system for authoring
follow-me documentation wizards. In UIST ’05: Pro-
ceedings of the 18th annual ACM SIGGRAPH sympo-
sium on User interface software and technology, Seat-
tle, WA, September 2005. [in submission].

3. Margaret Burnett, J. William Atwood, Rebecca Djang,
Herkimer Gottfried, James Reichwein, and Sherry
Yang. Forms/3: A first-order visual language to explore
the boundaries of the spreadsheet paradigm. Journal of
Functional Programming, 11(2):155–206, March 2001.

4. Margaret Burnett, Andrei Sheretov, and Gregg Rother-
mel. Scaling up a ‘What You See Is What You Test’
methodology to spreadsheet grids. In Proceedings of
the IEEE Symposium on Visual Languages, pages 30–
37, Tokyo, Japan, September 1999.

5. David Eppstein, Zvi Galil, Raffaele Giancarlo, and
Giuseppe Italiano. Efficient algorithms for sequence
analysis. In SEQS: Sequences ’91, 1991.

6. Christos Faloutsos, M. Ranganathan, and Yannis
Manolopoulos. Fast subsequence matching in time-
series databases. In Proceedings 1994 ACM SIGMOD
Conference, Mineapolis, MN, pages 419–429, 1994.

7. Yves Gaeremynck, Lawrence D. Bergman, and Tessa
Lau. MORE for less: model recovery from visual inter-
faces for multi-device application design. In Proceed-
ings of the 8th International Conference on Intelligent
User Interfaces, pages 69–76. ACM Press, 2003.

8. Eric Horvitz, Jack Breese, David Heckerman, David
Hovel, and Koos Rommelse. The Lumière project:
Bayesian user modeling for inferring the goals and
needs of software users. In In Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelli-
gence, pages 256–265, Madison, WI, July 1998.

9. IBM. The Eclipse Platform Plug-in Developer Guide.
http://help.eclipse.org/help30/index.jsp, Last accessed:
November 30, 2004.

10. IBM. The Eclipse Workbench. http://www.eclipse.org,
Last accessed: December 6, 2004.

11. H. V. Jagadish, Alberto O. Mendelzon, and Tova Milo.
Similarity-based queries. In Proceedings of the 14th
Symposium on Principles of Database Systems, pages
36–45, 1995.

12. Jong Y. Kim and John Shawe-Taylor. Fast string match-
ing using an n-gram algorithm. Software — Practice
and Experience, 24(1):79–88, 1994.

13. Andrew J. Ko and Brad A. Myers. Designing the why-
line: a debugging interface for asking questions about
program behavior. In CHI ’04: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 151–158, New York, NY, USA, 2004.
ACM Press.

14. Tessa Lau, Lawrence Bergman, Vittorio Castelli, and
Daniel Oblinger. Sheepdog: learning procedures for
technical support. In Proceedings of the 9th Interna-
tional Conference on Intelligent User Interface, pages
109–116. ACM Press, 2004.

15. Macromedia. Robohelp.
http://www.macromedia.com/software/robohelp/
last accessed: April 1, 2005.

16. Michael C. McCord. Slot grammars. Computational
Linguistics, 6(1):31–43, 1980.

17. Michael C. McCord. Slot grammar: A system for sim-
pler construction of practical natural language gram-
mars. In Proceedings of the International Sympo-
sium on Natural Language and Logic, pages 118–145.
Springer-Verlag, 1990.

18. Piyawadee Sukaviriya. Dynamic construction of ani-
mated help from application context. In UIST ’88: Pro-
ceedings of the 1st annual ACM SIGGRAPH sympo-
sium on User Interface Software, pages 190–202. ACM
Press, 1988.

19. Piyawadee Sukaviriya and James D. Foley. Coupling
a ui framework with automatic generation of context-
sensitive animated help. In UIST ’90: Proceedings
of the 3rd annual ACM SIGGRAPH symposium on
User interface software and technology, pages 152–
166. ACM Press, 1990.

9

20. Piyawadee N. Sukaviriya, Jeyakumar Muthuku-
marasamy, Anton Spaans, and Hans J. J. de Graaff.
Automatic generation of textual, audio, and animated
help in uide: the user interface design. In AVI ’94:
Proceedings of the workshop on Advanced visual
interfaces, pages 44–52, New York, NY, USA, 1994.
ACM Press.

21. Aaron Wilson, Margaret Burnett, Laura Beckwith,
Orion Granatir, Ledah Casburn, Curtis Cook, Michael
Durham, and Gregg Rothermel. Harnessing curiosity to
increase correctness in end-user programming. In Pro-
ceedings of the ACM Conference on Human Factors in
Computing Systems, pages 305–312, Fort Lauderdale,
FL, April 2003.

10

