
RC23699 (W0508-105) August 19, 2005
Computer Science

IBM Research Report

Managing System Capabilities and Requirements Using
Rough Set Theory

Larisa Shwartz, Naga Ayachitula, Surendra Maheswaran, Genady Grabarnik
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Managing System Capabilities and Requirements
using the Rough Set Theory

Larisa Shwartz
IBM Thomas J Watson Research Center,

Hawthorne, NY 10532
lshwart@us.ibm.com

Naga Ayachitula
IBM Thomas J Watson Research Center,

Hawthorne, NY 10532
nagaaka@us.ibm.com

Surendra Maheswaran
IBM Thomas J Watson Research Center,

Hawthorne, NY 10532
suren@us.ibm.com

Genady Grabarnik
IBM Thomas J Watson Research Center,

Hawthorne, NY 10532
genady@us.ibm.com

As the size and complexity of software systems increases, the
reuse of independent pieces of software combined in different
ways to implement complex software systems has become a
widely accepted practice. . The operating system and middleware
environments provide some support for representing the
dependencies among software components in an explicit way.
This representation can be manipulated in order to automate the
deployment and configuration of new software applications. The
variety of dependencies could be very large, while the complexity
of inter-dependencies very high.

This paper discusses this issue in terms of Rough Set Theory. We
focus on software requirements, defined as dependencies and
their relative structure.

In this paper we introduce a procedure, a formalization model
and an algorithm for eliminating conflicting and redundant
requirements. We also define a minimal topology for large
distributed applications.

Keywords-requirements; dependencies; system capabilities,
rough set theory; formalization model.

I. INTRODUCTION
Software entities are more complex for their size than

perhaps any other human construct because no two parts are
alike (at least above the statement level). If they are, we call it a
component and reuse it. In this respect, software systems differ
profoundly from computers, buildings, or automobiles, where
repeated elements abound.

Digital computers are themselves more complex than most
things people build: They have very large numbers of states
and components. This makes conceiving, describing, and
testing them difficult. Software Systems have orders-of-
magnitude more states than computers do. Likewise, a scaling-
up of a software entity, through the addition of a new
functionality (or the installation of a new application) is not
merely a repetition of the same elements in larger sizes; it is
necessarily an increase in the number of different components,
inter-dependencies and interactions.

For three centuries, mathematical and the physical sciences
made great strides by constructing simplified models of

complex phenomena, deriving properties from the models, and
verifying those properties through experimentation. This
paradigm worked because the complexities ignored in the
models were not the essential properties of the phenomena. It
does not work when the complexities are the essence.

The complexity of software requirements and dependencies
is an essential property, not an incidental one. It is necessary to
describe software entities without abstracting their
complexities. The classic problems of deploying software
products derive from this essential complexity and its nonlinear
relationship with a number of its requirements. Today complex
software products include a number of installation options,
starting with alternative operating systems and going as far as
offering multiple topology options.

This complexity has entered the market recently calling for
additional levels of expert knowledge. Multiple installation
tools rely on the assumption that both the deployment topology
and machines are predetermined for the software in question.

The process of software deployment is based on software
dependencies that identified by installation prerequisites.
Prerequisites are hardware or software requirements.
Prerequisites are fulfilled by capabilities. Capabilities are
attributes of software or hardware such as an operating system
version or the disk size on a target system.

Rough Set Theory deals with data tables called information
system. The theory provides an extended apparatus for the
decision support using logical operations on decision and
condition attributes. A decision algorithm that emerges is
simplified to define an optimal data description.

In this paper, we use some of the concepts of Rough Set
theory to interpret and model the process of matching
application requirements to existing system capabilities. Using
a fairly simple model to analyze the software application
requirement, we define entities to represent software
requirements elements and their expected attributes. Further,
we propose an algorithm for eliminating conflicting and
redundant requirements, as well as defining the minimal
topology for large distributed applications.

mailto:nagaaka@us.ibm.com
mailto:suren@us.ibm.com
mailto:genady@us.ibm.com

This paper proposes a model and a process of analyzing
Application requirements in order to determine sets of minimal
non-redundant requirements. Each of these sets can constitute
an installation for a particular target.

In this work we also address the question of finding a
minimal number of servers required for the application within
its’ admissible topologies.

The remainder of the paper is structured as follows.
Initially, we introduce the problem of planning the software
deployment and describe some of the existing standards and
techniques.

In section two we describe the concept of system
capabilities, provide examples of capabilities description and
provisioning software that uses this concept.

Section three focuses on concept of non-redundant and non-
conflicting requirements and provides an illustration of the
process of minimizing requirements. It also explains and offers
an example of the Application with multiple deployment
topologies.

In section four we give an introduction to Rough set theory
and its notation and describe software requirements in terms of
Rough set theory. In this section we also introduce the
formalization models for creating minimal non-conflicting sets
of requirements, simple matching it to the set of system
capabilities.

We conclude with our plans for future work.

II. SYSTEM CAPACITY: DESCRIPTION OF CAPABILITIES
The recent trend of increased company acquisitions has

highlighted the necessity for convergence of multiple systems.
As a result, the non-software industry has been showing
significant interest in the complex problem of system capacity
detection

 Our approach to this problem is quite different from the
solutions proposed in the documents and recommendations
that emerged from this process. In much of computer literature
the term system capacity is used to denote hardware capacity.
We consider the hardware facilities of the system as part of its
capabilities, however our main interest here is the software
installed on this hardware. Another obvious difference is our
goal, which is neither to evaluate nor predict the performance
or cost of the system: we are interested in the capacity of the
system as its potential to additional software installations.
While acknowledging the complexity of a system defined as a
set of applications running on multiple servers, for the sake of
simplicity we initially refer to examples restricted to a one
machine setup. For further simplicity of concepts in this paper,
we also limit the capabilities to those we are directly interested
in.

The software installed can be described at application level
and in terms of software componentry installed. The common
approach to expressing the software capacity of the system is
to use a collection of installed applications. While this
approach has certain advantages (such as brief description and

clear indication of the major system usage), it is definitely
lacking knowledge of the system’s fine-grained capabilities.
Software componentry, as a common and convenient means
for inter-process communication, relies on the very detailed
list of installed components to take advantage of its
interchangeability and possible reuse by other applications.
Having the list of componentry, however, doesn’t eliminate
the need of providing a high-level view of installed software.
In some cases this high level view could provide the basis for
such business level decisions as choosing the deployment
system for an application that requires processes already
running on this system.

Therefore, it is advisable to define the capability of the system
in terms of both application level and componentry level. It is
apparent that this definition allows overlapping and redundant
information. This collection for many systems is rather large,
and it is clear that some order should be established to
facilitate efficient use of this collection.

We will examine the following capabilities for the system
under review: hardware capabilities, application-level
capabilities and software component capabilities (Fig. 1):

Figure 1: Capabilities of the System

Notice, that application and software component have mostly
the same set of capabilities, which is easy to explain as
functionally those two categories describe the same ability of
the system to participate in or initiate and sustain the process,
and the Application is the group of Software Components that
run as logical entities. We will consider the set of described
capabilities from a functional adaptation point of view, which
implies that while there are many aspects to system
capabilities, our interest lies with one of most essential and
basic ones- an offered functionality or state transformation
performed by the Application or Software Component.[1]

This approach to expressing system software capacity through
a collection of capabilities is used by IBM Tivoli Provisioning
Manager 3.1. The image below shows the software installed on
specific machine that expresses the locale capability of the
software

Figure 2: Provisioning Manager.

Similarly, it is permissible for each software to express a
number of different types of capabilities or for a set of installed
products to express alternative capabilities of the same type. So
in addition to the “Locale fr_FR_Software module” that has
capability os.locale=fr_FR (Figure 2), the software module
“Locale en_CA_Software module” that has capability
os.locale=en_CA could exist on the same machine; thereby
expressing the capacity of this system to accept future
installations of either of French or Canadian English locale.

III.

A.

REQUIREMENTS
A set of Requirements for the Application installations is a

focal point of this paper. While traditionally software
requirements are described in a human-reading format, since
the beginning of the automation era multiple attempts have
been made to establish a unified descriptor standard that could
be easily processed by automation. Despite these efforts there
are still multiple known requirements descriptors. One often
used req. descriptor is Solution Installation Schema (IUDD)
that was submitted to W3C as a standard for the description of
installable unit characteristics in 2004.[2, 4] This schema is
used to describe a single installable unit (IU), its content,
checks, dependencies and configuration. A more refined
version of this schema (SDD) [12] emerged from OASIS. This
schema is used by the CHAMPS System [13] to generate a
Run-time dependency Model based on the results of a
discovery process.

IU is a key abstraction of IUDD used to describe the
building blocks that comprise the Application. In this paper we

will refer to these building blocks as 'components'. However,
we won’t be concern with the mapping of units used here to the
installable units’ types described in the IUDD schema, as the
notions and results presented here are independent of the
requirements descriptors. IUDD and other deployment
descriptors relay on the assumption that topology is defined
and machines are allocated for an installation of a particular
Application. Meanwhile we attempt to determine a set of
minimal non-redundant requirements as well as define a
minimal application topology for the installation.

Complex Applications installation requirements
Example: This example will describe some portion of the

installation dependencies for IBM Tivoli Intelligent
Orchestrator (TIO). This Application could be deployed within
the following topologies:

Figure 3: Topology choices.

The higher level optional requirement immediately throws

the requirements representation into a new realm of
complexity. So for our first example we will consider a one-
node topology with the following Hardware Requirements.

B.

Figure 4: Hardware Requirements.

Here we will introduce yet another simplification: we will

assume that system of interest satisfies the hardware
requirements, thereby eliminating another factor in our
considerations.

Figure 5: TIO Requirements for Windows OS

In this extended set of requirements we have omitted the

details for non-Windows systems, yet again assuming that the
targeted system has a Windows operating system installed.

These simplifications resulted in a significantly reduced,
hence more comprehendible, set of requirements.

Redundant or conflicting requirements
Based on the example above it is easy to see how complex

multi-application installations like IBM TIO often set
conflicting objectives .

In our example, DB2 Universal Database Enterprise Edition
8.2 could be installed on different types of hardware and
multiple Operating Systems (such as AIX, HP-UX, Linux,
etc). By limiting Installation topology to one-node deployment
we reduced the set of requirements, and at the same time
increased the number of conflicting requirements. To resolve
the conflicting requirements we must find atomic
requirements that are in conflict with one another or to find
applications with conflicting requirements.

Another activity that goes hand-in-hand with conflict
resolution is illuminating redundant or irrelevant requirements.
This type of requirements adds unnecessary complexity and
additional dimensions to the set of requirements, therefore
reducing comprehensibility and processing speed.

So after a further reduction of the requirements through
elimination of conflicting, redundant and irrelevant entries, the
set looks much more comprehensible
ok

Figure 6: TIO Requirements - part 1 1

Figure 7: TIO Requirements - part 2

IV. SIMPLE MATCHING: OVERVIEW AND FORMALIZATION
MODEL

We will introduce the formalization model using Rough Sets
theory.

• Introduction of Rough Sets

The theory was introduced by Zdzislaw Pawlak in the early
1980's, and based on this theory one can propose a formal
framework for the automated transformation of data into
knowledge. The Rough Set theory is mathematically relatively
simple. Despite this, it has shown its fruitfulness in a variety of
areas. Among these are information retrieval, decision support,
machine learning, and knowledge based systems (for example
see [5]).

Rough set based data analysis starts from a data table,
called an information system. The information system contains
data objects of interest characterized in terms of some
attributes. When in the information sytem the decision

attributes and conditions attributes are clearly defined a
decision table. The decision table describes desicions in terms
of conditions that must be satisfied in order to carry out the
decission specified in the decision table. With every decision
table we can associate a decision algorithm which is a set of
‘if…then…’ decision rules. The decision rules can be viewed
as logical a description of the basic properties of the data. The
decision algorithm can be simplified, leading to optimal data
description .

We will soon extend the Rough Sets theory to handle
multi-dimentional requirements.

• Formalization Model for creating minimal non-
conflicting sets of requirements

We will describe the algorithm for finding minimal non-
conflicting sets of requirements based on the previous example:
deployment of IBM Tivoli Intelligent Orchestrator. The
decision table in our case has Requirements on the various
levels – from Applications and Components to Operating
System (OS) and Hardware Resources (HR). An Application
requirement could have another Application or Component OS
or HR as a requirement, while a Component is atomic in a
sense that it may depend only on OS or HR.

Step 1.

We will create a sequence of decision tables for Application
Requirements on different levels. In order to handle Optional
requirements we will introduce a relational variable that
represents this nature of the requirement: more specifically, all
mandatory requirements will have the same Relation Variable,
while optional or alternative requirements will be assigned
different values. We will say that each table represents a level
state of the Application.

Application/Component Requirement Relation

Variable
IBM Tivoli Intelligent

Orchestrator
Directory

Server

 Application
Server

1

 Database
Server

1

 Cygwin 1

Highest Level. Table 1

Note: All four Applications are necessary for completing the
installation, therefore the Relational Variable for each is has
the same value 1.

Application/Component Requirement Relation

Variable
Directory Server IBM Tivoli Directory

Server Version 5.2
1

 Microsoft Active
Directory Server

2

Directory Server's Decision Table. Table 2

Here, since only one of the Directory Server Applications
requires the Relation Variables have different values??.
Similarly, decision tables have to be created for each
Application and Component in Figure 7. Below Table N is a
decision table for component Internet Explorer.

Application/Component Version Operating
System

Relation
Variable

Internet Explorer 6.0 or
higher

Windows
XP

M

 5.5 or
higher

All
Windows

but WinXP

M+1

Table N

Step 2
Now, we will iterate through the decision tables formed in
Step 1 to create a unified decision table for IBM Tivoli
Intelligent Orchestrator.

The following Table 1.2 is the resulting table for Table 1 and
Table 2 in Step 1.

Application/Component Requirement Relation

Variable
IBM Tivoli Intelligent

Orchestrator
Cygwin 1.1

 Application Server 1.1
 Database Server 1.1
 IBM Tivoli

Directory Server
Version 5.2

1.1

 Cygwin 1.2
 Application Server 1.2
 Database Server 1.2
 Microsoft Active

Directory Server
1.2

Table 1.2

Decision Table 1.2 has two groups of requirements

identified by Relation Variable (RV). The Relational Variable
can also be viewed as a representation of the “requirement
path”.

It is important to note here, that this representation is always
possible due to distributive law

A . (B - C) = (A . B) - (A . C).

At each level independent groups of requirements

minimized to exclude redundant requirements, as well as
groups with conflicting requirements could be identified and
excluded from consideration.

Enumeration of all possible options and knowledge of the

order of iterations define Relation Variable in a unique

manner. In reverse nope, Relational Variable, enumeration of
the options and order of iteration allows for the restoation
“requirement path”.

Relationships among attributes of capabilities vs.

requirements will be defined later.

We will consider an algorithm where requirements are

processed “wide-first”. Let f[][] denote the two dimensional
array for storing groups of requirements as showen in
Information Tables 1, 2, etc. .

Note, that here we consider that there are no cyclical

dependencies. In practice cyclical dependencies are possible
(for example kernel dll depended on user dll, and user dll
depended on kernel dll)

Procedure 1

A. Formalization model for capabilities/ requirements
matching
After eliminating conflicting and redundant requirements,

we are left with well-optimized sets of components. Each set,
as mentioned above, has a value that indicates its’
“requirement-path”. This value allows or the identification of
higher level of requirement for each set by looping through
tables with appropriate identifiers to mark applications that
produced this requirement. These marked Applications will
than be added to the groups. This process will extend each
minimized non-conflicting set of requirements with
Application level requirements, creating partially ordered sets.
In our example above, one of the sets will have the following
structure

{(TIO), (IBM Tivoli Directory Server Version 5.2, IBM
DB2 Universal Database Enterprise Edition 8.2, WebSphere
Application Server 5.1.1, Cygwin), ……..(Windows 2000, SP
4), …}

We’ve separated the requirements of the same level by
parentheses for additional clarity.

Newly created sets, while redundant as whole (for example
all requirements in the set are included in some way in the
requirement TIO), are unique in the subset of level-
requirements.

This type of requirements set could be easily expressed in
the same terms as capabilities of the system (see section 2),
which makes easy comprehendible simple algorithm for
matching capabilities to requirements:

Procedure 2

The optimization of this algorithm will be introduced in
future work (see conclusion and future work session).

The result of this procedure is multiple sets of components
and applications, each representing a complete installation. By
introducing the cost function that defines the goal of
optimization, the best installation can be identified. Some
well known optimization goals/metrics are: time of installation
(downtime for installation), additional licensing cost, minimal
complexity (introduced in [6]), etc. If additional information is
available about components/applications that are included in
the installation, the optimization function could be formulated
as CPU utilization, required IO, storage space etc.

Figure 8: Matching Capabilities and requirements

Looping through sets of requirements, applications
followed by software components to identify the match
between an existing capabilities set and each set of
requirements. This simple one-to-one algorithm could produce
multiple matching pairs: (Capability, RequirmentsGroup) with
missing requirements clearly identified. Those requirements
combined into the ordered list (this time it is components first
then applications) will define installation procedures. This
algorithm relies on the fact that Capabilities include all
installed Applications and Software Components, thus ensuring
that a match found on the Application level, will be found on?
for the components, which are required for this application, and
therefore both Application and Components (dependencies)
excluded from install procedures.

In a closely managed application rich environment, the
challenge could be to identify a machine that will lead to
minimal downtime, insuring that customer agreements are
satisfied.

Now we will consider the task of identifying an optimal
machine out of a pool of existing groups for optimal (in terms
of cost function) application installation.

Let fC[][] denote a two-dimensional array for storing cost of

one of the installations on a particular machine. To efficiently
find the minimal value of the cost function on the set of
installations on all machines, we will update the above
algorithm with a procedure for determining the minimum of
this function.

Let f[][] denote the two dimensional array for storing
groups of requirements as showed in Tables 1, 2, etc. c[] is a
capabilities array .

, here J is a set of all admissible installations.

To further refine the condition we will consider the

following notion: we will express the set of requirements as a
set of the subsets of independent groups of non-conflicting
requirements. For example, when requirement for the
Application(A) has subrequirements Database(D) and
Application Server(S) and those subrequirements D and S
could be installed on different nodes(“allowed separations”),
continuing this process we will get at least two sets of
requirements that correspond to different nodes.

Definition: To reflect this notion we introduce the concept

of Partition denoted by

In principal, it is enough to consider minimal partition,

which is one that does not contain further subdivisions.
The following inequality provides an upper estimate for the

number of nodes in an admissible installation.

Proposition 2: The number of nodes in the installation is

not greater than count of partitions:

Procedure 3.

Refining the estimate of Proposition 1, we get the following
proposition.

After installation is completed and verified, the collection of
requirements that are propagated into install procedure could be
added to the set of system Capabilities, thus completing the
capabilities-requirements loop.

Proposition 3: The following inequality is valid.

 B. Formalization model for minimal topology determination
in case of multi-node Application installation

Moreover, left side of the inequality defines precise minimal
number of nodes required for the installation. The process of eliminating conflicting requirements

described above (Section 3) could result in the production of
an empty set, which will mean that this Application in fact can
not be installed on one machine. Then the problem (at least
from a practical point of view) becomes determining the \
minimum number of machines required for a given
application.

The described above process of creating groups of non-

conflicting requirements (based on number of disjoint
requirements for each component) with subsequent separation
of those into partitions (“allowed separation”) and then
installations, will allow one to calculate the minimal number of
nodes required for the installation of this Application. The necessary constraint in this case is the absence of

conflicting requirements for one machine. In considering a set
of all requirements, we will introduce the concept of Height as
number of disjoint requirements on each element (component).
The function EH(ε) will be defined as the maximum number
of disjoint requirements for the element ε for given
Installation. We summarize the above in

V. CONCLUSIONS AND FUTURE WORK
In this paper we have concentrated on the provisioning

planning that precedes the installation. The complexity of
decisions that has to be made prior to installation traditionally
was neglected. New generation of distributed software makes
these decisions increasingly tough. We use concepts of
requirements and capabilities to apply Rough set theory
apparatus to facilitate these decisions. We propose algorithm
for defining sets of non-redundant non-conflicting
requirements.

Proposition 1: The following condition on number of nodes

in topology is necessary for the existing of installation on the
specified number of nodes (#nodes):

We also suggested a solution for finding precise minimal
number of nodes required for the installation.

This will be further extended to include solutions for
identifying the best target for new installation within the group
of machines and defining the best topology for the application
to be installed.

We will continue to apply Rough Set theory formalization
that allows the introduction of complex match functions
between Capabilities and Requirements, thus permitting
analysis of matching algorithms from different points of view:
performance, system utilization, cost and business impact
optimization.

REFERENCES
[1] Shikawa, Y. Matsumoto, M.J. Identifuing the Structure of Business

Process for Comprehensive Enterprise Modeling. IEICE Trans. On Inf.
And Syst. Vol. E83-D. No4. 691-700

[2] Installable Unit Package Format Specification Version 1.0. W3C
Member Submission 12-July-2004. Version URL:
http://www.w3.org/Submission/2004/SUBM-
InstallableUnit-PF-20040712/. Latest version URL:
http://www.w3.org/Submission/InstallableUnit-PF/

[3] Skowron A. and Rauszer C.:The Discernibility Matrice and Functions in
Information Systems. Intelligent Decision Support. Handbook of
Applications and Advances of Rough Sets Theory. Dordrecht: Kluwer
(1992) 331-362

[4] Installable Unit Deployment Descriptor Specification Version 1.1. W3C
Member Submission 12-July-2004. Version URL:
http://www.w3.org/Submission/2004/SUBM-

InstallableUnit-DD-20040712/. Latest version URL:
http://www.w3.org/Submission/InstallableUnit-DD/

[5] Z.Pawlak. Rough Sets. Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publishers, Dordrecht, 1991

[6] A model of Configuration Complexity and its Application to a Change
management System Aaron B. Brown, Alexander Keller, Joseph L.
Hellerstein
http://www.research.ibm.com/people/a/akeller/Data/im2005.pdf

[7] All about IBM Tivoli Configuration Manager Version 4.2, December
2002. IBM Redbook, Order Number: SG24-6612-00. see also:
http://www.redbooks.ibm.com.

[8] D. Ressman and J. Valdes. Use of Cfengine for Automated, Multi-
Platform Software and Patch Distribution. In Proceedings of the
Fourteenth Systems Administration Conference (LISA 2000), New
Orleans, LA, USA, December 2000. USENIX Association – open source
alternative to Tivoli Config Manager

[9] Helene Kirchner, M. Cerioli, Z. Qian, M. Wolf (Editors), Algebraic
System Specification and Development Survey And Annotated
Bibliography,2nd edition, 1997, number 3 in Monographs of the Bremen
Institute of Safe Systems, Shaker, 1998.

[10] Deja R Conflict Analysis. Rough Sets Methods and Applications New
Developments. In: L.Polkowski et al. (eds.) Studies in Fuzziness and
Soft Computing, Physica-Verlag, pp.491-520

[11] Pawlak Z (1998) An inquiry into Anatomy of Conflicts. Journal of
Information Sciences 109 pp.65-78

[12] OASIS Solution Deployment Descriptor (SDD) TC http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=sdd

[13] A.Keller, J.L.Hellerstein, J.L. Wolf, K.-L. Wu, V.Krishnan The
CHAMPS System: Change Management with Planning and Scheduling
Proceedings of the 9th IEEE/IFIP Network Operations and Management
Symposium (MONS 2004), Seoul, Korea, April 2004

http://www.w3.org/Submission/2004/SUBM-InstallableUnit-PF-20040712/
http://www.w3.org/Submission/2004/SUBM-InstallableUnit-PF-20040712/
http://www.w3.org/Submission/InstallableUnit-PF/
http://www.w3.org/Submission/2004/SUBM-InstallableUnit-DD-20040712/
http://www.w3.org/Submission/InstallableUnit-DD/
http://www.research.ibm.com/people/a/akeller/Data/im2005.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sdd
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sdd

	Introduction
	System Capacity: description of capabilities
	Requirements
	Complex Applications installation requirements
	Redundant or conflicting requirements

	Simple Matching: Overview and Formalization Model
	
	Introduction of Rough Sets
	Formalization Model for creating minimal non-conflicting sets of requirements

	Formalization model for capabilities/ requirements matching
	Formalization model for minimal topology determination in case of multi-node Application installation

	Conclusions and future work
	
	
	
	References

