
RC23708 (W0508-134) August 23, 2005
Electrical Engineering

IBM Research Report

Fast Error Diffusion and Digital Halftoning Algorithms Using
Look-Up Tables

Chai Wah Wu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Mikel Stanich, Hong Li, Yue Qiao, Larry Ernst
IBM Printing Systems Division

6300 Diagonal Highway
Boulder, CO 80301

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Fast error diffusion and digital halftoning

algorithms using look-up tables

Chai Wah Wu1, Mikel Stanich2, Hong Li2, Yue Qiao2, Larry Ernst2

1IBM Research Division, Thomas J. Watson Research Center

P. O. Box 218, Yorktown Heights, NY 10598, U.S.A.

2IBM Printing Systems Division

6300 Diagonal Highway, Boulder, CO 80301, U.S.A.

Abstract

Recently, a fast error diffusion halftoning algorithm using look-up tables (LUT) was proposed to speed up the mul-

tiplication of error filter coefficients. In this letter, we propose another LUT-based error diffusion halftoning algorithm

which is more flexible in terms of the size of the LUT that can be used and thus allows for a more optimal tradeoff be-

tween halftone quality, processing speed, hardware complexity and parallelizability. Furthermore, the aggregate error

in the proposed algorithm can be computed with different bitdepths for the different errors. As an example, we present

a variant of the Floyd-Steinberg error diffusion algorithm which consists of two 256K bytes LUTs and the calculation

of the modified input requires 1 addition and 2 table look-up operations per pixel processed.

EDICS: DSP.FAST, IMD.ANAL

Corresponding Author: Chai Wah Wu

IBM Research Division, Thomas J. Watson Research Center

P. O. Box 218, Yorktown Heights, NY 10598, U.S.A.

Tel. 1 (914) 945-3168, Fax. 1(914) 945-3434

E-mail: chaiwahwu@ieee.org

2

I. INTRODUCTION

Error diffusion [1] is a popular technique for digital halftoning, especially when high fidelity and faithful repro-

duction of high frequency features such as edges are required. Error diffusion requires several multiplications and

additions per pixel processed. This is considerably slower than halftoning methods of the point operation type, such as

the blue noise mask [2], which require one comparison per pixel processed and memory storage for the dither mask.

In Ref. [3] a fast error diffusion algorithm is proposed by replacing multiplication operations and quantization

operations with look-up tables (LUT). In this letter, we propose another fast LUT-based error diffusion algorithm

which offers more flexibility in the size of the LUTs. This allows for a more optimal tradeoff between speed, halftone

image quality and hardware complexity. Furthermore, the proposed algorithm allows the precision in which each error

term is calculated to be varied, allowing yet more flexibility in the design. The ultimate goal is to create neighborhood

operation halftoning algorithms with speeds approaching those of point operation halftoning algorithms. We illustrate

this by showing an implementation of the Floyd-Steinberg error diffusion algorithm where the computation of the

modified input uses 2 LUTs and 1 addition per pixel processed.

II. ERROR DIFFUSION HALFTONING

The error diffusion algorithm can be described by the following steps. For each pixel, the current pixel value is

quantized to produce the output halftone pixel value. The error at the current pixel, which is the difference between

the pixel value and the output value is then distributed to neighboring pixels. More precisely, denoting the pixel value,

the output value and the error value of a pixelp asv(p), o(p) ande(p) respectively, we compute at each pixelp:

1) o(p) = Q(v(p))

2) e(p) = v(p)− o(p)

3) v(q)← v(q) + w(p, q)e(p) for each pixelq in the neighborhood ofp

whereQ is the quantization function. The weightsw(·, ·) are generally nonnegative1 and sum to one, i.e
∑

q w(p, q) =

1 for eachp. The weights are also referred to as the error diffusion kernel. Furthermore, in general the weights are

shift-invariant, i.e.w(p, q) depends only on the difference betweenp andq, and we can replace the notationw(p, q)e(p)
1See [4] for an algorithm where some of the weights are negative.

3

with w(i)e(p) whereq − p = i ∈ N andN is a neighborhood of the origin. Many sets of weights have been proposed

[5], [6], each with different characteristics such as simplified hardware implementation, less anisotropic artifacts, etc.

A. 1D LUT-based error diffusion algorithm

In Ref. [3] a fast implementation of error diffusion is proposed where the multiplications with the weights (step 3

above) are replaced by a one-dimensional LUT. In particular, at each pixel, the errore(p) is multiplied with several

weightsw(q − p) and thus a LUT is constructed which is indexed bye(p) and produces the set of valuesw(i)e(p) for

i ∈ N as output.

Let us assume that each error valuee(p) is represented as ak-bit number2 and its weighted valuew(i)e(p) is

represented as anm-bit number. Furthermore, the number of elements in the kernel is denoted byn, i.e. |N | = n.

Then the LUT is indexed byk bits and the size of the LUT is2knm bits.

For instance, consider the Jarvis error diffusion algorithm [7] wheren = 13 and the kernel is given by

1
48

× 7 5

3 5 7 5 3

1 3 5 3 1

Here ‘×’ denotes the current pixel position. As an example, ife(p) andw(i)e(p) are represented by8 bits, (k =

m = 8), then the LUT for the Jarvis algorithm is of size256 × 13 × 8 bits or3328 bytes. The number of operations

needed per processed pixelp to propagate the error i.e. implementv(q)← v(q) + w(q− p)e(p) is 1 table look-up and

n additions.

Remark The method of replacing the multiplication of a single number with multiple fixed weights with a single

LUT is also used to speed up convolution [8].

We see that the size of the LUT is mainly dictated by the bitdepths of the various numbers and the number of weights

in the kernel. The first 2 steps, i.e. the calculation ofo(p) ande(p), can also be replaced by two 1-D LUTs, but we will

not focus on this part in this letter as the main speed improvement is due to speeding up the multiplication operations.

2Since the errorse(p) can be negative and larger in magnitude than the pixel valuesv(p), we require that the values ofe(p) andw(i)e(p) are

properly scaled and/or translated to fit into ak-bit (andm-bit resp.) fixed point number representation which can be signed or unsigned.

4

In the next section we propose a LUT-based error diffusion algorithm for which there is more flexibility in choosing

the size of the LUT.

III. A NOVEL LUT-BASED ERROR DIFFUSION

An alternative but equivalent way to describe error diffusion is the following. At each pixelp, the modified input

M(p) is computed by adding the pixel value to weighted errors from pixels in the neighborhood of the current pixel.

The output value is computed by quantizing the modified input value and the error is computed as the difference

between the output value and the modified input. More precisely, the algorithm performs the following steps:

1) M(p) = v(p) +
∑

i∈N w(i)e(i + p)

2) o(p) = Q(M(p))

3) e(p) = M(p)− o(p)

For example, the Shiau-Fan error diffusion algorithm [9] hasn = 5 elements in the kernel:

1
16

4 2 1 1

8 ×
In contrast to the interpretation in Section II where errors are propagated tofuture pixels, here the modified error

is computed by adding errors frompreviouspixels. Therefore the kernel in this interpretation is shown rotated180◦

from the way error diffusion kernels are usually given in the literature. In the proposed LUT-based error diffusion

algorithm, we replace the computation of
∑

i∈N w(i)e(i + p) with one or more LUTs. Assume that eache(i + p) is

represented usingk bits. Then the input of the LUT are then error valuese(i+ p) and consist ofnk bits. In particular,

consider the following diagram of thenk bits corresponding to then error values (Fig. 1). The output of the LUT is

them-bit number
∑

i∈N w(i)e(i + p). The value ofM(p) is equal to the sum of the output of the LUT and the current

input pixel.3 If this LUT of size 2nkm bits can fit into memory, then we obtain an error diffusion algorithm where

the calculation ofM(p) takes 1 table look-up and 1 addition. However, in current computer architectures, this LUT is

too large to fit in memory, especially fast memory such as cache memory closest to the CPU. To illustrate, for Jarvis

error diffusion with 8-bit precision for the errors,k = m = 8, andn = 13 would result in a LUT of2104 bytes or 16

3Similar to Sect. II-A, the input and the output of the LUT are expressed in appropriate number formats.

5

tebi-exbibytes. Therefore we split up this LUT into several LUTs, and sum up the outputs from these LUTs to obtain

∑
i∈N w(i)e(i + p). This process is valid because of the linearity of the computation.

1 2 3 n

bits

k

Error values

least
significant

significant
most

1

Fig. 1. Schematic diagram of the totality of bits inn error values.

To create the various LUTs, the bits in Figure 1 are partitioned into several blocks as shown in Fig. 2. Even though

the blocks in Fig. 2 are shown as connected shapes, this is not necessary. Each of these blocks corresponds to a linear

combination of subsets of bits of some error valuese(i + p). Thus each LUT takes the bits in each block as input and

output the corresponding linear combination. By linearity, we can add the outputs of these LUTs and obtain the full

linear combination. Since we are adding outputs from LUTs, each of which can cover a different range, the resulting

∑
i∈N w(i)e(i + p) can have higher precision than each individual output. Even though Figure 2a illustrates a general

partition with arbitrary shapes, certain partitions result in simpler implementations. For instance, consider the partition

of thenk bits shown in Fig. 2b. Each LUT computes the linear combination of a bitplane (or several adjacent bitplanes)

of all the error values. It is easy to see that the outputs of the LUTs differ only by a shift in the bits, i.e. a factor of

2v. Thus we can replace the various LUTs by a single LUT and shift the bits of the output appropriately depending on

which bitplanes are used as input. As in [3], use of general weightsw(i) does not increase hardware complexity versus

special weights such as12 or 1
4 .

As an example, consider the following implementation of LUT-based Jarvis error diffusion. In this casen = 13

and let us assume thatk = m = 8. We partition as in Fig. 2b into 8 LUTs which is implemented in a single LUT of

size213 × 8 bits = 8192 bytes. Computation ofM(p) takes 8 look-up operations, 7 shift operations and8 additions

operation. If we use 8 separate LUTs occupying a total of 64K bytes, then the 8 table look-up operations can be done

6

n

k

1 2 3

bits

Error values

least
significant

significant
most

1
n1

k

2 3

bits

Error values

least
significant

significant
most

1

(a) (b)

Fig. 2. Schematic diagram of partitions ofnk-bits ofn error values. (a) general partition. (b) bitplane partition.

in parallel and the time to computeM(p) is 1 table look-up operation and 8 additions. This is compared with the

algorithm in [3] which requires a LUT of 3328 bytes, 1 table look-up operation and 13 additions per pixel processed.

One feature of the proposed implementation is the flexibility in the choice of size of the LUT which depends on how

thenk bits are partitioned. For instance, by partitioning Fig. 1 into 4 bit planes, each containing two adjacent bits we

get 4 LUT tables with22n entries each. Again these 4 LUT tables differ from each other by a shift of the bits and they

can be replaced by a single LUT. As in Section II-A, the calculation ofo(p) ande(p) can be replaced with 1-D LUTs.

Another feature of this implementation is that the calculation bit depth of each error value can be variable. The

calculation bit depth is defined as the number of bits used in the computation. This is different (and possibly smaller)

than the actual number of bits used to the store the error value in memory. Furthermore, whereas the actual number

of bits used for a single error value is the same, its calculation bit depth can change depending on the corresponding

weight that it is multiplied with. For example, for small weights the calculation bit depth can be smaller than the

calculation bitdepth for large weights. On the vertical axis of Figs. 1 and 2,k is in fact the calculation bitdepth of the

error values. In the case of variable calculation bitdepth, the set of bits of the errors is shown schematically in Fig. 3.

Consider the following implementation of the Shiau-Fan error diffusion algorithm. Assume that the calculation

bitdepth of an error value is given in parentheses next to the corresponding weight in the following diagram:

7

1 2 3 n

bits

k

Error values

least
significant

significant
most

1

Fig. 3. A different set for the totality of bits. Note that the calculation bitdepth of the different error values are different.

4
16 (8) 2

16 (6) 1
16 (4) 1

16 (4)

8
16 (8) ×

It seems reasonable that the calculation bitdepth should increase with the magnitude of the weight. We construct two

32K bytes LUTs with each LUT computing using half the bitdepth assigned to each error value. Then the calculation of

M(p) requires 2 table look-up and 2 addition operations. The output from this implementation (Fig. 5) is qualitatively

the same as the original Shiau-Fan algorithm (Fig. 4).

Fig. 4. Shiau-Fan error diffusion.

In another example, we use the following calculation bitdepth distribution for the weights:

8

Fig. 5. Shiau-Fan error diffusion using two LUTs.

4
16 (4) 2

16 (3) 1
16 (2) 1

16 (2)

8
16 (5) ×

We create a single 64K bytes LUT and calculateM(p) using 1 table look-up operation and 1 addition. The output of

this halftoning algorithm is shown in Fig. 6. The halftone image suffers some quality loss and has increased contrast.

So far, the LUT table is used to compute
∑

i∈N w(i)e(i + p) and this is added to the input pixelv(p) to obtain the

modified inputM(p). Another variant of this algorithm is to havev(p) as part of the input to the LUT and have the

LUT computeM(p) directly. This adds another level of flexibility to the tradeoff equation. For example, consider

Floyd-Steinberg error diffusion [1] with weights and calculation bitdepth distribution:

1
16 (6) 5

16 (8) 3
16 (6)

7
16 (8) × (8)

The number in parentheses next to ‘×’ denotes the calculation bitdepth of the current pixel valuev(p). Using two

LUTs to split up the bits, we obtain two 256K bytes LUTs whose outputs are summed up to obtainM(p). If the LUTs

are accessed in parallel, the time it takes to computeM(p) is 1 table look-up operation and 1 addition operation. The

halftone output is shown in Fig. 7b which is qualitatively the same as the original Floyd-Steinberg algorithm (Fig. 7a).

The speed of this implementation approaches that of the blue noise mask dithering algorithm [2], which for large dither

9

Fig. 6. Shiau-Fan error diffusion using a single LUT.

masks has similar memory requirements. This is significant since dithering algorithms are point operation algorithms

and thus are inferior to error diffusion in terms of sharp detail rendition.

IV. CONCLUSIONS

We have presented a novel LUT-based error diffusion algorithm which allows for a flexible tradeoff between output

image quality, hardware complexity and processing speed. In particular, quality can be traded off by varying the

calculation bitdepth of the error values. Furthermore, the multiple LUTs used are amenable to parallel implementation.

The above technique can be used in various variations of the error diffusion algorithms such as algorithms where the

kernel depends on the input pixel value [4]. It can also be useful in algorithms where the computation of a linear

combination of values needs to be sped up. This include halftoning algorithms such as Direct Binary Search [10] and

other types of iterative halftoning algorithms [11].

One implementation issue is the repacking of the bits of the pixel and error values to form an index for the LUT.

This is best incorporated into the hardware design as it requires little or no computation at all. An example of hardware

implementation where bits are repacked to form an index to a LUT can be found in [12] where it is used to enable print

quality enhancement of binary text data. With such hardware designs and fast enough memory, we can expect error

diffusion to be performed at speeds comparable to point operation halftoning algorithms such as dither mask screening.

10

(a) (b)

Fig. 7. Floyd-Steinberg error diffusion. (a) Original algorithm. (b) Implemented using two LUTs and only 1 addition operation is needed to

compute the modified inputM(p).

REFERENCES

[1] R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial grayscale,”Proc. Soc. Inform. Disp., vol. 17, no. 2, pp. 75–77, 1976.

[2] M. Yao and K. J. Parker, “Modified approach to the construction of the blue noise mask,”J. of Elec. Imag., vol. 3, no. 1, pp. 92–97, 1994.

[3] H. R. Kang, “Fast error diffusion,” inProceedings of SPIE, vol. 4663, pp. 302–309, 2002.

[4] C. P. Tresser and C. W. Wu, “Target patterns controlled error management.” US Patent 6006011, 1999.

[5] R. Ulichney,Digital Halftoning. Cambridge, MA: MIT Press, 1987.

[6] H. R. Kang,Digital Color Halftoning. SPIE Press, 1999.

[7] J. Jarvis, C. Judice, and W. Ninke, “A survey of techniques for the display of continuous tone pictures on bilevel displays,”Computer

Graphics and image Processing, vol. 5, pp. 13–40, 1976.

[8] G. Wolberg and H. Massalin, “Fast convolution with packed lookup tables,” inGraphics Gems IV, pp. 447–464, Academic Press, 1994.

[9] J. Shiau and Z. Fan, “A set of easily implementable coefficients with reduced worm artifacts,” inProc. SPIE, vol. 2658, pp. 222–225, 1996.

[10] J. P. Allebach, “DBS: retrospective and future directions,” inProceedings of SPIE, vol. 4300, pp. 358–376, 2001.

[11] C. W. Wu, G. Thompson, and M. Stanich, “A unified framework for digital halftoning and dither mask construction: variations on a theme

and implementation issues,” inProc. IS&T’s NIP19: Int. Conf. on Digital Printing Technologies, pp. 793–796, 2003.

[12] M. J. Stanich, “Print-quality enhancement in electrophotographic printers,”IBM J. of Res. and Dev., vol. 41, no. 6, pp. 669–678, 1997.

