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Surrogate Cost Techniques in Classification and Regression Analysis

S. L. Hantler
TJ Watson Research Center
Yorktown Heights, NY 10598

Abstract

We study the problems of classification and regression analysis when the set
of classes or parameters is a σ-compact metric space, by means of surrogate cost
minimization. We give a natural sufficient condition for the optimal classifier or
estimator to be of the form T f when the function f minimizes a cost function
which is a surrogate for the actual loss defined on pairs of classes. Sequences of
functions whose expectations converge to the infimum of the expectations of all
such functions can then be found by minimizing the sample averages of training
sets. This result extends and sharpens previous results.

1 Introduction

Our interest is to classify or estimate a parameter of objects by minimizing a surrogate
cost of functions defined on those objects rather than by minimizing the distance, usually
called actual loss, between the actual class or parameter of the object and its estimated
class or parameter. In this section, we describe the problem informally and in section
2 we establish the notation and assumptions that we will use throughout the paper.
In section 3 we state the problem precisely and give the main mathematical results of
this paper which are applied to the problems of classification and regression analysis in
sections 5 and 6.

We are given a set, Ω, of objects and a set, Y , of classes (in classification) or param-
eters (in regression analysis). There is a probability distribution, P, on the objects and,
corresponding to each object, ω ∈ Ω, a probability distribution, π(ω), on the classes or
parameters, corresponding to the probability distribution of classes or parameters given
that object. These combine in an intuitively clear and standard way to determine an
overall probability, P, on the product space, Ω × Y . For each object ω ∈ Ω, we seek to
find a good estimate, Λ(ω) ∈ Y .

The quality of the estimate is measured by a loss, L : Y × Y → R, where L(y1, y2)
is the loss incurred by incorrectly estimating y2 by y1. The goal is to find a function,
Λ : Ω → Y so that the expected loss, E[L(Λ(ω), y)] is as small as possible. In the two
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problems we are studying, symmetric loss classification and regression analysis, (Y , L) is
a metric space.

Empirical risk minimization is a technique for finding Λ, given a finite sample of
pairs {ωi, yi}. In empirical risk minimization Λ is selected from a prespecified set, F , of
candidate functions Ω → Y , such that Λ nearly minimizes the actual loss on the sample.
That is, Λ ∈ F is chosen so that∑

i

L(Λ(ωi), yi)− inf
f∈F

∑
i

L(f(ωi), yi) (1)

is small. For empirical risk minimization to be effective, minimizing the sample loss over
F must be nearly as good as minimizing the actual expected loss, with high probability,
over samples drawn from Ω × Y according to P. This requires that F contain a good
estimator, that minimizing sample loss be effective in minimizing expected loss, and that
the associated minimization problem be tractable. Empirical risk minimization is well
studied in statistical machine learning and in statistics and we will not discuss it further
in this paper.

Our goal is to study another technique for finding Λ, (empirical) surrogate risk min-
imization. In surrogate risk minimization the optimal estimator Λ is the composition
of two functions. There is a prespecified set of functions, F mapping Ω → S, a subset
of the real valued functions on Y , and a prespecified function T : S → Y . In surrogate
risk minimization f(ω)(y) serves as a surrogate loss estimate of the actual loss of using

T ·f(ω) to classify or estimate y. The aim is find f̂ whose expected surrogate loss is small

and choose Λ = T · f̂ . As in empirical risk minimization, this is done on a sample and
f̂ ∈ F is chosen so that ∑

i

f̂(ωi)(yi)− inf
f∈F

∑
i

f(ωi)(yi), (2)

is small. A way to think about it is that we have replaced the problem of minimizing
the expected actual loss, E[L(Λ(ω), y)] over Y valued functions on Ω by the problem of

minimizing the expected surrogate cost, E[f̂(ω)(y)] over S valued functions on Ω. The

method will be successful when the probability that T · f̂(ω) is near the optimal estimator

of ω is nearly 1 when E[f̂(ω)(y)] is small. The purpose of this paper is to give conditions
under which that happens.

As the success of empirical risk minimization depends on the choice of F , in surrogate
risk minimization, the choice of F and of T must be made to ensure that minimizing the
sample surrogate cost is effective in minimizing the expectation of the surrogate cost, that
the associated minimization problem be tractable and that the estimator obtained from
a function with small surrogate cost has small actual loss. An advantage of surrogate
risk minimization is that one may be able to choose a family of surrogate cost functions
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for which the minimization problem (2) is easier than (1), the minimization problem for
the actual loss. For example, when S is convex the minimization problem (2) is convex
with its attendant computational advantages.

We give sufficient conditions on the family F and the function T in countable clas-
sification and in regression analysis on compact, convex subsets of Euclidean space that
ensure that minimizing the sample surrogate cost also minimizes the expected actual
loss. The practitioner can then choose any class of functions dense in F and be assured
that the procedure converges to an optimal solution of the problem, or he may choose a
class of functions well approximated by functions in F and be assured that the surrogate
risk minimization procedure converges to a function which approximates the optimal es-
timator within a known tolerance. These are matters best understood in the context of
specific problems and will not be treated here.

Zhang [3] gave a sufficient condition for S ⊂ Rk and an associated function, T =
argmin : Rk → {1, 2, . . . , k} to be suitable for surrogate risk minimization for zero-one
loss classification of a set of objects into k classes. We are interested in extensions
to countable classification and to regression analysis in Euclidean spaces. The method
employed in [3], relying on the fact that the set of classes is finite and that the loss
function is zero-one loss, does not seem to generalize to the problems of interest here.
We present a method which applies to countable sets (extending the result in [3]) as well
as to regression analysis on compact, convex subsets of Rk. In addition to applying to
a larger class of problems, we feel that our analysis is more straightforward and better
explains what is happening.

To give a unified treatment of our results, we present them in a general setting, but
the reader should have in mind the simple case covered in [3], that of a finite set Y , of
k elements, with L(y1, y2) = 0 or 1 as y1 = y2 or not, often referred to as zero-one loss.
In that case, S ⊂ Rk, a separable metrizable topological vector space, and the Borel
probabilities on Y are the nonnegative elements of S ⊂ Rk whose l1 norms are one. The
reduction of the results in section 3 to this case will be carried out in section 5.

2 Notation and Assumptions

This section establishes notation and conventions which will be used throughout the
remainder of this paper.

We are given a probability space, {Ω, Σ, P}, a topological vector space X , a subset
S ⊂ X and the topological dual X ∗ of X with the strong topology. We also have
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D ⊂ S × X ∗,
M⊂ {µ ∈ X ∗ : ∃s ∈ S 3 〈s, µ〉 < inf

{s:(s,µ)∈D}
〈s, µ〉}

and
{µ ∈M : (s, µ) ∈ D}

is open for each s ∈ S. We denote by F the space of measurable mappings Ω → S, and
by M the space of measurable mappings Ω →M.

Section 3 is devoted to proving Theorems 1 and 2, the main results of this paper.

3 Main Results

We will show now that under suitable conditions on S when the expectations of a certain
sequence of functions converges in mean to the infimum of the expectations of such
functions, then the function values must avoid a certain prohibited set with probability
converging to 1. Several technical details obscure the view. First, we must show that an
auxiliary function is Borel measurable and then we must approximate the means of the
functions by restricting the integration to ‘nice subsets’ of Ω.

Theorem 1. If S is separable, π ∈ M, fj ∈ F and E[〈fj, π〉] → inff∈F E[〈f, π〉] > −∞
then P [(fj, π) ∈ D] → 0.

Proof. Since S is separable it has a countable dense subset, {si : i ∈ N}. For α ≥ 0, i ∈ N
let

Mi,α =

{
µ ∈M : inf

{s:(s,µ)∈D}
〈s, µ〉 − 〈si, µ〉 > α

}
.

If ∅ 6= Mα =
⋃

iMi,α, define σα : Mα → {si : i ∈ N} by

σα(µ) = smin{j:µ∈Mj,α}

and notice that
〈s− σα(µ), µ〉 > α

whenever µ ∈Mα and (s, µ) ∈ D.

We claim that, when Mα 6= ∅ the function σα : Mα → S is Borel measurable. To see

this, since σ−1
α ({sj}) = Mj,α

⋂ (⋃j−1
i=0 Mi,α

)c

, it suffices to show that Mi,α is a Borel set

for every i and α. For each s ∈ S, let Fs : M→ S be defined by

Fs(µ) =

{
〈s, µ〉 (s, µ) ∈ D
∞ (s, µ) /∈ D.
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Since {µ ∈M : (s, µ) ∈ D} is open in the relative topology onM for each s ∈ S and µ →
〈s, µ〉 is continuous, Fs is upper semicontinuous for every s ∈ S. Since inf{s:(s,µ)∈D}〈s, µ〉 =
infs∈S Fs(µ), it follows that inf{s:(s,µ)∈D}〈s, µ〉− 〈si, µ〉 is upper semicontinuous and Mi,α

is an Fσ set.

Suppose ε > 0 is given. Since {si : i ∈ N} is dense in S and M ⊂ X ∗,Mα ↗M as
α ↘ 0, so we may choose α > 0 so that P [π−1(Mα)] ≥ 1− ε

2
and define

f ∗j (ω) =

{
σα · π(ω) ω ∈ (fj, π)−1(D)

⋂
π−1(Mα)

fj(ω) ω /∈ (fj, π)−1(D)
⋂

π−1(Mα)

Then f ∗j ∈ F and since inff∈F E[〈f, π〉] > −∞, we may choose J so large that j > J
implies that εα

2
> E[〈fj, π〉]− inff∈F E[〈f, π〉]. It follows that for j > J

εα

2
> E[〈fj, π〉]− inf

f∈F
E[〈f, π〉] ≥ E[〈fj, π〉 − 〈f ∗j , π〉]

=

∫
(fj ,π)−1(D)

T
π−1(Mα)

〈fj(ω)− σα · π(ω), π(ω)〉dP

≥ α · P
[
(fj, π)−1(D)

⋂
π−1(Mα)

]
≥ α

(
P

[
(fj, π)−1(D)

]
− ε

2

)
.

We conclude that ε > P [(fj, π)−1(D)] completing the proof.

Now, if X is a separable metrizable topological vector space, e.g. a separable normed
linear space, then every one of its subsets is separable, proving Theorem 2.

Theorem 2. If X is separable and metrizable, π ∈ M, and fj ∈ F, E[〈fj, π〉] →
inff∈F E[〈f, π〉] > −∞ then P [(fj, π) ∈ D] → 0.

As discussed in Section 1, important applications of Theorems 1 and 2 are to the
problems of classification and regression analysis. In the next section, we show how these
theorems apply to these problems.

4 Applications

Before proceeding to classification and regression analysis, we specialize Theorem 2 to a
form suitable to those applications.

For the remainder of this paper, we assume that (Y , L) is a σ-compact metric space
and that X = C0(Y), the separable Banach space of continuous real valued functions on
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Y tending to 0 at ∞, with sup norm. Then X ∗ is the Banach space of bounded Borel
measures on Y with total variation norm.

Further, we assume we are given T : S → Y Borel measurable, and T ∗ : C0(Y)∗ → 2Y

so that for each y ∈ Y the set {x∗ ∈ X ∗ : L(y, T ∗x∗) > ε} is open in X ∗.

Finally, we assume M is a subset of the Borel probabilities on Y i.e., nonnegative
Borel measures on Y which assign measure 1 to Y , and that ∀µ ∈M and ∀ε > 0,∃s ∈ S 3∫

Y
sdµ < inf

{s:L(T s,T ∗µ)>ε}

∫
Y

sdµ.

The elements of M are transition probabilities on the pair of measurable spaces,
(Ω, Σ) and (Y ,B(Y)). The pair P and π ∈ M determines a unique probability, P on
{Ω× Y , Σ⊗ B(Y)} as described, for example, in [2].

Corollary 1 is simply a restatement, in this context, of Theorem 2.

Corollary 1. If π ∈ M, fj ∈ F and∫
Ω×Y

fj(ω)(y)dP(ω, y) → inf
f∈F

∫
Ω×Y

f(ω)(y)dP(ω, y) > −∞

then T fj → T ∗π in probability.

We next identify the appropriate spaces Y and S and the appropriate functions T
and T ∗ in the cases of interest. In particular, T ∗ will be chosen so that T ∗µ is the set of
optimal classifiers or estimators of µ. We begin, in section 5, with classification.

5 Classification

Suppose that Y is a countable set. Without loss of generality, we assume Y ⊂ N,
identifying classes with natural numbers. In this case, C0(Y) can be identified with
the set of real valued sequences converging to zero and C0(Y)∗ is the set of absolutely
summable sequences. Choose S ⊂ {x ∈ C0(Y) : x(y) ≥ K ∀y ∈ Y} for some K. Then M
is the set of nonnegative elements of C0(Y)∗ whose sum is 1, and 〈s, µ〉 =

∑
i∈Y s(i)µ(i).

Now, let T : S → Y be defined by T (s) = min{i : si ≥ sk,∀k ∈ Y} and T ∗x∗ be the
set of indices of the maximal elements of x∗. Recall that a measurable function Λ : Ω → Y
is an optimal classifier of ω whenever Λ(ω) ∈ T ∗π(ω) almost everywhere.
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First notice that for each y ∈ Y the set {x∗ ∈ X ∗ : L(y, T ∗x∗) > ε} is open in X ∗. If
∀µ ∈M,∃s ∈ S so that ∑

i∈Y

s(i)µ(i) < inf
{s:L(T s,T ∗µ)>ε}

∑
i∈Y

s(i)µ(i) (3)

then by Corollary 1, if {fj} : Ω → S is chosen so that∫
Ω×Y

fj(ω)(i)dP(ω, i) → inf
f∈F

∫
Ω×Y

f(ω)(i)dP(ω, i) ≥ K

then T fj(ω) converges in probability to an optimal estimator of π(ω) in probability.

When Y is finite, we recover the result of [3], without the unnecessary hypothesis that
S be the range of a continuous function.

Example: Let S be the set of sequences with exactly one nonzero entry, that entry being
negative. It is easy to verify that S satisfies (3) in this case. Notice that the cardinality
of S is the same as that of Y which is obviously best possible, so S is, in some sense,
optimal for countable classification problems. We note that the convex hull of S is −M
when Y is finite. 2

We now apply Corollary 1 to study regression analysis on compact, convex subsets of
Rn.

6 Regression Analysis in Rn

Suppose that Y is a compact, convex subset of Rn, and the actual loss is given by
L(y1, y2) = ‖y1 − y2‖2, often called mean square loss.

Let S ⊂ C0(Y) and M ⊂ {µ ∈ C0(Y)∗ : µ ≥ 0,
∫
Y dµ(y) = 1}, the Borel probabilities

on Y . Then 〈s, µ〉 =
∫
Y s(y)dµ(y).

For s ∈ S define T (s) =
∫
Y ys(y)dλ(y) and for µ ∈ C0(Y)∗ define T ∗µ to be the

singleton set {
∫
Y ydµ(y)}. Recall that a measurable function Λ : Ω → Y is an optimal

mean square error estimator of π(ω) whenever Λ(ω) ∈ T ∗π(ω) almost everywhere.

Of course, for each y ∈ Y the set {x∗ ∈ X ∗ : L(y, T ∗x∗) > ε} is open in X ∗. If
∀µ ∈M,∃s ∈ S so that∫

Y
s(y)dµ(y) < inf

{s:‖T (s)−T ∗µ‖>ε}

∫
Y

s(y)dµ(y) (4)
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then by Corollary 1, if {fj} : Ω → S is chosen so that∫
Ω×Y

fj(ω)(y)dP(ω, i) → inf
f∈F

∫
Ω×Y

f(ω)(y)dP(ω, i) ≥ 0,

then T (fj)(ω) converges in probability P to the optimal estimator of π(ω) in probability.

Example: Assume now that the Lebesgue measure of Y is positive and normalize it,
for notational convenience, to be 1, denoting it by λ. We now assume that M consists
of the Borel probabilities, µ, on Y with Radon-Nikodym derivative µ̂ ∈ L2(Y , dλ) and
‖µ̂‖2 ≤ K.

Let S = {x ∈ C0(Y) : ‖x‖2 ≤ K} and for ε > 0

Dε = {(s, µ) ∈ S ×M : ‖〈s, µ〉s− µ̂‖2
2 > ε}.

An easy calculation shows that inf{s:(s,µ)∈Dε}〈s, µ〉 > −M‖µ̂‖2 ≥ −MK. But, since S is

dense in {µ̂ ∈M : ‖µ̂‖2 ≤ K} and 〈−M bµ
‖bµ‖2 , µ〉 = −M‖µ̂‖2, we have, for every µ ∈M,∃s ∈

S 3 ∫
Y

s(y)dµ(y) < inf
{s:(s,µ)∈Dε}

∫
Y

s(y)dµ(y).

It follows from Corollary 1 that if {fj} : Ω → S is chosen so that∫
Ω×Y

fj(ω)(y)dP(ω, y) → inf
f∈F

∫
Ω×Y

f(ω)(y)dP(ω, y) ≥ −MK

then
P

{
ω : ‖〈fj(ω), π(ω)〉fj(ω)− π(ω)‖2

2 > ε
}
→ 0,

so that

P

{
ω :

∥∥∥∥fj(ω)

‖fj‖1

− π(ω)

∥∥∥∥2

2

> ε

}
→ 0,

and
1

‖fj‖1

∫
Y

yfj(ω)(y)dλ(y)

converges to the optimal estimator of π in probability. 2

7 Conclusion

We have given sufficient conditions for a set of continuous functions on a σ-compact
metric space together with a map from that set to the metric space to be sufficient
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for empirical surrogate risk minimization to be effective for classification and regression
analysis. We have also given examples for classification among countable classes and
regression analysis in Euclidean spaces. Although we do not pursue this avenue, it seems
that the regression analysis result applies more generally to regression analysis in any
compact, convex subset of a locally compact topological group.
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