
RC23703 (W0508-127) August 23, 2005
Computer Science

IBM Research Report

The Diary of a Datum: An Approach to Analyzing Runtime
Complexity in Framework-Based Applications

Nick Mitchell, Gary Sevitsky, Harini Srinivasan
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

The Diary of a Datum: An Approach to Analyzing Runtime
Complexity in Framework-Based Applications

Nick Mitchell
IBM TJ Watson Research Center

19 Skyline Drive
Hawthorne, NY USA

+1 914-784-7715

nickm@us.ibm.com

Gary Sevitsky
IBM TJ Watson Research Center

19 Skyline Drive
Hawthorne, NY USA

+1 914-784-7619

sevitsky@us.ibm.com

Harini Srinivasan
IBM TJ Watson Research Center

19 Skyline Drive
Hawthorne, NY USA

+1 914-766-1885

harini@us.ibm.com

ABSTRACT
In large-scale framework-based applications, every piece of
information has a complex story to tell about its journey. As it
makes its way through a tangle of reusable frameworks, it may
be transformed from a string, to an Integer, to an integer, and
finally to a date. Over the past several years, our research group
has analyzed dozens of framework-based applications. We have
found it increasingly difficult to understand behavior, weigh
design tradeoffs, and assess if and how performance problems
can be fixed. Often, simple functionality requires a seemingly
excessive amount of runtime activity and complexity.

Much of this activity revolves around the transformation of
information from one form to another. In this paper we present
an approach to understanding runtime behavior that structures
activity in these terms. We show strategies for grouping and
filtering activity into a hierarchy of data flow diagrams
representing transformations and the flow between them. The
approach focuses the analysis on a user-defined scenario, and
structures what otherwise would have been an overwhelming
amount of information about a run. Next, we give a detailed
example that illustrates this approach, and also demonstrates the
complexities typically found in this class of application. Finally,
we show how structuring the activity into a hierarchy of data
flow diagrams allows us to introduce measures of complexity
derived from the topology of the diagrams.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – complexity measures

General Terms
Measurement, Performance, Design

Keywords
Dynamic analysis, program understanding, complexity
assessment, performance analysis, design recovery

1.INTRODUCTION
Large-scale applications are being built from increasingly many
reusable frameworks, such as web application servers (that
include SOAP, EJBs, JSPs), portal servers, client platforms
(Eclipse), and industry-specific frameworks. Over the past
several years, our research group has analyzed dozens of
framework-based applications. We have found that it is becoming
more and more difficult to evaluate performance – not only to
localize problems, but to assess if and how they can be fixed.

These applications may execute enormous amounts of activity to
accomplish simple tasks. For example, as shown in Figure 1, a
stock brokerage benchmark executes 46971 method calls and
creates 7407 objects to convey ten stock holding records from
one format to another. How can we tell if the activity is
appropriate? If not, is the fault in the application architecture? Or
in a particular framework implementation or interface design
choice? And why weren’t the compilers able to fix it?

Many of these difficulties stem from the nature of framework-
based applications. While the implementation of each application
is different, we have observed many similarities in their
behavior. The most noticeable phenomenon is the amount of
effort expended taking information available in one form and
transforming it into another. The prevalence of these
transformations of data seems like a natural consequence of the
many standards and legacy systems these systems must integrate.
In a web-based server application, the data arrives in one format,
is transformed into a Java business object, and is sent to a
browser or another system – e.g. from SOAP [5], to an EJB, and
finally to XML. More steps are not uncommon. In addition, each
step may require work to facilitate the transformation, such as
looking up a suitable SOAP deserializer.

Many types of processing activity can be viewed as
transformations. Some preserve the information content, despite
changing the physical form of the data. Some transformations
exchange one kind of information for another, such as looking up
schema information given a type name; others may affect a
change in a value, such as adding sales tax to a subtotal.

Furthermore, it is common for the implementation to be in fact a
hierarchy of such transformations. That is, inside any
transformation or facilitation, we often find a similar picture, the
result of lower-level framework couplings.

Understanding the behavior and costs of a hierarchy of
transformations is difficult with existing performance analysis
tools. This is partly because problems can rarely be blamed on a
single hot method. They are usually caused by a constellation of
inexpensive calls that span multiple frameworks. What’s more,
problems are less likely to be caused by a poor algorithm choice
than by the combined design and implementation choices made
in disparate frameworks. A single transformation may consist of
multiple calls not contiguous in time, and may be implemented
by only parts of some methods. In addition, transformations are
mediated by data that carry information from one method to
another. All of this means that solely focusing on static artifacts,
such as methods or components, or on control-oriented
abstractions, such as call paths or sequences [2,3,7,8,14,16]

cannot sufficiently capture the behavior of framework-based
applications.

This paper introduces an approach to understanding the nature
and causes of inefficiencies in these applications. Our approach
structures run-time activity as a hierarchy of data flow diagrams
representing transformations of information. The approach we
present is currently a manual approach. Certain elements of the
approach may be amenable to automation; other elements will,
by design, require user input.

In Section 2 we describe this approach, consisting of strategies
for grouping and filtering the activity, and give a brief example.
In Section 3 we give an in-depth example, that follows a single
field from a SOAP response into a Java business object – a
seemingly simple operation with surprisingly complex behavior.
In addition to illustrating the approach, this example illustrates
the nature and magnitude of the complexities found in large-scale
framework-based applications. Structuring by logical data flow
also enables new quantitative analyses that can shed light on the
complexity of an implementation. In Section 4 we show some
measures derived from topology.

2.STRUCTURING APPROACH
We structure runtime activity as a hierarchy of data flow
diagrams. Constructing any such diagram requires strategies for
both grouping and filtering the activity. User guidance is
required in both of these areas to make the diagrams manageable
in size, and useful for a desired analysis task.

There are many ways the same processing activity can be
grouped into transformations and diagrams. Choices need to be
made about which activity constitutes each transformation, and
which transformations to hide in a subdiagram. These choices
can be crucial for enabling understanding. In practice we have
found two approaches sufficient to cover complex cases, such as
that shown in Section 3: grouping based on granularity of
information, and by architectural units.

Applications often have semantic notions of granularity that cut
across multiple type systems. For example, a stock holding
record, whether represented in the database or as a Java object,
may still be thought of as a record. Our first rule is to group
activity so that each diagram shows information flow at a single
level of granularity. Note that in some cases it makes sense to
include transformations that are transitions between two levels,
such as extracting a field from a record.

It is often useful to group activity in a way that makes apparent
the party responsible for a given cost. This kind of grouping by
architectural unit [14,16] can be used to both structure activity
into transformations, and to choose which transformations
constitute a level of data flow diagram. A common example of
the latter would be to distinguish activity the application is
responsible for from activity hidden in frameworks it is using.
The choice of architectural units is left to the user. We have
found that they do not always align with package structure.

No matter how good the grouping strategy, for large-scale
framework-based applications, analyzing an entire run would be
overwhelming for the user. Users typically have a more limited
analysis scenario in mind. They commonly want to follow the
activity required to produce a specific target datum. Furthermore,
they are not interested in seeing every level of detail at once, or
every prior contributor to this datum. In our approach, the user
defines the following four criteria to specify an analysis scenario:

• The target datum

• The granularity on which to focus

• The starting point, for example a point in time, a
starting set of data (e.g. a record that has just been
retrieved from a database), or a specific method
invocation

• Additional filtering criteria, such as limiting the
scenario to the current thread

Figure 1 illustrates one choice of analysis scenario and grouping
strategy, on a configuration of the Trade 6 benchmark [10] that
acts as a SOAP client.1 Our analysis scenario is a web transaction
that returns a user’s stock holdings with quotes. It follows the
information, at the granularity of a set of records, as it is returned
from a remote web service via SOAP and formatted into HTML.
We are therefore able to omit the construction of the request, as
well as any advance work building data structures that were not
specific to this response. We have grouped activity into
transformations so that the flow of information is consistently at
the granularity of a set of records, since that was the granularity
of the target data.

format for
output
(JSP)

10 HoldingDataBeans*
(business objects)

chars
(HTML)

bytes
(SOAP)

get
holdings

Cost:
- 10952 calls
- 1492 objects

get
quotes

bytes
(SOAP)

10 QuoteDataBeans*
(business objects)

Cost:
- 32362 calls
- 3671 objects

Cost:
- 3657 calls
- 2244 objects

*new objects

Figure 1. Overview: response to a user request to get
holdings.

This figure highlights two of the advantages of organizing an
analysis by data flow. First, it unifies disparate activity. The “get
quotes” box brings together activity from many different
frameworks. Second, the approach helps us relate a cost of some
processing activity to the data it produced. We can annotate
diagrams with various characteristics of each transformation or
data flow. In this figure we show the cost of each transformation
in terms of method calls and object creations. The “get holdings”
step cost 10952 calls and 1492 new objects, mostly temporaries,
to produce the ten HoldingDataBeans from the SOAP response.

We gathered information about the run using a combination of
tools, LiveJinsight [7] and ArcFlow [1], and by looking at source
code in some cases. The example was run on a publicly available
web application server and JVM. The application was warmed
up sufficiently to simulate steady-state conditions of a production

1 We use descriptive labels for boxes, and assume information is
available elsewhere about the run-time artifacts they represent.
An edge label may show just the top-level object of a data
structure. We also omit the standard notation for sources and
sinks. Edges left open at one end may terminate in a source or
sink, or in some other processing outside the scope of the
diagram.

server. The analysis tools report the actual execution, after JIT
optimizations were made.

3.THE DIARY OF A DATE
We now walk through a longer example from the same
transaction in the Trade benchmark. The example serves to
illustrate our approach, and also to illustrate the kinds of
complexity that we have seen in real-world framework-based
applications. We chose a benchmark example that has been well-
tuned at the application level, and therefore demonstrates the
challenges in identifying where the limits to further improvement
are.

• Analysis scenario. We follow how one field of a stock
holding is transformed from a portion of a SOAP
response message into a field in a Java business object.
We chose the purchaseDate field, the most expensive
field to process in a HoldingDataBean.

• Grouping strategy. We break the scenario into three
levels of diagram. In this case we chose to highlight
major architectural boundaries (e.g. application vs.
framework), along with granularity.

Diagram level 0. Figure 2 shows the top level diagram,
containing two transformations. The first takes the bytes
representing the date in a SOAP response and builds a Calendar
field in a Java business object. This step was a sequence of four
calls that were made at the application level. We group them
because, together, they perform that function on the purchase
date. The second step converts the Calendar to a Date field in
another Java business object. We concentrate on the first step.

Diagram level 1. Zooming in on the first step gives us the
diagram in Figure 3. The main flow of data is along the middle
row of boxes.

The first step extracts bytes from the XML text of a SOAP
message, and converts the date and the name of the field we are
processing to Strings. The date String is passed to a deserializer
for parsing. The SOAP framework allows registration of
deserializers for datatypes that can appear in messages. In the
lower left corner is a sequence of transformations that look up
the appropriate deserializer given the field name String.

We highlight as a group the five transformations related to
parsing, to make it easier to see this functional relationship. The
first step takes the String, extracts and parses the time zone and
milliseconds, and copies the remaining characters into a new
String. The reformatted date String is then passed to the
SimpleDateFormat library class for parsing. This is an expensive
step, creating 38 temporary objects. Zoom level 2 shows why.2 It
returns a new Date object, to which the original time zone and
milliseconds are then added back.

Copy to
another

version of
the

business
object

Calendar*
(business object field)

Date*
(business object field)

bytes
(SOAP)

Parse,
set field

in
business
object

Cost:
- 268 calls
- 70 objects

*new objects

Figure 2. Diary of a Date – Diagram Level 0 (Application)

2 In our experience, many things named “Simple” are
expensive.

The Java library has two date classes. A Date object stores the
number of milliseconds since a fixed point in time. A Calendar
stores a date in two different forms, and can convert between
them. One form is the same as in Date; the other is seventeen
integer fields that are useful for operating on dates, such as year,
month, day, hour, or day of the week.

In the top row is an expensive step that builds a new Calendar.
Our Date object is then used to set the value of this Calendar.
Finally, that Calendar becomes the purchaseDate field of our
business object, via a reflective call to a setter method. Java’s
reflection interface requires the Calendar to first be packaged
into an object array.

Just at this level, the input bytes undergo seven transformations
before exiting as a Calendar field in the Java business object.

Diagram level 2. Figure 4 zooms into the SimpleDateFormat
parse step. The String containing the date is input, and each of its
six subfields – year, month, day, hour, minute, and second – is
extracted and parsed individually. Note that although this
diagram is at the field granularity, we need to understand how
subfields are extracted and recombined to form fields. We
therefore choose to show just the top-level transformations at that
next lower level of granularity.

The SimpleDateFormat maintains its own Calendar, different
from the one discussed earlier at the SOAP level. Once a subfield
of date has been extracted and parsed into an integer, the
corresponding field of the Calendar is set. After all six subfields
are set, the Calendar converts this field representation into a time
representation. This is then used to create a new Date object.

Diagram level 3. Figure 5 shows the detail of extracting and
parsing a single date subfield, for example, a year. We can see
that even at this level, there are six transformations needed to
convert a few characters in the String into an integer.

The first five transformations are performed using the general
purpose DecimalFormat class from the standard Java library,
which can parse or format any kind of decimal number.
SimpleDateFormat, however, uses it for a special case, to parse
integer months, days, and years. The first, fifth, and sixth
transformations are necessary only because of this over-
generality. The first transformation looks for a decimal point, an
E for scientific notation, and rewraps the characters.3

Furthermore, since DecimalFormat.parse() returns either a
double or long value, the fifth transformation is only needed to
box the return value into an Object, and the sixth transformation
is only necessary to unbox it.

Discussion. Note that we have made a number of grouping
judgements throughout the above example. At the top zoom level,
we chose to group parse and set field as a single step. We could
have also made these into two separate transformations at the top
level. We chose not to because in the SOAP interface there is no
way for an application to call them separately. We chose to use
our grouping to bring out an architectural feature: our top-level
scenario describes the application level, and the next zoom level
shows the SOAP framework. In general, the flexibility in
grouping allows us to bring out different features of interest for a
given analysis.

3 It even checks fitsIntoLong() on a number representing a
month!

Parse (using SOAP CalendarDeserializer)

parse using
Simple-
Date-

Format

String* Date*

parse time
zone and

millis ;
reformat
without
them

Cost:
- 11 calls
- 6 objects

add in
timezone
and millis

Date
extract

value from
SOAP tag

bytes String*

Cost:
- 30 calls
- 3 objects

get
schema

info

XML and
Java types

BeanPropertyDescriptor

Cost:
- 10 calls
- 0 objects

get de-
serializer Cost:

- 51 calls
- 5 objects

Deserializer*

build
Calendar

Calendar*
+ 11 arrays*
+ TimeZone*

set time

Cost:
- 7 calls
- 1 object

Cost:
- 15 calls
- 15 objects

Calendar

Cost:
- 95 calls
- 39 objects

Cost:
- 4 calls
- 0 objects

ParsePosition*

TimeZone*
(constant)

SimpleDateFormat
+ Calendar

2 longs
(TZ and millis)

Set business object field via reflection

box into
array

call
invoke()

on
setter

Object[]*

Cost:
- 6 calls
- 1 object

Calendar

*new objects

Figure 3. Diary of a Date – Diagram Level 1 (SOAP)

extract
and parse
subfield

set field in
Calendarint

String x 6 for
YY,
MM,
 DD,
 ...

Calendar
compute

time

create
Date
from
time

long Date*

Cost:
- 4 calls
- 1 object

Cost:
- 14 calls
- 6 objects

Cost:
- 1 calls
- 0 objects

Cost:
- 0 calls
- 1 object

boolean[]*
*new objects

Figure 4. Diary of a Date – Diagram Level 2 (Java library)

Parse number using DecimalFormat.parse()

Parse long using DigitList.getLong()

extract
digitsString copy digits toString() parse box intValue()Digit-

List
String-
Buffer* String* long Long* int

Cost:
- 11 calls
- 5 objectsCost:

- 4 calls
- 3 objects
- 600 instructions

Cost:
- 1 call
- 0 objects

Parse-
Position*

boolean[]*

*new objects

Figure 5. Diary of a Year – Diagram Level 3 (subfield)

4.TOPOLOGICAL METRICS

Measures of the topology of a data flow diagram can give us
some clues as to the complexity of an implementation. We can
derive various measures from a single level of diagram, such as
the total number of transformations and the maximum path
length. For example, the first top-level step of converting a date
to a business object field in Figure 2 is implemented by a total
of ten transformations – a sign that this is not a simple
operation.

Other useful measures can be derived by looking at the entire
hierarchy of data flow diagrams underlying a given
transformation. These can give a sense of how “far afield” an
implementation has gone from its high-level interface. Our top-
level transformation hides three levels of detail, and takes 58
transformations in total. There are a total of 8 transformations
at the first level of depth, 14 at the second, and 36 at the third.
This breakdown shows us that much of the activity is delegated
to a distant layer.

5.RELATED WORK
Recent work addresses a similar problem to ours: in
framework-based applications, the actual coding process is
difficult, due to the long chains of frameworks that must be
understood [12].

Many works on performance understanding assign
measurements to the artifacts of a specific application or
framework [2,3,7,8,14,16]. Some have identified that static
classes do not capture the dynamic behavior of objects [11].

There is much work on using data flow diagrams, at design
time, to capture the flow of information through processes at a
conceptual level [6,9]. In contrast, tools and compilers that
study program code use a variety of analyses to capture the
definitions and uses of program variables [15].

Finally, there is much work on recovering the design of
complex applications [4,13].

6.CONCLUSIONS AND DIRECTIONS
That developers make such reuse of frameworks has been a
boon for the development of large-scale applications. The flip
side seems to be complex and poorly-performing programs.
Developers can not make informed design decisions because
costs are hidden from them. Moreover, framework designers
can not predict the usage of their components. They must either
design overly general frameworks, or ones specialized for use
cases about which they can only guess.

We believe that elements of forming diagrams and grouping can
be automated, for example, by using escape analysis, data flow
analysis that combines static and dynamic information, and
clustering based on descriptive labels (e.g. ones that identify
data structures as records or fields) and application/framework
boundaries. Programmers and designers must however remain a
critical part of this process. Automation will also enable
validation of the approach against a larger set of applications.

7.ACKNOWLEDGMENTS
We wish to thank Tim Klinger, Edith Schonberg, and Kavitha
Srinivas for their technical contributions and support of this
work.

8.REFERENCES
[1] William P. Alexander, Robert F. Berry, Frank E. Levine,

and Robert J. Urquhart, A Unifying Approach To
Performance Analysis in the Java Environment, IBM
Systems Journal Volume 39 Number 1, 2000.

[2] G. Ammons, J. Choi, M. Gupta, and N. Swamy. Finding
and Removing Performance Bottlenecks in Large Systems.
ECOOP, 2004.

[3] E. Arisholm. Dynamic Coupling Measures for Object-
Oriented Software. Symposium on Software Metrics, 2002.

[4] B. Bellay and H. Gall. An Evaluation of Reverse
Engineering Tool Capabilities. Journal of Software
Maintenance:Research and Practice Volume 10, 1998.

[5] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer.
Simple Object Access Protocol (SOAP) 1.1, W3C Note 08,
2000.

[6] P. Coad and E. Yourdon. Object-Oriented Analysis, 2nd
Edition, Englewood Cliffs, NJ: Prentice-Hall, 1991.

[7] W. De Pauw, N. Mitchell, M. Robillard, G. Sevitsky, and
H. Srinivasan. Drive-by Analysis of Running Programs.
Workshop on Software Visualization, ICSE, 2001.

[8] B. Dufour, K. Driesen, L. J. Hendren, C. Verbrugge.
Dynamic Metrics for Java. OOPSLA 2003: 149-168.

[9] C. Gane and T. Sarson. Structured Systems Analysis.
Englewood Cliffs, NJ.: Prentice-Hall, 1979.

[10] IBM Trade Web Application Benchmark
http://www.ibm.com/software/webservers/appserv/wpbs_d
ownload.html

[11] V. Kuncak, P. Lam, and M. Rinard. Role Analysis. POPL,
2002.

[12] D. Mandelin, L. Xiu, R. Bodik, and D. Kimmelman.
Mining Jungloids: Helping to Navigate the API Jungle.
PLDI, 2005.

[13] T. Richner and S. Ducasse. Using Dynamic Information for
the Iterative Recovery of Collaborations and Roles. ICSM,
2002.

[14] K. Srinivas and H. Srinivasan. Blame Assignment:
Summarizing Application Performance from a Components
Perspective. FSE 2005.

[15] F. Tip. A Survey of Program Slicing Techniques. Journal
of Programming Languages, 1995

[16] Robert J. Walker, Gail C. Murphy, Jeffrey Steinbok, and
Martin P. Robillard. Efficient Mapping of Software System
Traces to Architectural Views. In CASCON, 2000.

	1.INTRODUCTION
	2.STRUCTURING APPROACH
	3.THE DIARY OF A DATE
	4.TOPOLOGICAL METRICS
	5.RELATED WORK
	6.CONCLUSIONS AND DIRECTIONS
	7.ACKNOWLEDGMENTS
	8.REFERENCES

