
RC23698 (W0508-102) August 18, 2005
Computer Science

IBM Research Report

Adaptive Diagnosis in Distributed Systems

Irina Rish, Mark Brodie, Sheng Ma, Natalia Odintsova, Alina Beygelzimer,
Genady Grabarnik

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Karina Hernandez
IBM Systems and Technology Group

11501 Burnet Road
906-3014E

Austin, TX  78758
 

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



1

Adaptive Diagnosis in Distributed Systems
Irina Rish, Mark Brodie, Sheng Ma, Natalia Odintsova,

Alina Beygelzimer, Genady Grabarnik, Karina Hernandez

Abstract— Real-time problem diagnosis in large distributed
computer systems and networks is a challenging task that
requires fast and accurate inferences from potentially huge data
volumes. In this paper, we propose a cost-efficient, adaptive diag-
nostic technique calledactive probing. Probes are end-to-end test
transactions that collect information about the performance of
a distributed system. Active probing uses probabilistic reasoning
techniques combined with information-theoretic approach, and
allows a fast online inference about the current system state
via active selection of only a small number of most-informative
tests. We demonstrate empirically that the active probing scheme
greatly reduces both the number of probes (from60% to 75% in
most of our real-life applications), and the time needed for localiz-
ing the problem when compared with non-adaptive (pre-planned)
probing schemes. We also provide some theoretical results on the
complexity of probe selection, and the effect of “noisy” probes
on the accuracy of diagnosis. Finally, we discuss how to model
the system’s dynamics using Dynamic Bayesian networks, and
an efficient approximate approach called sequential multifault;
empirical results demonstrate clear advantage of such approaches
over ”static” techniques that do not handle system’s changes.

Index Terms— Diagnosis, probabilistic inference, Bayesian net-
works, information gain, computer networks, distributed systems,
end-to-end transactions.

I. INTRODUCTION

Accurate diagnosis and prediction of unobserved states of a
large, complex, multi-component system by making inferences
based on the results of various tests and measurements is a
common problem occurring in practice. Numerous examples
include medical diagnosis, airplane failure isolation, systems
management, error-correcting coding, and speech recognition.
Achieving high diagnostic accuracy may require performing
a large number of tests, which can be quite expensive. It is
therefore essential to improve scalability and cost-efficiency of
diagnosis by using only the most relevant measurements at any
time point, i.e. by making inference more adaptive (“context-
specific”) to the current system state and observations.

The key component of the approach proposed in this paper
is an adaptive measurement technique, called active probing1,
that allows a fast online inference about the current system
state via active selection of only a small number of most-
informative measurements called probes. A probe is a test
transaction whose outcome depends on some of the system’s
components; accurate diagnosis can be achieved by appropri-
ately selecting the probes and analyzing the probe outcomes.

I. Rish, M.Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik are
with the IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY
10532

K. Hernandez is with the IBM Systems and Technology Group, 11501
Burnet Road, 906-3014E, Austin TX 78758

1This paper summarizes and extends preliminary results presented by the
authors in several conference papers, such as [1], [2], [3], [4].

Our main contribution is in providing a theoretical foundation
and a set of practical techniques for implementing efficient
probing strategies.

Although our methods are quite generic and are applicable
to a wide variety of problem areas, we will focus specifically
on the area of distributed systems management. The rapid
growth in size and complexity of distributed systems makes
performance management tasks such as problem diagnosis –
detecting system problems and isolating their root causes –
an increasingly important but also extremely difficult task.
For example, in IP network management, we would like to
quickly identify which router or link has a problem when
a failure or performance degradation occurs in the network.
In the e-Commerce context, our objective could be to trace
the root-cause of unsuccessful or slow user transactions (e.g.
purchase requests sent through a web server) in order to
identify whether it is a network problem, a web or back-
end database server problem, etc. Another example is real-
time monitoring, diagnosis and prediction of the “health” of
a large cluster system containing hundreds or thousands of
workstations performing distributed computations (e.g., Linux
clusters or GRID-computing systems).

A. Current Problem-Diagnosis Approaches

A commonly used approach to problem diagnosis in dis-
tributed systems management is event correlation [5], [6], [7],
in which every managed device is instrumented to emit an
alarm when its status changes. By correlating the received
alarms a centralized manager is able to identify the problem.
However, this approach usually requires heavy instrumenta-
tion, since each device needs to have the ability to send out
the appropriate alarms. Also, it may be difficult to ensure that
alarms are sent out, e.g. by a device that is down. Finally, it
might be impossible to obtain the event data from all parts of
the network, especially if it contains “black boxes” such as
proprietary components.

To avoid these problems, an alternative diagnostic approach
has been developed that is based on end-to-end probing
technology [8], [9], [10]. A probe is a test transaction whose
outcome depends on some of the system’s components; diag-
nosis is performed by appropriately selecting the probes and
analyzing the results. In the context of distributed systems,
a probe is a program that executes on a particular machine
(called a probe station) by sending a command or transaction
to a server or network element and measuring the response.
The ping and traceroute commands are probably the most
popular probing tools that can be used to detect network
availability. Other probing tools, such as IBM’s EPP technol-
ogy ([8]), provide more sophisticated, application-level probes.



2

Fig. 1. Illustrative example where probing can be used at multiple levels.

For example, probes can be sent in the form of test e-mail
messages, web-access requests, a database query, and so on.

Figure 1 illustrates the core ideas of probing technology. The
bottom left of the picture represents an external cloud (e.g. the
Internet), while the greyed box in the bottom middle and right
represents an example intranet - e.g. a web site hosting system
containing a firewall, routers, web server, application server
running on a couple of load balanced boxes, and database
server. Each of these contains further substructure - the fig-
ure illustrates the various layers underlying the components.
Probing can take place at multiple levels of granularity; the
appropriate choice of granularity depends on the task probing
is used for. For example, to test a Service Level Agreement
(SLA) stating response time one need only probe one point
of Figure 1, the point of contact of the external cloud and the
intranet. In order to find more detailed information about the
system one could probe all network segments as well the web
server, application server, database server - all the elements of
the intranet in the network layer. If we need to do problem
determination or tune up the system for better performance, we
may also need to consider more detailed information; e.g. from
the system layer (some systems allow instrumentation to get
precise information about system components) or component
and modules layer, and so on. For each task appropriate probes
must be selected and sent and the results analyzed.

In practice, probe planning (i.e., choice of probe stations,
targets and particular transactions) is often done in an ad-
hoc manner, largely based on previous experience and rules-
of-thumb. Thus, it is not necessarily optimized with respect
to probing costs (related to the number of probes and probe
stations) and diagnostic capability of a probe set. More recent
work [9], [10] on probing-based diagnosis focused on opti-
mizing the probe set selection and provided simple heuristic
search techniques that yield close-to-optimal solutions. How-

ever, the existing probing technology still suffers from various
limitations:

1) Probes are selected off-line (pre-planned probing), and
run periodically using a fixed schedule (typically, every 5
to 15 min). For diagnostic purposes, this approach can be
quite inefficient: it needs to construct and run repeatedly
an unnecessarily large set of probes capable of diag-
nosing all possible problems, many of which might in
fact never occur. Further, when a problem occurs, there
may be a considerable delay in obtaining all information
necessary for diagnosis of this particular problem. Thus,
a more adaptive probe selection is necessary.

2) Another limitation of existing techniques, including both
event correlation [7] and probing [9], [10], is their non-
incremental (“batch”) processing of observed symptoms
(alarms, events, or probes), which is not quite suitable
for continuous monitoring and real-time diagnosis. An
incremental approach is required that continuously up-
dates the current diagnosis as more observations become
available.

3) Finally, existing approaches typically assume a static
model of the system (i.e., the system state does not
change during diagnostic process). While “hard” failures
of components are indeed relatively rare, “soft” fail-
ures such as performance degradations (e.g., response
time exceeding certain threshold) may happen more
frequently; in a highly dynamic system ‘failure” and
“repair” times may get comparable with the average
diagnosis time. This can lead to erroneous interpretation
of some contradictory observations as “noise” [7] when
in fact they may indicate changes in the system. A more
sophisticated model that accounts for system dynamics
can provide a more accurate diagnosis in such cases.



3

B. Our Contributions

In this paper, we aim at improving the current state-of-
art in problem diagnosis by introducing a more adaptive and
cost-efficient technique, called active probing, that is based
on information theory. Combining probabilistic inference with
active probing yields an adaptive diagnostic engine that “asks
the right questions at the right time”, i.e. dynamically selects
probes that provide maximum information gain about the
current system state. We approach diagnosis problem as the
task of reducing the uncertainty about the current system
state X (i.e., reducing the entropy H(X)) by acquiring more
information from the probes, or tests T. Active probing
repeatedly selects the next most-informative probe Tk that
maximizes the information gain I(X;Tk|T1, ..., Tk−1) given
the previous probe observations T1, ..., Tk−1. Probabilistic
inference in Bayesian networks is used to update the current
belief about the state of the system P (X).

Active probing is an incremental approach that is well-
suited for real-time monitoring and diagnosis. Moreover, it
avoids the waste inherent in the pre-planned approach since
active probing always selects and sends probes as needed in
response to problems that actually occur. Also, active probes
are only sent few times in order to diagnose the current
problem and can be stopped once the diagnosis is complete.
Only a relatively small number of probes needed for fault
detection should circulate regularly in the network. In practice,
active probing requires on average much less probes than the
pre-planned probing; for example, it reduced probe set size by
up to 75% both in simulated problems and in several practical
applications we considered.

Clearly, active probing can be also combined with tradi-
tional approaches such as various event correlation techniques
[7], [5], [6]. Our diagnostic engine, that uses probabilistic
inference in Bayesian networks, can accept any input events,
including probes, alarms and other messages, and performs
appropriate inferences about the current system state. How-
ever, we add the ability of active measurement selection on
top of such ’passive’ inference capabilities.

In summary, this paper makes the following contributions:
1. We provide a theoretical analysis of optimal probe selection
for fault detection and fault diagnosis, and show that both
problems are NP-hard.
2. We reformulate and generalize previously proposed
pre-planned probe-selection approach of [9], [10] using
information-theoretic framework.
3. We develop an algorithm for active probing and demonstrate
its advantages over pre-planned probing (up to 75% savings).
4. We discuss a simple approximation algorithm for diagnosis
used when the exact probabilistic inference is intractable, and
provide theoretical guarantees on its diagnostic quality in the
presence of noise in probe outcomes.
5. Finally, we discuss how to model the system’s dynamics
using Dynamic Bayesian networks, and an efficient approxi-
mate approach called sequential multifault; empirical results
demonstrate clear advantage of such approaches over ”static”
techniques that do not handle system’s changes.

The outline of the paper is as follows. Section II provides

the basic framework and notation. Section III give a high-
level overview of the proposed approach. Section IV discusses
pre-planned probe-selection for fault detection and diagnosis.
We prove that the optimal probe set selection problem is NP-
hard (even for single-fault diagnosis), and briefly describe
linear and quadratic-time approximation algorithms proposed
in [9], reformulated here in a unifying information-theoretical
framework. Section V presents the active probing algorithm.
In Section VI we focus analysis of probe results using prob-
abilistic inference; we discuss both simple approach based
on k-fault assumption and generic multi-fault approach; we
also provide theoretical guarantees on diagnostic quality of
a simple approximate inference algorithm. Section VIII-B.1
presents empirical results demonstrating advantages of adap-
tive versus non-adaptive probing on both simulated and real-
life problems. Section VIII reports our approach to handling
dynamically changing systems, that includes general frame-
work of Dynamic Bayesian Networks (DBNs) and an ap-
proximate but more computationally efficient approach called
sequential multifault. Finally, section IX describes the archi-
tecture and applications of our proof-of-concept system that
implements the algorithms described above and functions in a
realistic environment. Related work is discussed in Section X,
while Section XI provides a summary and describes directions
of future work.

II. DEFINITIONS AND FRAMEWORK

Let us assume there is a set of system components, or nodes
N = (N1, ..., Nn), each of which can be either be “OK”
(functioning correctly) or “faulty” (functioning incorrectly).
In a distributed system, the nodes may be physical entities
such as routers, servers, and links, or logical entities such as
software components, database tables, etc. The state of the
system is denoted by a vector X = (X1, ...,Xn) of Boolean
variables, where Xi = 1 denotes faulty state and Xi = 0
denotes OK state of node Ni. Lower-case letters denote the
values of the corresponding variables, e.g. x = (x1, ..., xn)
denotes a particular assignment of node values.

A probe, or test T is a method of obtaining information
about the system components. The set of components tested
by a probe T (i.e. the components T depends on) is denoted
N(T ) ⊆ {N1, ..., Nn}. A probe either succeeds or fails: if it
succeeds (denoted T = 0), then every component it tests is
OK; it fails (denoted T = 1) if any of the components it tests
is faulty.

We will consider the following two problems: fault detection
problem is to discover if there is at least one faulty components
in a system, while fault diagnosis (fault localization) problem
is to find all faulty components in the system. Fault diagnosis
will be also called “problem diagnosis” or “problem deter-
mination”. Solving both problems requires: (a) selection of
probes to run and (b) inference about the state of components
given the outcomes of these probes.

It is useful to introduce the notion of a dependency matrix
to capture the relationships between system states and probes.
Given any set of nodes N = {N1, N2, ..., Nn} and probes,
or tests T = {T1, T2, ..., Tr}, the dependency matrix DT,N is



4

given by:

DT,N(i, j) = 1 if Nj ∈ N(Ti)
= 0 otherwise.

DT,N is an r-by-n matrix, where each row represents a probe
and each column represents a node.

It is also convenient to use the dependency matrix as an
explicit representation of possible fault combinations that can
occur in a system. In case of single fault only, we can view
each column in the dependency matrix as a fault at a particular
node, and only need to add a column representing no-fault
situation. In general, multiple simultaneous failures can be
handled by adding multiple columns to the dependency matrix,
each additional column Fj representing a set of failed nodes.
This representation will be called an extended dependency
matrix. Note that each Fj corresponds to some state of the
system, i.e. some vector x = (x1, ..., xn).

From now on, we will mostly use the extended dependency
matrix, calling it simply the dependency matrix if no confusion
arises; we will also use a similar notation DT,F for extended
dependency matrix, where F is a set of all possible fault
combinations, or system states, corresponding to the columns
of extended dependency matrix. The extended dependency
matrix DT,F is defined as follows:

DT,F(i, j) = 1 if Fj

⋂
N(Ti) �= φ

= 0 otherwise.

DT,F is an r-by-m matrix, where m is the number of possible
fault combinations.

Unfortunately, the extended dependency matrix is in-
tractable in general case since m = 2n. Thus, for efficiency
reasons, we will make assumptions about the maximum pos-
sible faults in the system, e.g. we will often assume single
node failure. In this case there are only n + 1 possible states
of the system (including no-fault situation), and thus only one
column is added to the dependency matrix.

Example 1: Figure 2a shows an example of a simple bench-
mark system that contains a probing station, which sends
various probes through a common router to a Web Server
(WS), Application Server (AS), and Database Server (DBS).
Note that WS, AS and DBS represent the OK/not OK state
of the corresponding applications running on these machines,
while HWS, HAS and HDBS denote ”hardware” problems
with WS, AS, and DBS, respectively (in our case, HWS is
OK if WS can be reached by ping command; however, the
web server application may not be running, and thus WS is
not OK). Also, R will denote the state of the router, while NF
corresponds to no-failure situation. The dependency matrix
shown in Figure 2b includes the following probes:
”main” probe called pWS, attempts to open a web page on
WS, which also runs an application on AS, which in its
turn sends a query to a database on DBS. The outcome
of this probe depends on the state (i.e., OK/not OK) of all
components, i.e. WS, HWS, AS, HAS, DBS, and HDBS,
as well as on the state of the router R. Thus, the row of the
probe pWS contains ones in all columns (i.e., fails if any of
these components fail).

(a)

(b)

Fig. 2. (a) A simple benchmark distributed system with one probe station
and 7 probes; (b) dependency matrix for the system in (a).

- probe pAS calls an application on AS which sends a query
to the database on DBS; thus the probe depends on the states
of AS, HAS, DBS, HDBS, R.
- probe pDBS sends a query to the database on DBS, and
thus depends on DBS, HDBS and R.
- probes pingR, pingWS, pingAS and pingDBS are simply
ping commands to the router and the corresponding servers.

III. OVERVIEW OF OUR APPROACH

In this section, we introduce our adaptive real-time diag-
nosis approach which is outlined in Figure 3. Probe-stations
issue the probes which traverse different parts of the network.
The results of the probes are analyzed to infer what problems
might be occurring. If additional information is needed in
order to locate the problem, the most useful probes to send
next are determined and sent. When additional probe results
are received further inferences are made and the process
repeats until the fault is localized. Implementing active probing
requires developing solutions for the following issues:

1) Initial probe set selection for fault detection: a small sub-
set of probes that “cover” all nodes must be pre-selected
and run on a scheduled basis, so that when a fault occurs
somewhere in the network we can immediately detect it.



5

Fig. 3. An overview of adaptive real-time diagnosis system.

2) Active, on-line probing for fault diagnosis: the most-
informative next probe must be selected and sent, based
on the analysis of previous probe results. This approach
extends an off-line, pre-planned probe selection for fault
diagnosis.

3) Analysis of probe results (inference): the probe results
must be integrated and analyzed in order to diagnose the
current faults in the systems.

Once a fault is detected, active probing and inference proce-
dures will be performed repeatedly until the fault is uniquely
diagnosed (or there are no more informative probes left).

In the following sections, we describe in more detail the
three components of adaptive diagnosis mentioned above, i.e.
(1) off-line probe selection for fault detection, (2) online
(active) probing, and (3) probabilistic inference. For com-
pleteness sake, we also describe existing off-line, or pre-
planned, probe selection approaches for diagnosis. We then
quantify the advantages of an active probing methodology
when compared with an entirely pre-planned approach, and
present experimental results that show that active probing can
greatly the number of probes and the time needed to perform
fault diagnosis.

IV. PRE-PLANNED PROBING

A. Probe Selection for Fault Detection

The task of fault detection is to find the smallest set of
probes such that, no matter which problem occurs, there is
some probe that will fail; i.e. will detect that a problem has
occurred somewhere. Using the dependency matrix formula-
tion, this corresponds to finding the smallest set of rows (a
subset of all probes T ) such that each column has a nonzero
entry in one of these rows (these probes are said to ”cover” all
nodes). The corresponding decision problem is to determine,
given the dependency matrix DT,N and some positive integer
k ≤ r (recall that r is the number of probes, i.e. rows in
DT,N), whether T contains such a covering subset of size at
most k. We call this decision problem PROBE SET SELECTION

FOR FAULT DETECTION.

Probe-set selection for Fault Detection

Input: A set of available probes T and a prior
distribution over system states P (X).
Output: A set S of probes sufficient for fault detection.
Initialize: S = ∅.
1. Simulate no-fault situation, i.e. assign Xi = 0 for all 1 ≤ i ≤ n.
2. Ta = ActiveProbing(T,P (X)).
Return S

Fig. 4. Algorithm for initial probe set selection for fault detection.

Proposition 1: PROBE SET SELECTION FOR FAULT DE-
TECTION is NP-hard.

Proof: The problem is precisely the MINIMUM SET

COVER problem, which is known to be NP-hard [11].
Although finding minimal probe set for fault detection

is NP-hard, there are simple and efficient heuristic search
algorithms available. For example, as we show later, we can
simply use the active probing approach described in this paper,
applying it to the no-fault situation in the network (see Figure
4). We will see that in such case active probing keeps selecting
probes until there is no uncertainty left about the state of
the system (i.e. until the no-fault situation is confirmed), and
produces a set of probes covering all nodes – exactly what we
need for problem detection.

B. Probe Selection for Fault Diagnosis

The task of fault detection should be distinguished from the
task of fault diagnosis, which requires not simply detecting that
a problem has occurred, but also identifying, from the results
of the probes, precisely which problem has occurred.

For completeness sake, we will now provide an overview
of a pre-planned probe selection approach to fault diagnosis
proposed earlier in [9], [10], since it will be used as a baseline
for comparison with the active probing approach proposed in
this paper. In addition, we will provide new complexity results,
and generalize the previously proposed pre-planned greedy
algorithm using information-theoretic framework, so that it can
be easily modified into online, adaptive probe-selection.

In pre-planned probing, our objective is to select the small-
est subset of probes that can diagnose the same set of possible
faults (system states) as the original probe set. Let us consider
the (extended dependency matrix DT,F where each column
in F represents a unique system state (combination of faults).
Given a particular system state corresponding to column-
vector Fj , it is easy to see that the vector of probe outcomes
t = (t1, ..., tr) = (D1j , ...,Drj): every probe Ti that contains
nodes in Fj will fail, producing Ti = 1 = Dij in the column,
and every probe that does not contain nodes in Fj must be
OK (Ti = 0 = Dij). Then the problem can be formulated as
finding the smallest probe set such that every column of the
dependency matrix is unique, since in that case exactly which
state has occurred can be determined from the outcomes of all
the probes.

We now formally define the associated decision problem
and prove that it is NP-hard. Given a set of faults F, a



6

set of probes T, and a positive integer k ≤ r, we want to
determine whether T contains a subset T′ of size at most k
such that for every pair of distinct faults f1, f2 ∈ F , there
is a probe T ∈ T′ that intersects exactly one of f1 and f2

(thus T distinguishes between f1 and f2); or equivalently T′ is
such that the columns of the dependency matrix DT′,F are all
unique. We call this decision problem PROBE SET SELECTION

FOR FAULT DIAGNOSIS.
Proposition 2: PROBE SET SELECTION FOR FAULT DIAG-

NOSIS is NP-hard.
Proof: PROBE SET SELECTION FOR FAULT DIAG-

NOSIS can be shown to be NP-hard via a reduction from
3-DIMENSIONAL MATCHING. This problem (see [12]) is
however not very well-known, so it is instructive to reduce
PROBE SET SELECTION FOR FAULT DIAGNOSIS from PROBE

SET SELECTION FOR FAULT DETECTION. Intuitively, FAULT

LOCALIZATION is a harder problem than FAULT DETECTION.
However, because for any given instance the optimal solutions
of these two problems can be very different, the proof is not
straight-forward; the details can be found in the Appendix A.

Although the tasks of finding the smallest probe sets for
fault diagnosis is NP-hard, there exist efficient polynomial-
time approximation algorithms that perform well in practice.
We now present an overview of two such algorithms – greedy
search and subtractive search [9], [10]. We reformulate and
generalize the greedy search algorithm proposed in [9], [10]
using an information-theoretic framework.

Greedy search starts with the empty set and adds at each
step the “best” of the remaining probes. The “best” probe is
the one which maximizes the information gained about the
system state, in the sense defined precisely below. Subtrac-
tive search starts with the complete set of available probes,
considers each one in turn, and discards it if it is not needed.
Neither algorithm is optimal in general - experimental results
comparing their performance with the true minimum probe set
size are given in Section VIII-B.1.

The greedy search approach chooses the next probe by
maximizing the information gained about the system state X,
given the previous probes. Formally, let us assume some prior
probability distribution P (X) over possible system states. We
are looking for a probe

Y ∗ = arg max
Y ∈T\T′

I(X;Y |T′), (1)

where I(X;Y |T′) is the conditional mutual information of X
and probe Y , given the previously selected probes T′. Since
I(X;Y |T′) = H(X|T′) − H(X|Y,T′), where H(X|Y ) is
the conditional entropy of X given Y (see [13]), the most-
informative test Y ∗ minimizes the conditional entropy of X,
i.e. the amount of uncertainty about the system state.

The algorithm is shown in Figure 5a. If the initial set of
available probes T is of size r, O(r2) conditional entropy
calculations are required, since at each step the information
gain obtained by each of the remaining probes must be
computed. Note that

H(X|Y,T) = −
∑
x

∑
yj

∑
t

P (x, y, t) log P (x|y, t) (2)

Probe-Set Selection: Greedy Search

Input: A set of available probes T and a prior
distribution over system states P (X).
Output: A subset T′ ⊆ T of probes.
Initialize: T′ = ∅
do1. select most-informative next probe:

Y ∗ = arg maxY ∈T\T′ I(X; Y |T′)
2. update probe set: T′ = T′ ∪ {Y }

while ∃Y ∈ T\T′ such that I(X; Y |T′) > 0
Return T ′.

(a)

Probe-Set Selection: Subtractive Search

Input: A set of available probes T and a prior
distribution over system states P (X).
Output: A subset T′ ⊆ T of probes.
Initialize: T′ = T = {T1, T2, ..., Tr}.
for i = 1 to r

remove probe if it is not needed, i.e.
if I(X; pi|T′\{Ti}) = 0,
then T′ = T′\{Ti}

Return T′.

(b)

Fig. 5. (a) Greedy Search for Probe-Set Selection. (b) Subtractive Search
for Probe-Set Selection.

so computing the information gain can be quite costly in
the general case, as it requires summation over all non-zero-
probability states and outcomes of the current probe set and
the next probe.

The version of greedy search proposed in [9], [10] used the
simplifying assumptions of only one component failing at a
time, thus yielding only n+1 system states (including the case
of no failure). Also, all states were assumed to have equal prior
probabilities. These assumptions considerably simplified the
computation. Let us consider an extended dependency matrix
of size r × (n + 1). A probe set cannot distinguish between
system states whose columns in the dependency matrix are
identical. Since this is an equivalence relation between states
(columns), it induces a decomposition of the states into an
exhaustive collection of disjoint subsets, and it is easy to show
that:

H(X|Y,T) =
k∑

i=1

ni

m
log ni

where m = n + 1 is the total number of states and ni

is the number of states (columns) in the i’th subset of the
decomposition induced by T.

This expression has a natural interpretation. Since there
are ni states in the i’th subset and each probe has two
possible outcomes, at least log ni additional probes are needed
to further decompose the i’th subset into singletons, thereby
enabling any single node failure to be diagnosed. Since the
true failure lies in the i’th subset with probability ni/m, the



7

conditional entropy is simply the expected minimal number of
additional probes needed to localize the failure.

The greedy algorithm can of course be generalized by
adding the best subset of t of the remaining probes at each
step, requiring O(rt+1) conditional entropy calculations.

The subtractive search algorithm starts with the complete
set of available probes, considers each one in turn, and discards
it if it is not needed, i.e. if removing it does not result in any
loss of information about the system state. The algorithm is
shown in Figure 5b. Each probe is considered only once, so
O(r) conditional entropy computations are required.

Once a probe set is selected, it can be scheduled to run
through the system, and an online diagnosis can simply match
the vector of probe outcomes to columns in the dependency
matrix. Each system state, i.e. the (extended) dependency
matrix column, will have a unique “signature” vector of probe
outcomes.

V. ACTIVE PROBING

In this section, we propose a novel, more efficient approach
to probe-based diagnosis called active probing. The selection
of probes is now more adaptive to the current system state
as it depends on the results of earlier probes (is “context-
sensitive”). The advantage of this approach is that fewer probes
can be used on average than if the entire probe set has to
be pre-planned. However additional inferential machinery is
required. We describe an algorithm for active probing and then
present experimental results that show that active probing can
greatly reduce the number of probes needed to perform fault
localization.

An active probing algorithm is described in Figure 6a.
It takes as input a set of probes T available for selection,
and a prior distribution P (X) over system states. The al-
gorithm maintains the current belief about the system state,
Belief(X) = P (X|Ta) where Ta is the current set of
probes and their outcomes. The prior distribution is used to
initialize Belief(X). Similarly to greedy search, the active
probing approach is always looking for the next probe Y ∗

that maximizes information gained about the system state X
(see step 1 in both algorithms). However, there is an important
difference: active probing has an advantage of knowing the
previous probe outcomes; thus, at iteration k it conditions
on probe outcomes Ta = {Y ∗

1 = y∗
1 , ..., Y ∗

k−1 = y∗
k−1, },

while the pre-planned greedy approach must average over
all possible outcomes of previously selected probes T′ =
{Y ∗

1 , ..., Y ∗
k−1}. Namely, active probing in step 1 finds Y that

maximizes I(X;Y |Ta), i.e. minimizes

H(X|Y,Ta) = −
∑
x

∑
yj

P (x, y|Ta) log P (x|y,Ta), (3)

which is much faster (exponentially in the number of previous
probes) than minimization performed by greedy search in the
equation 2 which has an additional sum over all possible
outcomes of previously selected probes. However, as we will
demonstrate empirically, the main advantage of active probing
besides faster probe selection is a much smaller, on average,
number of probes needed for diagnosis, and thus much faster
time to diagnose a problem.

Active Probing

Input: A set of available probes T and a prior
distribution over system states P (X).
Output: A set Ta of probes and their outcomes,
posterior distribution Belief(X) and its support S.
Initialize: Belief(X) = P (X), Ta = ∅,
S = support of P (X).
do

1. select current most-informative probe:
Y ∗ = arg maxY ∈T\Ta I(X; Y |Ta)

2. execute Y ∗; it returns Y ∗ = y∗ (0 or 1)
3. update Ta = Ta ∪ {Y ∗ = y∗}
4. update Belief(X) = P (X|Ta)

while ∃Y ∈ T such that I(X; Y |Ta) > 0
Return Ta, Belief(X), S =support of Belief(X).

(a)

(b)

Fig. 6. (a) Active Probing algorithm for probabilistic diagnosis with most-
informative probe selection; (b) Information gain as a function of probe’s
’effective’ length (the number of nodes on the probe’s path having non-zero
fault probability) for various probabilities p of a single fault in any component
(assuming n=50 components).

The active-probing diagnosis algorithm works as follows.
It selects the next probe to run (step 1) and waits for the
results (step 2), then it updates both the set of active probes
executed (step 3) and the current belief about the system’s
state (step 4). Belief updating, or probabilistic inference, will
be considered in more details in the following section. Steps
1-4 are repeated until no more information can be obtained
about the system state, and thus the diagnosis cannot be
improved. The algorithm outputs a set of active probes Ta

that were actually used during diagnosis (which often turns
out to be significantly smaller than the original set T), the
posterior distribution over components after receiving the
probe outcomes, P (X|Ta), and the support of the distribution
(the components with non-zero-probability). Let us also define
the effective length of a probe as the number of nodes on
probe’s path that currently have non-zero fault probability (i.e.,
belong to the support of the current Belief(X)).
Active Probing for fault detection. Note that in case of
no-failure situation, the active probing algorithm will always



8

produce a set of probes that cover all nodes (assuming the
initial probe set allows to cover all nodes). Indeed, its stopping
condition implies there is no probe that can have a non-zero
information about the system state, I(X;Y |Ta). It is easy to
see that while there is at least a single node not covered by a
probe, the system state is still uncertain, and this uncertainty
can be decreased by running an additional probe that goes
through this node. Once all nodes are covered, the conditional
entropy of the system I(X;Ta) becomes zero, and the active
probing stops. Thus, simulating no-fault situation and running
active probing will produce a set of probes sufficient for
problem detection.

VI. ANALYSIS OF PROBE RESULTS: PROBABILISTIC

INFERENCE

A. Diagnosis under Simplifying Assumptions

In our current implementation of active probing, we made
simplifying assumptions of having no more than s simultane-
ous faults (usually, setting s = 1 as having simultaneous faults
was highly unlikely in systems we considered), which yields
more than 2s system states. For small s the explicit state space
representation is relatively small (e.g., it is linear in the number
of nodes for single-fault assumption), and thus we can easily
update the joint distribution P (X) over all possible states of
the system. However, for generic multi-fault diagnosis, more
efficient algorithms, including approximations, are needed. An
extension to generic multi-fault diagnosis will be considered
in the subsequent sections.

Besides single-fault assumption, we also used a simple
expressions for priors, assuming 1 − p probability of no-fault
situation, and uniformly distributed probability mass p among
the remaining states (possible single component failures),
which gave us P (Xi = 1,Xj = 0∀j �= i) = p/n. In this
case the information gain of a probe can be computed quite
efficiently (see Appendix B for details):

I(X;T ) = I(p, n, k) = −(1 − p) log(1 − p) − p log
p

n

−k
p

n
log k + (1 − p) log

1 − p

1 − k p
n

+ (n − k)
p

n
log

p

n − pk
. (4)

Figure 6b plots the information gain of a probe as a function
of its effective length k, for n = 50 nodes and for various
fault priors. It is more beneficial to send probes with larger
effective length if the probability of fault p is small. However,
once a fault is detected (p = 1), the most informative probe
(i.e. a probe attaining the maximum information gain) is one
whose effective length is closest to half the number of nodes
that are possibly faulty.

In the single-fault case, if the complete set of available
probes is sufficient for diagnosis, the support set S output by
the algorithm will contain the unique component that is down.
In general, the active probing algorithm can be applied to
any multiple-fault situation; however, its complexity increases
with an increasing number of simultaneous faults and depends
on the efficiency of representing the joint probability P (X)
and the efficiency of probabilistic inference and information-
gain computation required for active probe selection. It may
also become impossible to update the joint distribution, i.e.

Fig. 7. A mapping from dependency matrix to a Bayesian network.

Belief(X). Instead, we will have to modify the line 4
in the Active Probing algorithm: given the previous probe
observations, instead of updating joint belief, we may need to
update the beliefs of individual nodes and return their most-
likely values, or to find directly the most-likely state of the
system as a 0/1 assignment to all nodes. The problem of multi-
fault diagnosis is considered in the following section.

B. Multi-Fault Diagnosis using Bayesian Networks

Active probing algorithm described in the previous section
must use some representation of the joint probability distri-
bution P (X) and a belief updating method. While in case
of small number of possible states (e.g., n + 1 states under
single-fault assumption) the joint distribution P (X) can be
specified explicitly, this representation becomes intractable in
the general case of multiple faults. In this case, fault diagnosis
algorithms can benefit from using a probabilistic graphical
model such as Bayesian network [14], which describes the
probability distribution over the system states in a compact
form. For example, the (original) dependency matrix can
be easily mapped to a two-layer Bayesian network where
each component Xi corresponds to an upper-level variable
representing the state of node Ni, each probes Tj corresponds
to a lower-layer variable, and each subset N(Tj) corresponds
to the set of parents of variable Tj (i.e., nodes pointing to
Tj) in the Bayesian network, also denoted paj (see Figure 7).
Recall that Xi = 1 and Tj = 1 if node Ni and probe Tj are
faulty, respectively; and Xi = 0 and Tj = 0 otherwise. Then
the joint probability distribution can be written as

P (x, t) =
n∏

i=1

P (xi)
m∏

j=1

P (tj |paj),

assuming that the state variables Xi’s are marginally in-
dependent, and that each probe outcome depends only on
the components tested by this probe. P (xi) specifies the
prior probabilities of the system states, while the conditional
probabilities distributions (CPDs) P (tj |paj) describe the de-
pendency of probe outcomes on the components tested. In
the absence of noise in the probe outcomes, all CPDs are
deterministic functions. Since a probe succeeds if and only if



9

all its components are OK, a probe outcome is a logical-OR
function of its components, i.e. Ti = Xi1 ∨ ...∨Xik

, where ∨
denotes logical OR, and Xi1 , ...,Xik

are all the nodes probe
Ti goes through.

In practice, however, this relationship may be disturbed by
noise in the measurements. For example, a probe can fail
even though all the nodes it goes through are OK (e.g., due
to packet loss). Conversely, there is a chance that a probe
succeeds even if a node on its path has failed (e.g., dynamic
routing may result in the probe following a different path).
Such uncertainties yield a so-called noisy-OR, where every
probe Tj and component Xi on probe’s path are associated
with a noise parameter qij , also called inhibition probability,
or link probability – a small probability that probe Tj succeeds
even if node Xi on its path has failed. There is also a parameter
called the leak probability which accounts for the cases of a
probe failing even when all the nodes on its path are OK.
Finally, noisy-OR model assumes causal independence, i.e. it
assumes that different causes (e.g., node failures) contribute
independently to a common effect (probe failure). The the
conditional probability distribution for each probe Tj can be
written as

P (tj = 0|x1, . . . , xk) = (1 − l)
k∏

xi=1

qij = (1 − l)
n∏

i=1

qxi
ij , (5)

(6)

where X1, . . . , Xk is the set of parents paj of Tj .
Once a Bayesian network is specified, we can use proba-

bilistic inference for diagnosis. The most common probabilis-
tic inference task is belief updating, i.e. finding P (Z|Y = y),
the posterior probability of set of variables Z given observa-
tions of some other variables P (Y = y). For example, we
may want to find P (Xi|T = t), the posterior probability
of fault in component Xi given the probe outcomes. Then
we can return as a result of diagnosis the most likely values
of each node Xi, namely, a vector x′ = (x′

1, ..., x
′
n) where

x′
i = arg maxxi

P (xi|t), i = 1, ..., n.
Alternative approach to diagnosis is to find the most-likely

state called the maximum probable explanation (MPE), i.e.
a most-likely assignment to all Xi nodes given the probe
outcomes, i.e. x∗ = arg maxx P (x|t). Since P (x|t) =
P (x,t)
P (t) , where P (t) does not depend on x, we get x∗ =

arg maxx P (x, t).
Both belief updating and finding MPE are known to be NP-

hard problems [15]; particularly, the complexity of commonly
used inference algorithms such as join-tree algorithm [14],
[16], and closely related variable-elimination techniques [17],
[18], is known to be O(n ·exp(w∗)) where n is the number of
unobserved nodes in the network and w∗ is the size of largest
probabilistic dependency recorded during inference, which
corresponds to largest clique induced in the network and is
called induced width, or treewidth [18]. Typical approaches to
handling this complexity are exploiting the problem structure
(when the induced width is limited) or using approximate
techniques.

A popular approximation approach is to restrict the com-
plexity by focusing only on local interactions. In our pre-

vious work on probing [10] we investigated the mini-bucket
approximation algorithms [19], [20] that bound the size of
functions created by variable-elimination inference. The al-
gorithms performed nearly optimal when the level of noise
(link probabilities) was small. In this paper, we provide a
theoretical analysis of the results presented in [10] for the
simplest member of the mini-bucket algorithmic family called
greedy-mpe; we will derive a necessary condition for the
algorithm to be exact which explains our earlier empirical
results [10].

Note that the mini-bucket scheme is closely related to
other local approximations, such as iterative belief propagation
(IBP) and generalized belief propagation (GBP) algorithms
[21], that recently became the state-of-the-art approximation
techniques successfully used in many practical applications of
Bayesian networks. The mini-bucket algorithms can be viewed
as simplified, non-iterative versions of those approaches,
which nevertheless performs surprisingly well in low-noise
problems. In order to gain a better theoretical understanding
of this success we decided to focus first on a simple scheme
rather on more advanced techniques.

In the next sections, we describe the diagnosis task as MPE
problem and algorithms in more detail, and provide theoretical
analysis.

C. Diagnosis complexity and approximations

In this section, we focus on the formulation of diagnosis
problem as finding the most-probable explanation, or MPE.
We focus first on the MPE diagnosis in the absence of
noise (i.e., for deterministic test outcomes). The determin-
istic CPDs reduce to a set of constraints imposed by the
test outcomes on the values of X1, ...,Xn. For example, in
the fault diagnosis domain, each probe outcome Ti = ti
imposes a logical-OR constraint ti = xi1 ∨ ... ∨ xik

on the
values of its parent nodes Xi1 , ...,Xik

. The MPE diagnosis
becomes a constrained optimization problem of finding x∗ =
arg maxx1,...,xn

∏n
j=1 P (xj) subject to those constraints. In a

particular case of uniform priors P (xj), diagnosis is reduced
to solving a constraint satisfaction problem. The problem can
also be cast as a constraint satisfaction rather than optimization
if there exist a unique solution satisfying the constraints (see
[9] for more details on how to construct such probe sets).

Although constrained optimization and constraint satisfac-
tion problems (CSPs) are generally NP-hard, it is interesting
to note that the probing domain yields a tractable set of
constraints.

Proposition 2: A set of disjunctive clauses tj = xj1 ∨ ...∨
xjk

, j = 1, ...,m over a set of variables X1, ...,Xn, where
xi ∈ {0, 1}, tj ∈ {0, 1} for i = 1, ..., n and j = 1, ...,m, can
be solved in O(n) time.
Indeed, each successful probe yields a constraint xi1 ∨ ... ∨
xik

= 0 which implies that all nodes Xi on its path are OK
(xi = 0); the rest of the nodes are only included in constraints
xi1 ∨ ...∨ xik

= 1 imposed by failed probes. A simple O(n)-
time algorithm would find a satisfying assignment to all nodes
by assigning 0 to every node appearing on the path of a



10

successful probe, and 1 to the rest of nodes2.
In the presence of noise, the MPE diagnosis task can be

written as finding x∗ = arg maxx1 . . . maxxn

∏
i P (xi|pai) =

= arg max
x1

F1(x1) . . . max
xn

Fn(xn, Sn), (7)

where each Fi(xi,Si) =
∏

xk
P(xk|pa(xk)) is the product

of all probabilistic components involving Xi and a subset of
lower-index variables Si ⊆ {X1, ...,Xi−1}, but not involving
any Xj for j > i. The set of all such components is also called
the bucket of Xi [18]. An exact algorithm for finding MPE
solution, called elim-mpe [18], uses variable-elimination (also
called bucket-elimination) as a preprocessing: it computes the
product of functions in the bucket of each variable Xi, from
i = n to i = 1 (i.e., from right to left in the equation 7),
maximizes it over Xi, and propagates the resulting function
f(·) to the bucket of its highest-order variable. Once variable-
elimination is completed, the algorithm finds an optimal so-
lution by a backtrack-free greedy procedure that, going from
i = 1 to i = n (i.e., in the opposite direction to elimination),
assigns Xi = arg maxxi

Fi(xi,Si = si) where Si = si is
the current assignment to Si. It is shown that elim-mpe is
guaranteed to find an optimal solution and that the complexity
of the variable-elimination step is O(n · exp(w∗)) where w∗,
called the induced width, is the largest number of arguments
among the functions (old and newly recorded) in all buckets
[18]. For the probing domain, it is easy to show that w∗ ≥ k
where k is the maximum number parents of a probe node, and
w∗ = n in the worst case.

Since the exact MPE diagnosis is intractable for large-
scale networks, we focused on local approximation techniques.
Particularly, we used a simple (O(n) time) backtrack-free
greedy algorithm, called here greedy-mpe, which performs
no variable-elimination preprocessing, and the simplest and
fastest member of the mini-bucket approximation family, algo-
rithm approx-mpe(1) [19], [20], that performs a very limited
preprocessing similar to relational arc-consistency [20] in
constraint networks.

The greedy algorithm greedy-mpe does no preprocessing
(except for replacing observed variables with their values in
all related function prior to algorithm’s execution). It computes
a suboptimal solution

x′ = (arg max
x1

F1(x1), . . . , ..., arg max
xn

Fn(xn, Sn = sn)),
(8)

where Si = si, as before, denotes the current assignment
to the variables in Sj computed during the previous i − 1
maximization steps.

Generally, the mini-bucket algorithms approx-mpe(i) per-
form a limited level of variable-elimination, similar to en-
forcing directional i-consistency, prior to the greedy assign-
ment. The preprocessing allows to find an upper bound U
on M = maxx P (x, t), where t is the evidence (clearly,
MPE = M/P (t)), while the probability L = P (x′, e)
of their suboptimal solution provides an lower bound on

2Note that this is equivalent to applying unit propagation to a Horn theory
– a propositional theory that contains a collection of disjunctive clauses, or
disjuncts, where each disjunct includes no more than one positive literal.

M . Generally, L increases with the level of preprocessing
controlled by i, thus allowing a flexible accuracy vs. efficiency
trade-off. The algorithm returns the suboptimal solution x′ and
the upper and lower bounds, U and L, on M ; ratio U/L is a
measure of the approximation error.

In [10], the algorithms greedy-mpe and approx-mpe(1) were
tested on the networks constructed in a way that guarantees the
unique diagnosis in the absence of noise. Particularly, besides
m tests each having r randomly selected parents, we also
generated n direct tests T̂i, i = 1, ..., n, each having exactly
one parent node Xi. It is easy to see that, for such networks,
both greedy-mpe and approx-mpe(1) find an exact diagnosis
in the absence of noise: approx-mpe(1) reduces to the unit-
propagation, an equivalent of relational-arc-consistency, while
greedy-mpe, applied along a topological order of variables
in the network’s directed acyclic graph (DAG)3, immediately
finds the correct assignment which simply equals the outcomes
of the direct tests.

We then added noise in a form of non-zero link probability
q (assumed to be equal for all nodes), and zero leak proba-
bility. The Figure 8 summarizes the results for 50 randomly
generated networks with n = 15 unobserved nodes (having
uniform fault priors p = P (xi = 0) = 0.5), n = 15 direct
probes, one for each node, and m = 15 noisy-OR probes, each
with r = 4 randomly selected parents among the unobserved
nodes, zero leak l = 0 probability. The link probability (noise
level) q varied from 0.01 to 0.64, taking 15 different values;
the results are shown for all noise levels together. For each
network, 100 instances of evidence (probe outcomes) were
generated by Monte-Carlo simulation of x and t according
to their conditional distributions. Thus, we get 50x100=5000
samples for each value of noise q.

As demonstrated in Figure 8, the approximation accuracy
of greedy-mpe, measured as L/M where L = P (x′, t) and
M = P (x∗, t), clearly increases with increasing value M , and
therefore with the probability of the exact diagnosis, which
also depends on the ”diagnostic ability” of a probe set (for
same probe set size, a better probe set yields a higher MPE
diagnosis, and therefore, a better approximation quality). There
is an interesting threshold phenomenon, observed both for
greedy-mpe and for approx-mpe(1) solutions (the results for
approx-mpe(1) are omitted due to space restrictions), and for
various problem sizes n: the suboptimal solution x′ found by
algorithm greedy-mpe suddenly becomes (almost always) an
exact solution x∗ (i.e., L/M = 1, where L = P (x′, t) and
M = P (x∗, t)) when M > θ where θ is some threshold
value. For n = 15, the threshold is observed between 2e − 6
and 3e− 6. A theoretical analysis in the next section yields a
quite accurate prediction of θ ≈ 2.46e − 6.

1) Theoretical analysis: noise and approximation accuracy:
We now provide a theoretical explanation for threshold be-
havior of approximation error reported in [10], at least for the
simplest approximation algorithm greedy-mpe.

Let BN = (G,P ) be a Bayesian network, where T = t
is evidence, i.e. a value assignment t to a subset of variables

3A topological (or ancestral) ordering of a DAG is an ordering where a
child node never appears before its parent.



11

0 0.246 0.5 1 1.5 2 2.5 3

x 10
−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MPE

A
pp

ro
x.

 q
ua

lit
y:

 L
/M

15 nodes, 15 tests, 4 parents

Fig. 8. The accuracy of the solution x′ found by algorithm greedy-mpe,
measured by L/M , where L = P (x′, t) and M = P (x∗, t), versus M . The
results obtained for approx-mpe(1) were quite similar to those for greedy-mpe.

T ⊂ X. We will also make an important assumption that
the all observed variables are replaced by their values in all
CPD functions. Also, recall that Fi(xi, si) is the product of
functions in the bucket of Xi along the ordering o, given the
assignment si of some variables in the previous buckets. Then

Lemma 3 (greedy-mpe optimality): Given a Bayesian net-
work BN = (G,P ), an evidence assignment T = t applied
to all relevant probability functions, and a topological ordering
o of unobserved nodes in the graph G, the algorithm greedy-
mpe applied along o is guaranteed to find an optimal MPE
solution if P (x′, t) ≥ Fi(xi, s′i) for every i = 1, ..., n and for
every xi �= x′

i, where Si = s′i is a partial assignment already
found by greedy-mpe.

Proof: Clearly, the solution x′ found by greedy-mpe
is optimal, i.e. x′ = x∗ = arg maxx P (x, t) if P (x′, t) ≥
P (x, t) for every x �= x′. Since x �= x′ implies xi �= x′

i for
some i (let us choose the smallest of such i’s), by the con-
dition of lemma we get P (x′, t) ≥ Fi(xi, s′i), and, therefore,
P (x′, t) ≥ ∏n

j=1 Fj(xj , sj) since each Fj(xj , sj) is a product
of probabilities, and therefore, 0 ≥ Fj(xj , sj) ≥ 1. But∏n

j=1 Fj(xj , sj) = P(x, t) by equation 7, which concludes
the proof.

We now discuss some particular classes of Bayesian net-
works that satisfy the conditions of lemma 3.

Lemma 4 (nearly-deterministic CPDs, no observations):
Given a Bayesian network BN = (G,P ) having no observed
variables, and all conditional (and prior) probabilities
being nearly-deterministic, i.e. satisfying the condition
maxxi

P (xi|pa(Xi)) > 1 − δ, where 0 ≤ δ ≤ 0.5, algorithm
greedy-mpe applied along a topological ordering o of G is
guaranteed to find an optimal MPE assignment if (1−δ)n ≥ δ.

Proof: Given a topological ordering and no evidence
variables, the bucket of every node Xi contains a single
function P (xi|pa(Xi)). Thus, the greedy solution x′ yields
P (x′) =

∏n
i=1 maxxi

P (xi|pa(Xi)) = (1 − δ)n, while any
other x has the probability P (x) =

∏n
i=1 P (xi|pa(Xi)) <

δ since for the very first i such that xi �= x′
i we get

P (xi|pa(Xi)) < δ and this value can only decrease when

multiplied by other probabilities 0 ≤ P (xj |pa(Xj)) ≤ 1.
Let us consider a simulation that happened to select

only the most-likely values for T̂i and Ti, i.e. t′i =
arg maxti

P (ti|pa(Ti)), which can be viewed as an error-
free ”transmission over a noisy channel”. From 6 we
get maxti

P (ti|pa(Ti)) ≥ (1 − q); also, for any t′′i �=
arg maxti

P (ti|pa(Ti)), P (t′′i |pa(Ti)) < q. It is easy to show
(similarly to lemma 3) that algorithm greedy-mpe will find
an assignment that produced this most-likely evidence, thus
yielding P (x′, t̂, t) =

∏n
i=1 P (xi)

∏n
i=1 P (t̂i)

∏n
i=1 P (ti) >

1
2n (1−q)n+m. On the other hand, for any other x there exists
Tj = tj where tj is not the most-likely choice for Tj given
x, and thus P (ti|pa(ti)) < q as can be seen from the noisy-
OR definition. Thus, the greedy solution x′ is guaranteed to
be optimal once for any x �= x′, P (x′, t̂, t) > P (x, t̂, t),
i.e. once (1 − q)n+m > q (the constant 1

2n on both sides of
the inequality was cancelled). Note that simulating an unlikely
evidence yields a low joint probability M = P (x∗, t̂, t) < q
for the optimal diagnosis x∗.

In our experiments, n = m = 15, thus resolving (1−q)30 =
q gives a threshold value q ≈ 0.0806, and therefore M =
P (x′, t̂, t) = 1

215 (1 − q)30 > 1
215 q ≈ 2.46e − 6, which is

surprisingly close to the empirical threshold observed in Figure
8 which separates suboptimal from the optimal behavior of
algorithm greedy-mpe.

VII. EMPIRICAL RESULTS

This section examines the empirical behavior of both pre-
planned and active probing. For pre-planned probing the
approximation algorithms find a probe set which is very
close to the true minimum set size, and can be effectively
used on large networks where finding the true minimum
by exhaustive search is impractical. Active probing greatly
reduces the number of probes needed, although at the expense
of a more complex interactive inferencing system, as described
above.

A. Simulated Networks

Our initial set of experiments was performed on randomly
generated networks. Of course, those artificial networks may
not necessarily reflect the realistic topologies, but they still
provide an initial comparison of active probing to other
approaches; then, the next section demonstrates active probing
on real-life networks.

The artificial networks in our experiments were generated as
follows. For each network size n, we generated twenty random
networks with n nodes by randomly connecting each node to
four other nodes. The probe stations are selected randomly.
The probes follow the least-cost path from each probe station
to each node.

The states to diagnose are any single node being down or
no failure anywhere in the network. Each node has the same
prior probability of failure, and there is no noise in the probe
results. Note that in this case n probes are sufficient, because
one can always use just one probe-station and probe every
single node.



12

(a)

(b)

Fig. 9. Active versus pre-planned probing results for randomly generated
networks: simulation results on (a) small-scale and (b) large-scale networks.

Exhaustive search is performed to find the true mini-
mum size probe set. Then linear-time subtractive search and
quadratic-time greedy search are used to find probe sets.
Active probing algorithm is evaluated as follows. For each
network, we simulate all possible fault scenarios (i.e., a fault
at each node, and the no-failure situation), and compute an
average number of active probes needed for diagnosis in this
network. Finally, for every probing method, we average the
results over all networks of given size and report them in
Figure 9.

The results in Figure 9a (small-scale networks) indicate that
the approximation algorithms for finding the smallest probe set
perform well and are much closer to the true minimum set size
than to the upper bound of n probes and also demonstrate
the considerable improvement resulting from active probing
when compared with pre-planned, or “passive”, probing. In
Figure 9b the approximation and active probing algorithms
are extended to larger networks for which finding the true
minimum is impractical. The active probing demonstrates

Fig. 10. Active probing results on several practical problems.

more than 60% improvement over the pre-planned probing.

B. Practical Applications

In Table 10, we report the results on several real probing
applications. The problem G1 is a relatively small testbed
for probe analysis, while the sets of problems O1 − O3 and
C1 − C4 relate to networks supporting several different e-
business applications, which include many servers and routers,
and its performance and availability depends on a large number
of software components (such as various databases, etc). For
the purposes of high-level, overall network diagnosis, only a
set of aggregate components is specified (e.g., a particular
network ‘cloud’, or a firewall of a specific company are
considered as diagnosable components). A set of probes was
manually selected by an expert for the case of single fault
localization. We ran a simple initial preprocessing on the
dependency matrix in order to eliminate repeating probes and
merge indistinguishable nodes, i.e. the nodes whose faults are
indistinguishable given the original probe set. The first two
column of Table 10 show the number of nodes and probes
before and after the initial preprocessing (e.g., originally,
problem O2 had 43 nodes and 44 probes, which was reduced
by preprocessing to 38 an 32, respectively). The next two
columns show the minimum number of probes found in a
pre-planning phase by exhaustive and by greedy search, re-
spectively. Then the next column shows the minimum number
of probes (found in greedy way) necessary for fault detection
only (i.e., simply the probes ’covering’ all nodes). Finally,
we show the minimum and the maximum number of probes
required by active probing to diagnose a single fault, and the
average such number over all possible faults.

Our approach was quite successful for these applications.
For example, in problem O3 having 34 nodes and 29 probes,
the probe-set selection algorithm found that the minimum
number of probes required for single fault localization is only
24 probes, a saving of 17%. Approximation algorithms were
optimal or nearly optimal: greedy search returned 24 probes,
while subtractive search found 25 probes (we only show the
results of greedy search in the table since it was always



13

superior to subtractive search). Finally, the most impressive
results were obtained by active probing. The number of probes
needed never exceeded 16 probes; on average, active probing
required only 7.5 probes, versus 24 probes used by pre-planned
probing, which yields savings of 69% (and of almost 74% if
the initial probe set is considered). In most of the cases (except
for a small testbed problem G1), active probing was saving
from 60% to 75% probes if compared to pre-planned probing
(and even more if compared to the initial probe set size).

VIII. MODELLING CHANGE IN DYNAMIC SYSTEMS

Many commonly used approaches to diagnosis (including
the codebook [7] and the active probing described above)
assume that the system does not change during the diagnosis.
Namely, the probe outcomes are obtained while the system is
in a certain state that we wish to recover from the observations.
However, this is not the case in highly dynamic systems
where the failure and repair rates are comparable with average
diagnosis time. In such cases, probes can provide contradictory
information: e.g. same probe which failed a couple of minutes
ago is OK now - does this mean a repair occurred (i.e., the
failure was intermittent) or one of the probe outcome was
incorrect (noisy probe outcomes)? In ”static” approaches, such
inconsistencies are typically treated as noise [7], and may
(unnecessarily) increase the diagnostic error.

Another challenge is the presence of multiple safe faults
which become more likely with the growing size of a dynamic
system. ”Static” approaches (e.g. codebook) do not track the
sequential occurrence of the faults (and repairs), and thus face
the problem of diagnosing simultaneous multiple faults present
in the system. However, general multifault diagnosis prob-
lem is known to be computationally hard (e.g., constrained-
satisfaction formulation of [22] and probabilistic inference
problem in Bayesian networks [1] are both NP-hard; also,
handling multiple faults in a system of n components using
codebook [7] or active probing [3] would require enumeration
of up to 2n fault combinations).

Herein, we propose two approaches to handling dynamic
systems. The first one is a general framework of Dynamic
Bayesian Networks (DBNs), that can handle a wide range of
dynamic systems, but suffers from same computational com-
plexity problem as the basic Bayesian network framework (i.e.,
inference in DBNs is NP-hard). The second one is an efficient
linear-time approximation, called herein sequential multifault
approach. This approach provides significant computational
savings over general multifault approaches (such as BNs and
DBNs), while at the same improves the accuracy of ”static”
approaches (such as codebook and single-fault active probing).
The price to pay is the restricting assumptions that failures
and repairs happen only one at a time and with a relatively
low frequency so that the diagnostic engine can process them
sequentially. However, there appears to be a wide range of
practical diagnostic problems satisfying these assumptions,
where our approach provides a nice trade-off between accuracy
and complexity of diagnosis.

A. Dynamic Bayesian Networks

In order to model situations where the states of system
components change over time, we will first consider general
framework of Dynamic Bayesian Networks (DBNs). Dynamic
BN model extends static BN model by introducing the notion
of time, namely, by adding time slices and specifying transition
probabilities between these slices: P (Xt|Xt−1), where Xt =
(xt

1, ...x
t
n) is the vector of node states at time slice t. DBNs

use the Markov assumption that the future system state is
independent of its past states given the present state. Of course,
a brute-force specification of such probability over binary
variables requires a table of size O(22n), but the dynamic
Bayesian network exploits the conditional independencies (just
as regular BN) which allow to decompose the transition
probability into a product of transition probabilities for each
node at time slice t. As a result, a DBN is defined as a two-
slice BN, where the intra-slice dependencies are described by a
static BN, and inter-slice dependencies describe the transition
probabilities. It is usually assumed that DBN describes a
stationary stochastic process (i.e. the transition probabilities
and intra-slice dependencies do not change with time), thus
only two slices are enough to describe the process. Figure 11b
shows an example of a dynamic BN that extends a static BN
in Figure 11a (describing intra-slice dependencies) by adding
inter-slice dependencies encoding transition probabilities. For
example, the state of node X1 at time t + 1 depends on the
states of nodes X1 and X2 at time t, which is described by
a transition probability distribution P (Xt+1

1 |Xt
1,X

t
2). Node

T t
j denotes j-th probe outcome observed at time t; note

that at different time slices, different probes can be observed
(sometimes simultaneously, depending on the size of time slice
with respect to probe time window).

(a)

(b)

Fig. 11. (a) A two-layer Bayesian network structure for a set X =
(X1, X2, X3) of network elements and a set of probes T = (T1, T2), and
(b) its extension to a Dynamic Bayesian Network.

Once a dynamic BN is specified, any standard Bayesian
Network inference algorithm can be applied to the two-slice
dynamic BN in order to compute P (Xt|Xt−1, Y t), given the
prior distribution P (Xt−1) and the observations Y t at time



14

slice t (where Y ⊆ T is a subset of probes observed at time
t). Clearly, this process can be repeated iteratively over time,
always producing the joint distribution over the system states
at the current time and the most-likely diagnosis. Although the
computational complexity of exact inference in DBNs can be
quite high, up to O(2n), where n is the number of nodes at a
time slice, there are some efficient approximation algorithms
available [23], [24].

1) Learning Dynamic Bayesian Networks: In order to apply
dynamic Bayesian networks to our diagnostic problems we
will need to obtain transition probability parameters, as well as
the probe outcome probabilities (in case of noisy probes). Re-
call that we are only given the dependency matrix that defines
the intra-slice structure; the inter-slice structure we assume to
be quite simple: each node fails and repairs independently of
the others, thus every node state at time t− 1 affects only its
state at the next time step, and vice versa, every node’s state
now is only affected by its own state on the previous time slice.
However, the probability parameters must be learned from
data, such as sequences of probe observations over several
time slices.

A standard approach to learning DBNs from sequential
data is to use Expectation-Maximization (EM) [25] algorithm
which is a generic technique for learning probabilistic models
with hidden variables (i.e. variables that are not observed,
or missing in the data). The algorithm works iteratively
as follows: it uses some initial parameter assignment to
compute the expected values of certain sufficient statistics
(e.g., frequencies in case of maximum-likelihood probability
estimates) which cannot be computed directly due to missing
values of certain variables (this is called the E-step); then
the expected statistics are used instead of ”real” ones (as if
they were computed from the data without hidden variables)
and either a maximum-likelihood approach or, alternatively,
MAP - maximum-aposteriory probability approach which uses
Bayesian priors over the parameters – is applied in order to
compute updated parameters (M-step); the new parameters
replace the ones from the first iteration, and the algorithm
continues recursively. It is known to converge to a local
maximum in parameter space under quite general assumptions.

2) Empirical results: In Figure 12 we report empirical re-
sults for one of our real-life probing problems. We constructed
a dynamic Bayesian network as described above, using the de-
pendency matrix for creating intra-slice dependencies, and for
inter-slice dependencies assuming only links between the node
at time t and same node at time t + 1. We ran EM algorithm
on the resulting network in order to learn its parameters. (The
experiments were performed using the open-source MATLAB
library called Bayes Net Toolbox (BNT) [26].) The diagnostic
algorithm using DBN was evaluated for different levels of
noise and fault probabilities at each node.

We simulated various sequences of faults, assuming that the
probability of repair (i.e., switching from failed to OK state)
between the time slices is P (Xt+1

i = 0|Xt
i = 1) = 0.5 for

each node Xi, and that each probe outcome has noise 0.01,
a parameter of noisy-OR model described before. (Parameter
ncases denotes the number of training sequences used for
learning DBN, in this case ncases = 15; for testing, we used

(a)

(b)

Fig. 12. Results of learning parameters of DBN for a practical probing
application: (a) dynamic model (DBN) produces significantly more accurate
diagnosis than the static BN model which assumes zero transition probabili-
ties, i.e. no change in the system; also, both errors increase with increasing
probability of fault at a node; (b) smaller noise level in probes yields, in
general, higher diagnostic accuracy.

a sequence of probe outcomes at 5 consecutive time slices).
It was also assumed that at the initial time slice, there is a
single node failure, and the experiments were performed for
each such failure. The dependency matrix was selected so that
in the absence of noise we could uniquely diagnose a single
fault. This makes it easier to investigate the effect of increasing
noise on the diagnostic performance.

First, we compared the performance of learned DBN versus
the static model that assumes no change in the system, i.e.
zero transition probabilities: P (Xt+1|Xt) = 0 if Xt+1 �=
Xt. In Figure 12a, the X-axis shows the probability of failure
between the time slices, P (Xt+1

i = 1|Xt
i = 0), and the Y-

axis shows the diagnostic error. We observe that the dynamic
model produces much more accurate diagnosis (by 15-20%)
than the static model. This observation confirms that using
dynamic Bayesian networks instead of static ones is indeed
beneficial when the system is dynamically changing.

We also observe that the diagnostic error of both static
and dynamic models increases with the increasing probability
of failure. Indeed, higher probability of failure implies more
uncertainty about the node states, and more frequent state



15

change.
Figure 12b also shows how the diagnostic error increases

with the (transitional) probability of failure, now for different
levels of noise. As expected, we observe that the smaller
noise levels generally yield a more accurate diagnosis. This
corresponds to our intuition since more deterministic probes
tend to keep more information about the true states of the
nodes they go through; thus, learning uses more informative
data.

B. Sequential Multifault Approach: an Efficient Approxima-
tion to DBNs

As we already mentioned above, the problem with DBNs
is the computational complexity of inference that can be gen-
erally hard (NP-hard). Herein, we propose an approximation
to DBNs based on simplifying assumptions regarding the
fault occurrence: namely, we assume that failures and repairs
happen one at a time, and the time between such events is
sufficient for diagnostic engine to complete its cycle. Our
approach can be also viewed as a very simple extension of the
single-fault active probing algorithm (and it will be described
in detail using the dependency matrix terminology).

Note that some multifault situations can be inherently unrec-
ognizable because some components may become ”shielded”
by the failures of other components. Particularly, in depen-
dency matrix setting, we will define a component X as shielded
by the failure of the component Y if all probes going through
X go through Y as well.
Generic Multifault. First, we consider a very simple algo-

rithm for handling multiple faults (called generic multifault)
that still assumes no change in the system state during the
diagnosis cycle. Given the dependency matrix and the probes
outcomes, the algorithm
1. Finds OK nodes: these are all the nodes through which at
least one OK probe passed.
2. Finds failed nodes: these are the nodes through which any
failed probe passed such that all other nodes on its path are
OK nodes, as determined in step 1.
3. Finds shielded nodes: these are the nodes through which
no probe goes other than those that go through any of already
failed nodes. Thus, all those probes will return ’failure’ and it
is impossible to determine the state of such nodes, or, in other
words, the nodes are ’shielded’ by the failures of nodes found
in step 2.
4. The remaining nodes are ”possible failures”, in the sense
that certain combinations of their failures can produce the
given set of probe outcomes.

Generic multifault that reports shielded nodes as failed
does not miss any faults, although its false-positive error (the
amount of OK nodes reported as faulty) can be high for certain
dependency matrices. We will refer to this algorithm as ”safe”,
as opposed to ”non-safe” version that reports shielded nodes
as OK. In fact, the generic multifault algorithm acknowledges
the shielded nodes, and it is up to the user to decide how
to interpret them. We will show in empirical section that,
depending on the probability of fault in a system, we should
prefer ”safe” or ”non-safe” version.

Sequential Multifault. We now extend the generic multifault
approach to dynamic systems. The resulting algorithm, called
sequential multifault is still linear in the number of probes, but
has a lower diagnostic error because it keeps track of changes
in the system: the inconsistencies in observations help to detect
system change. The algorithm does not restrict the amount
of faulty components in the system, but it assumes that only
one change can happen at a time (i.e., failure or repair of one
component), and that processing of each change is fast enough
so that no other change occurs while the current change is
being processed. At a very high-level, the algorithm performs
the following monitoring loop:

initialize-system-state;
while (true)

if current observation contradicts
previous observations {

diagnose change;
report results;

}

Particularly, the algorithm monitors changes in the system’s
states using two sets of probes: set for fix (i.e., repair) detection
to monitor nodes that are known as failed, and set for failure
detection to monitor nodes that are known to be OK. Just as
for generic multifault, the algorithm has ”safe” and ”non-safe”
ways of treating shielded nodes, which are compared in the
empirical section.

If no change in the system has occurred, the probes from the
first set are expected to continue returning ”failure”, whereas
the probes from the second set are expected to continue re-
turning OK. A probe outcome different from the one expected
indicates a change in the system. When the algorithm detects
a change, it diagnoses (locates) the changed component. Since
the algorithm tracks the changes sequentially, it requires to be
given an initial system state. If the initial system state is not
known, it can be determined by applying the generic multifault
algorithm. After a change has been located and processed,
the algorithm updates its set of measurements - probe sets
for fix and failure detection. It also determines the set of
shielded nodes - the nodes that are shielded by the current
set of failures. The pseudocode for the sequential multifault
algorithm is shown in Figure 13.

1) Empirical Results: We compared the sequential and
generic multifault algorithms versus single-fault active prob-
ing. The experiments were performed on randomly generated
networks with 50 nodes and on a real-life router-level network
topology. For synthetic networks, the probe sets were con-
structed by randomly choosing sources and then constructing
shortest paths from each source to every other node. The
number of probe stations varied from 1 to 10. The results
were averaged over 30 trials for each number of sources. The
simulations were run on sequences of 100 consecutive changes
in the nodes’ states, which were generated randomly, one
change at a time (i.e., at each step, only one node can change
its state). At each step, the change type - failure or repair -
was chosen according to a ”fault density” parameter that took
values from 0 to 1 (fixed for each sequence, independent on
the current system’s state), which allowed to vary the average



16

Sequential Multi-Fault algorithm

Input: Dependency matrix, probe outcomes as they arrive,
initial system’s state.
Output: diagnosed system state.
Initialize nodes according to the initial system state.
while (true) /* endless loop, i.e. continuous monitoring */

shielded nodes = shielded(set of current failures)
probesForFixDetection F = setForFixDetection()
probesForFailureDetection D = setForFailureDetection()
change = ”no change”
while (change = ”no change”)

receive outcome of a probe P
if (outcome(P) = OK and P is in F)

change = ”repair”
else if (outcome(P) = FAILED and P is in D)

change = ”failure”
end
if (change = ”repair”)

move all nodes in P to OK nodes set
else if (change=”failure”)

fault = DiagnoseSingleFault(probe)
move fault to the failed nodes set

end
Output: OK nodes, failed nodes, shielded nodes

end

Fig. 13. Sequential Multifault Algorithm.

number of faults in the system over the whole sequence. We
present results for the fault densities 10% and 50% (that is,
when 10% and 50%, correspondingly, of all nodes were down
on average).

We vary the number of probe stations, also called sources,
and expect that increasing number of sources will decrease the
amount of shielded nodes, since nodes may become reachable
from multiple sources, and thus improve the accuracy of di-
agnosis. This indeed happens for multifault algorithms, while
the single-fault one (active probing) is not affected – its error
is always close to the fraction of faults in the system. Indeed,
if there are N faults in the system, the single-fault algorithm
will either find one of them, and miss all the others, or miss
all of them, and instead diagnose some OK node as failure.
In the first case, its false-negative error is N-1, with positive
error being zero. In the second case, its false-negative error is
N, and false-positive error is 1. So the lower bound on average
total error is N-1, and the upper bound is N+1, where N is the
number of actual faults in the system. This estimation holds
for any implementation of the single-fault algorithm (active
probing or codebook).

The figures 14a and 14b compare the algorithms for two
different regimes, i.e. low and high fault density, and suggest
that (1) multifault algorithms are generally more accurate
than the single-fault one, especially for higher fault densities,
and (2) selection of ”safe” versus ”non-safe” version depends
on the anticipated fault density. When the fault density is
relatively low (e.g. 10%), the ”non-safe” sequential algorithm
yields the best results (Figure 14a) with the total error rate
more than 3 times less than that of the single-fault algorithm,
even for the case of a single source. The error rate of the ”safe”

1 2 3 4 5 6 7 8 9 10

5

10

15

20

# of probe stations

er
ro

r 
%

 

Error rates of various diagnosis algorithms at 10% fault rate

single−fault active probing
"safe" sequential multifault
"non−safe" sequential multifault
"safe" generic multifault
"non−safe" generic multifault

(a)

1 2 3 4 5 6 7 8 9 10

10

15

20

25

30

35

40

45

# of probe stations

er
ro

r 
%

 

Error rates of various diagnosis algorithms at 50% fault rate

single−fault active probing
"safe" sequential multifault
"non−safe" sequential multifault
"safe" generic multifault
"non−safe" generic multifault

(b)

Fig. 14. Error rates (a) at 10% fault density and (b) at 50% fault density.

multifault algorithms is relatively high when the number of
sources is small, but quickly decreases with the number of
sources, also outperforming the single-fault algorithm. When
the fault density is high (50% in Figure 14b), any of the
multifault algorithms performs better than the single-fault
algorithm (Figure 14b), with the ”safe” versions yielding the
best results. So at such fault rates it is better to interpret
the shielded nodes as failed, rather than OK. It is interesting
to note that, unlike low fault density, at high fault densities
sequential ”non-safe” multifault produces notably lower error
than generic ”non-safe” multifault algorithm. This difference
can be explained by the fact that the sequential algorithm keeps
track of the fault history, so if a node had failed and then later
became shielded, sequential algorithm would ”remember” this
failure, rather than ”blindly” declare all shielded nodes as OK,
as the ”non-safe” version of the generic multifault algorithm
would do. For more detailed discussion and the results on
real-life network (which looked quite similar to the simulated
ones) see [27].



17

IX. IMPLEMENTATION: REAL-TIME DIAGNOSIS AND

PROBE SELECTION SYSTEMS

The algorithms described above were used as a basis for
building a system for probe set selection and dependency
matrix analysis, called DMA (Dependency Matrix Analysis
tool), and a system for real-time diagnosis called RAIL (Real-
Time Active Inference and Learning).

A. DMA system

Given as an input a dependency matrix, the analyzer will
first check for obviously redundant probes, e.g. delete identical
copies of a probe (we encountered such cases in practice).
DMA will also find all subsets of indistinguishable nodes and
group them accordingly into meta-nodes. Then, DMA applies
the following analysis to the resulting matrix:
- if exact search is not too expensive, DMA finds all optimal
probe subsets using exact pre-planned probing;
- it finds a suboptimal probe subset using greedy search;
- it finds a probe set for problem detection only, using a
greedy approach such as in active probing, until there are no
’uncovered’ nodes left;
- DMA analyzes the effectiveness of active probing on the
given dependency matrix by simulating a single fault, as well
as no-fault situation, and computing the number of active
probes required; it also computes an average number of active
probes;
- finally, DMA computes the induced width of the Bayesian
network corresponding to the dependency matrix; this pa-
rameter controls the complexity of exact inference which is
exponential in the induced width. Interestingly, in most of our
practical examples the induced width was quite low (6 to 8)
while the Bayesian network contained up to 38 nodes and 32
probes (problem O2 described in the following section).

B. RAIL - diagnosis system

We used the active probing algorithm to implement the pro-
totype real-time diagnostic system called RAIL. The system
architecture is shown in Figure 15. The real-time diagnosis
engine obtains the input through the Real-Time Event Manager
(REM) which is a generic component able to process not only
incoming probes but various other event types; thus the diag-
nostic engine is not probe-specific. In our particular application
which uses the IBM’s End-to-End Probing Platform (EPP),
the input probe outcomes are obtained from the EPP probe
stations, processed by REM, and submitted to the diagnostic
engine which updates its beliefs about the system states, and
requests an active probe, if needed, using the Probe Agent
Driver component, which “talks” to EPP. The dependency
matrix information is maintained and updated by Dependency
Manager (DM), which obtains the initial matrix from the
DMA tool. The future extensions to the system include adding
a learning component that allows online adaptation of the
dependency matrix to the changing environment (e.g., probe
path changes, adding or deleting components, discovery of
hidden causes, etc.), and learning parameters describing the
dynamics of the system. In other word, the component will

Fig. 15. RAIL system architecture.

perform online learning of both structure and parameters of a
DBN model.

In Figure 16 we show a sequence of screenshots of RAIL
system running on a simple benchmark introduced in Figure
2. Each component corresponds to a node on the screen, and
the logical links between the nodes are added in order to
demonstrate how a probe can pass through a sequence of
components, even though they are not physically connected:
e.g., a link from WebServer (WS) to Application Server
Hardware (HAS). The sequence of probe outcomes is shown
in the upper-right window, while the results of diagnosis is
shown in the lower-right window as a probability distribution
over all nodes (in this simple demo, we assumed no more than
one fault in a system). In this example, a Database Server
failure occurred, which was diagnosed using the following
sequence of active probes. Once ’main’ probe (pWS) failed,
the fault was detected, and the active probing selected pDBS
as a most-informative next probe. This probe was executed
and returned a failure. Then pingH (ping to ’hub’ or ’router’,
thus a synonym for pingR) returned OK, thus the router
was functioning properly; finally, pingDBS returned OK
which left as only possible fault DBS node. Thus, diagnosis
completed using only 3 probes out of 7, and the ’main’ probe
that was run repeatedly for fault detection.

Recently, RAIL system was extended to diagnose sequential
faults and repairs [4], [27] as described in the previous section.
This approach is a bit more restrictive than general multi-fault
diagnosis in Bayesian Networks and DBNs, as it still assumes
a single failure at a time. However, this results into much more
efficient practical approach that avoids possibly exponential
complexity of multi-fault inference.

A scenario illustrating sequential multifault diagnosis is
shown in Figure 17. In this example, we assume that there
is no failed nodes in the initial system state.

1. All nodes are functioning properly; all probes return OK
(Figure 17a).
Since there are no failures at the current state, probe set for
fix detection is empty. Probe set for failure detection consists
of the longest probe that covers all nodes, pWS.



18

Fig. 16. A sequence of RAIL screenshots demonstrating successful diagnosis of a Database Server fault in our testbed system demonstrated in Figure 2.

2. Node WS failed, probe pWS failed (Figure 17b).
We locate the fault (WS) by active probing algorithm, update
the diagnosed system’s state, and delete WS and all probes
going thorough it from the dependency matrix. We see that the
failure of WS doesn’t shield any nodes, because all remaining
nodes still have some 1’s in their columns.

3. Node HAS failed, probe pAS returns failed (Figure 17c).
After locating the fault (HAS) and modifying the dependency
matrix, we see that HAS’s failure has shielded node AS. Note
also, that the failed node WS has also become shielded by this
failure. So we don’t include the probe pWS in the set for fix
detection. Rather, we can check the status of WS after HAS
has got repaired.

4. Node HDBS failed, probe pDBS failed (Figure 17d).
The faulty node in this case is HDBS. Its failure shielded one
more node - DBS. Probe set for failure detection consists of
a single probe - pingWS - that covers both of the remaining
OK nodes (HWS and R). For fix, we monitor only HAS and
HDBS; the failed node WS is shielded.

5. Node HAS repaired, probe pingAS returns OK (Figure
17e).
Success of probe pingAS indicates that HAS has repaired.
However, we see that none of the shielded nodes became
unshielded, because they all are still shielded by HDBS. Node

WS is also shielded, so we don’t include pWS into the probe
set for fix detection.

6. Node R failed, probe pingWS returns failure (Figure
17f).
Active probing finds that R is down. R’s failure has shielded all
the nodes. Now the probe set for failure detection is empty - we
don’t have any probe not going through a failed node. Probe
set for fix detection consists of the single probe - pingR, that
monitors node R for repair. We say that R is the bottleneck,
because we cannot update information about other nodes’ state
before R has got fixed.

Note that some of the faults may ”shield” the other nodes
which become unreachable and thus impossible to diagnose
(e.g., HAS failure makes AS unreachable). This indicates the
necessity of developing more powerful probe sets that allow
handling multiple faults. Note that even the exact multi-fault
diagnosis is only as good as the input information provided
by the probes.

X. RELATED WORK

Previous work [9], [10], [28] studied the probe selection
problem for the purpose of network management. This paper
develops a more general framework for problem determina-
tion using probes, proves the NP-hardness of the probe-set



19

(a) (b)

(c) (d)

(e) (f)

Fig. 17. Illustration of sequential multifault algorithm.



20

selection problem, develops the active probing approach and
demonstrates its advantages in reducing probe-set size.

Event correlation [5], [6] for identifying root-causes has
long been recognized as a critical issue in the system man-
agement domain. Problem determination is performed by an-
alyzing alarms emitted by devices when a significant situation
occurs. Unlike the probing scheme, alarms are “reactive”
to a situation and this requires intensive instrumentation,
only possible in a tightly managed environment. The probing
approach uses test transactions that can be built easily without
touching the existing devices.

Nonetheless, event correlation has many similarities to our
work. The formulation of problem diagnosis as a “decoding”
problem, where “problem events” are decoded from “symp-
tom events”, was first proposed by [7]. Our approach uses
an active probing approach versus a “passive” analysis of
symptom events; namely [7] selects codebooks (a combination
of symptoms encoding particular problems) from a specified
set of symptoms, while we actively construct those symptoms
(probes), a much more flexible approach. Another important
difference is that [7] lacks a detailed discussion of efficient
algorithms for constructing optimal codebooks.

Other approaches to fault diagnosis in communication net-
works and distributed computer systems include Bayesian
networks [29], [1] and other probabilistic dependency mod-
els [30]; another approach is statistical learning to detect
deviations from the normal behavior of the network [31].
However the probe selection problem and active probing as
formulated here were not addressed in that work. A compre-
hensive treatment of multi-fault, including most-informative
test selection, was also provided in [22]. However, to the
best of our knowledge, combining probabilistic inference with
online selection of most-informative probes appears to be a
novel approach in the area of distributed systems diagnosis
via end-to-end probing.

In our recent work [1], [10], a theoretical bound on the
diagnostic error was derived; this lower bound provides nec-
essary conditions for the number of probes needed to achieve
an asymptotically error-free diagnosis as the network size
increases, given prior fault probabilities and a certain level
of noise in probe outcomes. Also, empirical observations
suggested that a simple greedy approximation algorithm for
finding most-likely diagnosis (MPE) yield nearly-optimal re-
sults when noise is sufficiently small. In this paper, we provide
a theoretical justification of these results.

XI. CONCLUSIONS

This paper addresses real-time problem diagnosis in com-
puter networks and distributed computer systems. We im-
prove the state-of-art by introducing a more adaptive and
cost-efficient technique, called active probing. Active probing
uses an information-theoretic approach to probe selection that
speeds up real-time diagnosis by minimizing set of measure-
ments, such as probes (test transactions), while maintaining
high diagnostic accuracy.

We compare the existing pre-planned probe-selection ap-
proach [9], [10] with the active probing. In the pre-planned

approach, a set of probes is selected and scheduled to run
periodically. Problem diagnosis is performed by analyzing the
probe results. This approach may be quite inefficient since it
requires running an unnecessarily large set of probes capable
of diagnosing all possible problems, many of which might
in fact never occur. We prove that both problems of optimal
probe set selection for fault detection and for fault diagnosis
are NP-hard. We then review (and reformulate in information-
theoretic framework) simple approximation techniques of [9],
[10] that serve as a baseline for comparison with the proposed
active probing approach.

In active probing, a set of probes is selected to run periodi-
cally as before, but only for the purpose of detecting when a
problem occurs. Whenever occurrence a problem is detected
by one or more of the probes, additional probes are sent out
to obtain further information about the problem. As probe
results are received, belief about the system state is updated
using probabilistic inference in a Bayesian network, and the
next most-informative probe is selected and sent. This process
continues until the problem is diagnosed. We demonstrate
through both analysis and simulation that the active probing
scheme greatly reduces both the number of probes (by up to
75% in our real-life applications and in simulations) and the
time needed for localizing the problem when compared with
non-adaptive, pre-planned probing schemes.

We discuss probabilistic inference approach to analyzing
probe results: a simple one based on k-fault assumption, and
a generic multi-fault approach; we also provide theoretical
guarantees on diagnostic quality of a simple approximate
inference algorithm in the presence of noise in probe out-
comes. These encouraging results suggest the applicability of
such approximations to certain almost-deterministic diagnostic
problems that often arise in practical applications. Moreover,
we demonstrate initial results on learning parameters of Dy-
namic Bayesian Network from probe outcomes that allows
online adaptation of diagnostic engine to system’s dynamics.
Since inference in DBNs is generally intractable, we also
present an efficient approximate approach called sequential
multifault that works well under certain restricting assumptions
(such as single-node failure or repair in a system at a time);
empirical results demonstrate clear advantage of such ap-
proaches over ”static” techniques that do not handle system’s
changes. Finally, we describe an architecture and functionality
of our proof-of-concept system that implements our approach.

Directions for future work include incorporating Dynamic
Bayesian Network model into active probing in order to better
handle system dynamics, such as intermittent faults, dynamic
routing and lack of precise knowledge of the probe path, and
adapting to non-stationary behavior of the system using on-
line learning that yields a dynamic, adaptive, probing strategy.
We feel that adaptive, cost-effective techniques for problem
determination will become increasingly important if new-
generation IT systems are to be capable of self-management
and self-repair.

ACKNOWLEDGEMENTS

We would like to thank Vittorio Castelli, Daniel Oblinger
and other members of the Machine-Learning group for many



21

insightful discussions that contributed to the ideas of this
paper. We also thank EPP team, especially Herb Lee, Andy
Frenkiel, and Marius Sabbath, for their collaboration on
RAIL/EPP framework, and Douglas Griswold, Luis Moss, and
Justin Ellis for providing the data and useful information about
various practical issues related to probing.

REFERENCES

[1] I. Rish, M. Brodie, and S. Ma, “Accuracy vs. Efficiency Trade-offs
in Probabilistic Diagnosis,” in Proceedings of AAAI-2002, Edmonton,
Alberta, Canada, 2002.

[2] M. Brodie, I. Rish, S. Ma, and N. Odintsova, “Active probing strategies
for problem diagnosis in distributed systems,” in Proceedings of the
The Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-03), Acapulco, Mexico, 2003.

[3] I. Rish, M. Brodie, N. Odintsova, S. Ma, and G. Grabarnik, “Real-time
Problem Determination in Distributed Systems using Active Probing,” in
Proceedings of 2004 IEEE/IFIP Network Operations and Management
Symposium (NOMS 2004), Seoul, Korea, 2004.

[4] N. Odintsova, I. Rish, and S. Ma, “Multifault Diagnosis in Dynamic
Systems,” in Integrated management (IM-2005), Nice, France, 2005.

[5] A. Leinwand and K. Fang-Conroy, Network Management: A Practical
Perspective, 2nd Edition. Addison-Wesley, 1995.

[6] B. Gruschke, “Integrated Event Management: Event Correlation Using
Dependency Graphs,” in DSOM, 1998.

[7] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo, “A coding
approach to event correlation,” in Intelligent Network Management (IM),
1997.

[8] A. Frenkiel and H. Lee, “EPP: A Framework for Measuring the End-
to-End Performance of Distributed Applications,” in Proceedings of
Performance Engineering ’Best Practices’ Conference, IBM Academy
of Technology, 1999.

[9] M. Brodie, I. Rish, and S. Ma, “Optimizing probe selection for fault
localization,” in Distributed Systems Operation and Management, 2001.

[10] I. Rish, M. Brodie, and S. Ma, “Intelligent probing: a Cost-Efficient
Approach to Fault Diagnosis in Computer Networks,” IBM Systems
Journal, vol. 41, no. 3, pp. 372–385, 2002.

[11] R. M. Karp, Complexity of Computer Computations. Plenum Press,
1972, ch. Reducibility among combinatorial problems, pp. 85–103.

[12] M. Garey and D. Johnson, Computers and Intractability; A Guide to the
Theory of NP-completeness. W.H. Freeman and Co., San Francisco,
1979.

[13] T. Cover and J. Thomas, Elements of information theory. New
York:John Wiley & Sons, 1991.

[14] J. Pearl, Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann, 1988.

[15] G. Cooper, “The computational complexity of probabilistic inference
using Bayesian belief networks,” Artificial Intelligence, vol. 42, no. 2–
3, pp. 393–405, 1990.

[16] S. Lauritzen and D. Spiegelhalter, “Local computation with probabilities
on graphical structures and their application to expert systems,” Journal
of the Royal Statistical Society, Series B, vol. 50(2), pp. 157–224, 1988.

[17] N. Zhang and D. Poole, “Exploiting causal independence in Bayesian
network inference,” Journal of Artificial Intelligence Research, vol. 5,
pp. 301–328, 1996.

[18] R. Dechter, “Bucket elimination: A unifying framework for probabilistic
inference,” in Proc. Twelfth Conf. on Uncertainty in Artificial Intelli-
gence, 1996, pp. 211–219.

[19] R. Dechter and I. Rish, “A scheme for approximating probabilistic infer-
ence,” in Proc. Thirteenth Conf. on Uncertainty in Artificial Intelligence
(UAI97), 1997.

[20] ——, “Mini-buckets: A General Scheme for Approximating Inference,”
J. of ACM, no. 50(2), pp. 107–153, 2003.

[21] J. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief propaga-
tion,” in NIPS 13. MIT Press, 2001, pp. 689–695.

[22] J. de Kleer and B. Williams, “Diagnosing Multiple Faults,” Artificial
Intelligence, vol. 32, no. 1, 1987.

[23] K. Murphy and Y. Weiss, “The factored frontier algorithm for approxi-
mate inference in dbns,” in Proceedings of UAI-2001, 2001.

[24] X. Boyen and D. Koller, “Tractable inference for complex stochastic
processes,” in Proceedings of the 14th Annual Conference on Uncer-
tainty in AI (UAI-98), 1998, pp. 33–42.

[25] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
Incomplete Data via The EM Algorithm,” Journal of Royal Statistical
Society, vol. 39, pp. 1–38, 1977.

[26] K. Murphy, “Bayes net toolbox for matlab,” http://www.ai.mit.edu/ mur-
phyk/Software/BNT/bnt.html.

[27] N. Odintsova, I. Rish, and S. Ma, “Multifault Diagnosis in Dynamic
Systems,” IBM T.J. Watson Research Center, Tech. Rep. RC23385,
2004.

[28] H. Ozmutlu, N. Gautam, and R. Barton, “Zone recovery methodology for
probe-subset selection in end-to-end network monitoring,” in Network
Operations and Management Symposium, 2002, pp. 451–464.

[29] J. Huard and A. Lazar, “Fault isolation based on decision-theoretic
troubleshooting,” Center for Telecommunications Research, Columbia
University, New York, NY, Tech. Rep. 442-96-08, 1996.

[30] I.Katzela and M.Schwartz, “Fault identification schemes in communica-
tion networks,” in IEEE/ACM Transactions on Networking, 1995.

[31] C. Hood and C. Ji, “Proactive network fault detection,” in Proceedings
of INFOCOM, 1997.

APPENDIX A
Here we prove that PROBE-SET SELECTION FOR FAULT DIAGNO-

SIS is NP-hard.
Proof: We will show that PROBE-SET SELECTION FOR FAULT

DIAGNOSIS is NP-hard via a reduction from PROBE-SET SELECTION
FOR FAULT DETECTION.

Let the dependency matrix DT,F and the positive integer k
be an arbitrary instance of PROBE-SET SELECTION FOR FAULT

DETECTION. We need to construct, in polynomial time, sets F̂, T̂,
and an integer k̂ ≤ |T̂|, such that there exists a subset of T of size
at most k covering F if and only if there exists a subset of T̂ of
size at most k̂ such that DT̂,F̂ has unique columns.

We assume there are m possible faults, i.e. F = {F1, . . . , Fm}.
The set F̂ contains all the elements of F plus m new elements
G1, . . . , Gm. The set T̂ will contain all the probes in T, plus m
additional probes {Fi, Gi} for all i ∈ {1, . . . , m}. The resulting
dependency matrix will be of size (r+m)×(2m). It can be visualized
as the four-block matrix [

DT,F 0
Im Im

]
,

where Im denotes the m × m identity matrix. We also set k̂ =
k + m − 1 (for reasons that will become clear later). It is easy to
see that the reduction can be done in polynomial time. We now show
both the sufficient and necessary conditions.

For the “if” direction, we assume that 〈DT,F, k〉 ∈
PROBE-SET SELECTION FOR FAULT DETECTION, thus there exists a
subset T′ ⊆ T of size at most k such that DT′,F has at least one
1 in every column. We need to show that 〈DT̂,F̂, k̂〉 is a positive
instance of PROBE-SET SELECTION FOR FAULT DIAGNOSIS. Indeed,
there exists a subset Q of at most rows k̂ rows inducing a sub-
matrix of DT̂,F̂ with unique columns – namely, Q contains T′ and
any (m − 1) of the m additional rows {Fi, Gi}. Since DT′,F has
a 1 in every column, every column of DQ,F̂ corresponding to a
fault in F will differ from any column corresponding to a fault in
{G1, . . . , Gm}. Since removing a single row from Im leaves all the
m columns distinct, the columns corresponding to the elements of F
will all be distinct from each other, as are the columns corresponding
to the elements of {G1, . . . , Gn}. Notice that |Q| ≤ k+m−1 = k̂,
as desired.

To show the other direction, we assume that 〈DT,F, k〉 is a nega-
tive instance of PROBE-SET SELECTION FOR FAULT DETECTION. We
need to show that 〈DT̂,F̂, k̂〉 will be a negative instance of PROBE-
SET SELECTION FOR FAULT DIAGNOSIS. Indeed, if any subset of at
most k rows of DT,F induces an all-0 column, then any submatrix of
DT̂,F̂ induced by a subset of at most k̂ rows will contain duplicate
columns. To see this, let Q be a subset of at most k̂ rows. There are
two cases to be considered:

1) Q contains at most k elements of T. Then, since there is an
all-0 column in DT,F induced by Q∩T, we know that DQ,F̂



22

will have identical columns corresponding to faults Fi and Gi,
where i is the index of the all-0 column in DT,F.

2) Q contains more than k elements of T. In this case Q cannot
contain more than m − 2 of the new rows (since |Q| ≤ k̂).
But then Q will induce duplicate columns in the right half
of DT̂,F̂, since removing at least two rows from Im induces
duplicate columns.

Thus any subset Q of at most k̂ rows induces duplicate columns in
DT̂,F̂, making it a negative instance of PROBE-SET SELECTION FOR
FAULT DIAGNOSIS, as desired.

APPENDIX B

Here we derive the equation 4 for I(X; T ). Here X ∈ {0, 1, ..., n}
denotes the state of the system under the single-fault assumption,
where X = 0 corresponds to the no-fault situation, and X = i
corresponds to failure of node Xi. A particular prior distribution
P (X) is assumed where P (X = 0) = 1 − p, and the probability
of fault in the system, p, is uniformly distributed over the nodes, i.e.
P (X = i) = p/n where 1 ≤ i ≤ n. We assume that T is a probe
of length k, and that T = 0 denotes probe’s success, while T = 1
denotes probe’s failure. Note that I(X; T ) = H(X) − H(X|T ),
where

H(X) = −(1 − p) log(1 − p) − n
p

n
log

p

n
=

= −(1 − p) log(1 − p) − p log
p

n
, and (9)

−H(X|T ) =
∑
t,x

P (x, t) log P (x|t) =

=
∑

t

P (t)
∑

x

P (x|t) log P (x|t). (10)

Due to single-fault assumption, a probe T of length k fails if exactly
one of its nodes fail, yielding a union of k mutually exclusive node
failure events, each having probability p/n. Therefore,

P (T = 1) =
kp

n
, and P (T = 0) = 1 − kp

n
=

n − kp

n
. (11)

Next,

P (X = 0|T = 1) = 0,

P (X = 0|T = 0) =
P (X = 0, T = 0)

P (T = 0)
=

P (X = 0)

P (T = 0)
=

=
1 − p

1 − kp/n
=

n(1 − p)

n − kp
, (12)

since X = 0 is the intersection of events X = 0 and T = 0 (i.e.,
the event X = 0, T = 0).

Let us now compute P (X = i|T ) for 1 ≤ i ≤ n, and T ∈
{0, 1}. We will consider two cases: when Xi belongs to the probe
T , and when it does not. We will abuse the notation slightly, and
say Xi ∈ T if Xi is on the path of probe T . Then, we can compute
P (X = i|T ) = P (X = i, Xi ∈ T |T ) + P (X = i, Xi /∈ T |T ) as
follows:

P (X = i, Xi ∈ T |T = 0) =
P (X = i, Xi ∈ T, T = 0)

P (T = 0)
= 0,

P (X = i, Xi /∈ T |T = 0) =
P (X = i, Xi /∈ T, T = 0)

P (T = 0)
=

=
P (X = i)

P (T = 0)
=

p

n − kp
, (13)

since the intersection of events X = i, Xi ∈ T, T = 0 is empty
(incompatible events), and the intersection of events X = i, Xi /∈

T, T = 0 is simply X = i. Similarly,

P (X = i, Xi ∈ T |T = 1) =
P (X = i, Xi ∈ T, T = 1)

P (T = 1)
=

=
P (X = i)

P (T = 1)
=

p/n

kp/n
= 1/k,

P (X = i, Xi /∈ T |T = 1) =
P (X = i, Xi /∈ T, T = 1)

P (T = 1)
= 0,

since the intersection of events X = i, Xi ∈ T, T = 1 is simply
X = i, and the intersection of events X = i, Xi /∈ T, T = 1 is
empty (incompatible events).

Now, we can combine the equations above to compute the
negative conditional entropy in 10. We decompose P (X|T ) into
sum over a set mutually exclusive events, (1) X = 0, and (2)
{X = i, i > 0}, where each event X = i, i > 0 can be further
partitioned into X = i, Xi ∈ T, i > 0 and X = i, Xi /∈ T, i > 0.
As the result, we get the following expression for −H(X|T ):
∑

t∈{0,1}
P (T = t)

∑
i∈{0,1,...,n}

P (X = i|T = t) log P (X = i|T = t) =

=
∑

t∈{0,1}
P (T = t)

[
P (X = 0|T = t) log P (X = 0|T = t)+

+
∑

i∈{1,...,n}

[
P (X = i, X ∈ T |T = t)+

+P (X = i, X /∈ T |T = t)
]
log P (X = i|T = t)

]]
=

=
n − kp

n

[n(1 − p)

n − kp
log

n(1 − p)

n − kp
+ k · 0+

+(n − k)
p

n − kp
log

p

n − kp

]
+

+
kp

n

[
0 + k

1

k
log

1

k
+ (n − k) · 0]

=

= (1 − p) log
1 − p

1 − k p
n

+ (n − k)
p

n
log

p

n − kp
− k

p

n
log k. (14)

Substituting the expression 14 for −H(X|T ) in 10 and combining
it with th the equations 9, we get exactly the equation 4:

I(X; T ) = I(p, n, k) = −(1 − p) log(1 − p) − p log
p

n

−k
p

n
log k + (1 − p) log

1 − p

1 − k p
n

+ (n − k)
p

n
log

p

n − pk
.


