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Abstract

Using classification models, applications track streaming data to detect actionable alerts,

which may include, for example, network intrusions, transaction frauds, biosurveilence abnor-

mality, etc. Due to concept drifts, maintaining a model’s uptodateness has become one of the

most challenging tasks in mining data streams. State of the art approaches, including both the

incrementally updated classifiers and the ensemble classifiers, have proved that model update

is a very costly process. In this paper, we introduce the concept of model granularity, and

show that reducing model granularity will reduce update cost. Indeed, models of fine granu-

larity enable us to efficiently pinpoint local components in the model that are affected by the

concept drift. It also enables us to derive new components that can easily integrate with the

model to reflect the current data distribution, thus avoiding avoid expensive updates on a global
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scale. Experiments on real and synthetic data show that our approach is able to maintain good

prediction accuracy at a fraction of model updating cost of state of the art approaches.

1 Introduction

Traditional classification methods work on static data, and they usually require multiple scans of

the training data in order to build a model [14, 8, 7]. The advent of new application areas such

as ubiquitous computing, e-commerce, and sensor networks leads to intensive research on data

streams. In particular, mining data streams for actionable insights has become an important and

challenging task for a wide range of applications [5, 10, 15, 3, 9].

State of the art For many applications, the major challenge in mining data streams lies not in

the tremendous data volume, but rather, in the time changing nature of the data, a.k.a. the concept

drifts [10, 16, 6]. If the data distribution is static, we can always use a subset of the data to

learn a fixed model and use it for all future data. Unfortunately, the data distribution is constantly

changing, which means the models have to be constantly revised to reflect the current data feature.

It is not difficult to see why model update incurs a major cost. Stream classifiers that handle

concept drifts can be roughly divided into two categories. The first category is known as the

incrementally updated classifiers. The CVFDT approach [10], for example, uses a single decision

tree to model streams with concept drifts. However, even a slight drift of the concept may trigger

substantial changes in the tree (e.g., replacing old branches with new branches, re-growing or

building alternative sub-trees), which severely compromise learning efficiency. Aside from this

undesirable aspect, incremental methods are also hindered by their prediction accuracy. This is so
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because they discard old examples at a fixed rate (no matter if they represent the changed concept

or not). Thus, the learned model is supported only by the data in the current window – a snapshot

that contains relatively small amount of data. This causes large variances in prediction.

The second category is known as theensemble classifiers. Instead of maintaining a single

model, the ensemble approach divides the stream into data chunks of fixed size, and learns a

classifier from each of the chunk [16, 6]. To make a prediction, all valid classifiers have to be

consulted, which is an expensive process. Besides, the ensemble approach has high model update

cost: i) it keeps learning new models on new data, whether it contains concept drifts or not; ii)

it keeps checking the accuracy of old models by applying each of them on the new training data.

This apparently introduces considerable cost in modeling high speed data streams.

If models are not updated timely because of high update cost, their prediction accuracy will

drop eventually. This causes a severe problem, especially to applications that handle large volume

streaming data at very high speed.

Model Granularity In this paper, we introduce the concept of model granularity. We argue that

state of the art stream classifiers incur a significant model update cost because they use monolithic

models that do not allow a semantic decomposition.

Current approaches for classifying stream data are adapted from algorithms designed for static

data, for which monolithic models are not a problem. For incrementally updated classifiers, the fact

that even a small disturbance from the data may bring a complete change to the model indicates

that monolithic models are not appropriate for data streams. The ensemble approach lowered

model granularity by dividing the model into components each making independent predictions.

However, this division is not semantic-aware: in face of concept drifts, it is still very costly to tell
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which components are affected and hence must be replaced, and what new components must be

brought in to represent the new concept. In this sense, the ensemble model is still monolithic.

In this paper, we are concerned with the problem of reducing model update cost in classifying

data streams. We observe that in most real life applications, concepts evolve slowly, which means

we shall be able to avoid making global changes to the model all the time. We achieve this by

building a model consisting of semantic-aware components of fine granularity. In face of concept

drifts, it enables us to figure out, in an efficient way, i) which components are affected by the

current concept drift, and ii) what new components shall be introduced to model the new concept

without affecting the rest of the model. We show that our approach give accurate predictions at a

fraction of cost required by state of the art stream classifiers.

Our Contribution In summary, our paper makes the following contributions:

• We propose the concept of model granularity, and show that granularity plays an important

role in determining model update cost.

• We introduce a model consisting of semantic-aware components of fine granularity. It en-

ables us to immediately pinpoint components in the model that become obsolete when con-

cept drifts occur.

• We introduce a low cost method to revise the model. Instead of learning new model compo-

nents from raw data, we propose a heuristic that derives new components efficiently from a

novel synopsis data structure.

• Experiments show that our model update cost is reduced without compromising classifica-

tion accuracy.
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Paper Organization The rest of the paper is organized as follows. Section 2 describes related

work. In section 3, we use decision tree as an example to introduce the impact of model granularity.

Section 4 describe our approach of building a model of fine granularity in detail. Section 5 reports

experimental results, and we conclude in Section 6.

2 Related Work

Traditional classification methods, including, for example, C4.5 and the Bayesian network, are

designed for static data. To the same goal, rule-based approaches called associative classification

have also been proposed [12, 11]. A rule-based classifier is composed of high quality association

rules learned from training data sets using user-specified support and confidence thresholds. Since

association rules explore highly confident associations among multiple variables, the rule-based

approach overcomes the constraint of the decision-tree induction method which examines one

variable at a time. As a result, they usually have higher accuracy than the traditional classification

methods. However, the techniques used in these methods focus on mining rules in static data, and

do not apply to infinite data streams, nor concept drifts.

In wake of recent interest in data stream applications, several classification algorithms have

been introduced for streaming data [10, 16]. The CVFDT [10] is an incremental approach. It

refines a decision tree by continuously incorporating new data from the data stream. In order to

handle concept drifts, it retires old examples at a predetermined “fixed rate” and discards or re-

grows sub-trees. However, because decision trees are unstable structures, even slight changes in

the underlying data distribution may trigger substantial changes in the tree, which may severely

compromise learning efficiency. The ensemble approach [16], on the other hand, constructs a
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weighted ensemble of classifiers. Classifiers in the ensemble are learned from data chunks of fixed

size. However, no matter whether concept drifts occur or not, it keeps training new classifiers and

recomputing weights of existing classifiers in the ensemble, which introduces considerable cost,

and becomes vulnerable in dealing high speed data streams.

Our work introduces a rule-based stream classifier. It aims at maintaining a model made up

of tiny components that are individually revisable. To access these components efficiently, we use

tree based index structures. Using trees as summary structures of data streams has been studied

mostly in the field of finding frequent patterns in data stream. Mankuet al. [13] proposed an

approximate algorithm that mines frequent patterns over data in the entire stream up to now. The

estDec method [2] finds recent frequent patterns, and it defines frequency using an aging function.

The Moment algorithm [4] uses index trees to mine closed frequent patterns in a sliding window.

However, although similar data structures are used, they are for different purposes. Their goal is

to find all patterns whose occurrence is above a threshold, and the problem of prediction is not

considered.

3 Motivation

For streams with concept drifts, model updates are not avoidable. Our task is to design a model

that can be updated easily and efficiently. To achieve this goal, we need to ensure the following:

1. The model is decomposable into smaller components, and each component can be revised

independently of other components;

2. The decomposition is semantic-aware in the sense that when concept drift occurs, there is
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an efficient way to pinpoint which component is obsolete, and what new component shall be

built.

Clearly, the incrementally updated classifiers meet neither of the two requirements, while the

ensemble classifiers satisfy only the first one. Our motivation is to reduce update cost by reducing

model granularity. We first use decision tree classifiers to illustrate the impact of model granularity

on update cost. Then, we introduce a rule-based classifier, and discuss the possibility it offers to

reduce update cost.

3.1 Monolithic Models

We consider a stream as a sequence of recordsr1, · · · , rk, · · · , where each record hasd attributes

A1, · · · , Ad. In addition, each training record is associated with a class labelCi. We place a

moving window on the stream. LetWi denote the window over recordsri, ..., ri+w−1, wherew is

the window size. From windowWi, we learn a modelCi.

We use decision tree to illustrate the cost of model update. The reason of using decision tree

is because decision trees are considered “interpretable” models, that is, unlike a black box, their

semantics allow them to be updated incrementally. Figure 1 shows a data stream with moving

windows of size 6. Each record has 3 attributes and a class label. The decision tree forW1 is

shown in Figure 2(a). After the arrival of recordr7 andr8, the window moves toW3. The decision

tree ofW3 is shown in Figure 2(b).

Although majority of the data and the concept they embody keep the same, we find that the two

decision trees are completely different. This illustrates that small disturbances in the data stream

may cause global changes in the model. Thus, even for an interpretable model, in many cases,
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incrementally maintaining the model is as costly as rebuilding one from scratch.

The ensemble approach uses multiple models. However, the models are usually homogeneous,

each of which tries to capture the global data feature as accurate as possible. In this sense, each

model is still monolithic, and it is replaced as a whole when accuracy drops [16].

Figure 1: Moving windows on streaming data

(a)W1 (b) W3

Figure 2: Decision tree models
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3.2 Rule-based Models

A rule has the form ofp1 ∧ p2 ∧ ...∧ pk → Cj, whereCj is a class label, and eachpi is a predicate

in the form ofAi = v. We also denotep1 ∧ p2 ∧ ... ∧ pk as a pattern.

We learn rules from records in each windowWi. If a rule’s support and confidence are above

the predefined thresholdminsupandminconf, we call it avalid rule. All valid rules learned from

windowWi form a classifierCi.

We use rules to model the data shown in Figure 1. Assume theminsupandminconf are set at

0.3 and 0.8 respectively. The valid rules ofW1 are1

a1, b2 → C1, b1 → C2, a3, c1 → C3, a3 → C3 (1)

After the window moves toW3, the valid rules become

c3, b2 → C4, b1 → C2, a3, c1 → C3, a3 → C3 (2)

From (1) and (2) above, we make the following observations: i) only the first rule has changed,

which shows, indeed, small disturbance in the data does not always introduce overall model update;

ii) rule-based models have very low granularity, because each component, whether a rule, a pattern,

or a predicate, is interpretable and replaceable.

Thus, our goal is that, as long as the majority of the data remains the same between two win-

dows, we shall be able to slightly change certain components of the model to maintain its up-

todateness. In the rest of the paper, we develop algorithms that allow us to i) efficiently pinpoint

components that become outdated, and ii) efficiently derive new components to represent emerging

concepts.

1When no confusion can arise, we usea1 to denote predicateA = a1.
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4 A Low Granularity Stream Classifier

4.1 Overview

We maintain a classifier that consist of a set of rules. LetWi be the most recent window, and

let Ci be the classifier forWi. When windowWi moves toWi+1, we update the support and the

confidence of the rules inCi. The new classifierCi+1 contains the old rules ofCi that are still valid

(support and confidence above threshold) as well as new rules we find inWi+1. To classify an

unlabelled record, we use the rule that has the highest confidence among all the rules that match

the record. If the record does not match any valid rule, we classify it to be the majority class of the

current window.

The main technique of our approach lies in its handling of concept drifts.

• If the concept drifts are not too dramatic and the window of the stream has appropriate size2,

most rules do not change their status from valid to invalid or from invalid to valid. In this

case, our approach incurs minimal learning cost.

• Our approach detects concept drifts by tracking misclassified records. The tracking is per-

formed by designating a historical window for each class as a reference for accuracy com-

parison. This allows us to efficiently pinpoint the components in the model that are outdated.

• We introduce a heuristic to derive new model components from the distribution of misclas-

sified records, thus avoiding learning new models from the raw data again.

2Windows that are too big will build up conflicting concepts, and windows that are too small will give rise to the

overfitting problem. Both have an adverse effect on prediction accuracy.
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4.2 Dealing with concept drifts

We describe methods that detect concept drifts, pinpoint obsolete model components, and derive

new model components efficiently.

4.2.1 Detecting Concept Drifts

First, we group rules by their class label. Second, for each class, we designate a historical window

as its reference window.

To detect concept drifts related to classCi, we compare the predictive accuracy of rules corre-

sponding toCi in the reference window and in the current window. The rationale is that when the

data distribution is stable and the window size is appropriate, the classifier has stable predictive

accuracy. If at certain point, the accuracy drops considerably, it usually means some concept drifts

have occurred and some new rules that represent the new concept may have emerged.

Predictive accuracy of a model is usually measured by the percentage of records that the model

misclassified. For instance, in the ensemble approach [16], a previous classifier is considered

obsolete if it has a high percentage of misclassified records, in which case, the entire classifier will

be discarded. Clearly, this approach does not tell uswhich partof the classifier gives rise to the

inaccuracy so that only this particular part needs to be updated.

In our approach, instead of using the percentage, we study thedistributionof the misclassified

records. More formally, we say a record is misclassified if i) the classifier assigns a wrong label

to the record, or ii) there is no matching rule for the record. Furthermore, we say recordr is a

misclassified record that belong toCj if r’s true label isCj.

Definition 1. Number of misclassified records:Nij
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LetWi be a window.Nij is the number of records inWi whose true class isCj but are misclassified

by the last classifier.

Theorem 2. If the stream is stable,Nij keeps stable with a high probability.

Proof: Let R:P → C is a valid rule in a window. The true support(stable support) of P is

s and the observed support in this window iss′. Similarly, the true confidence of R isc and the

observed confidence isc′. We regards′ andc′ as random variables. Chernoff bound states, for any

0 ≤ ε ≤ 1:

Pr{|s′ − s| ≥ ε} ≤ 2e
−wε2

2s (3)

Let the right side of Equation beδ. We see that, with probability≥ δ, the difference ofs′ ands

is beyondε, whenw = 2sln(2/δ)
ε2

. Let s0 = max{sup(P )|P is the pattern of a valid rule}. We can

get whenw ≥ 2s0ln(2/δ)
ε2

, the observed support of any pattern of a valid rule will be within±ε of its

true support with probability1− δ.

Similarly, we have:

Pr{|c′ − c| ≥ ε′} ≤ 2e
−wε′2

2c (4)

Let c0 = max{conf(R)|R is a valid rule}.Similarly, we can get whenw ≥ 2c0ln(2/δ)
ε′2 , the

observed confidence of any valid rule will be within±ε′ of its true confidence with probability

1− δ.

From above we can get that if stream is stable, the support and the confidence of valid rules

will be stable. With these rules we can get a stable classifier named standard classifier. Although

the support and the confidence may fluctuate slightly in different window, the fluctuation will not

affect the prediction results. That is, for a record, the prediction result by the classifier in certain

window will be same with that of the standard classifier. Further, we can split the data space
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into two parts:Pr andPw wherePr contains the records that can be classified correctly andPw

contains the records that cannot be classified correctly by the standard classifier. Using chernoff

bound again, and taking whether a record belongs toPr as a random variable, we can state that the

number of misclassified records will stable with a high probability. So, when the stream is stable,

Nij will be stable with a high probability. End.

With this theorem, we can get that whenNij increases dramatically, a concept drift related to

Cj happens in a high probability. Moreover, The misclassified records can enable us to pinpoint the

exact subset of rules that are conflicting with the new data distribution, and further more, through

a careful analysis of them, we can derive the emerging new rules.

To measure whether an increase ofNij amounts to a concept drift in windowWi, we choose a

historical windowWk as a reference. Note that this reference window cannot be a fixed window.

For example, if we always use the window immediately beforeWi (that is,k = i − 1) as the

reference window, we may not be able to detect any concept drift, because concept drifts usually

build up slowly, and only become apparent over a certain period of time.

Definition 3. Reference Window

Let Wi be the current window. We say windowWk is the reference window for classCj if Nkj =

minl≤i Nlj.

Clearly, for different classes, the reference windows may be different. The reference window

enables us to tell how far the concepts (with regard to a particular class) have drifted away from

the state in which they are accurately modelled. With this knowledge, we can decide whether we

need to mine new rules that model this concept. Formally, if the difference betweenNij andNkj

reaches a user-defined thresholdminWR, i.e.,Nij−Nkj ≥ minWR, it may indicate that we need new
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rules for classCj in Wi.

Nij is computed by the following equation:

Nij = Ni−1,j + g(ri+w−1, i, j)− g(ri−1, i, j) (5)

whereg(r, i, j) = 1 if r’s true label isCj and is misclassified byCi to some other class, and 0

otherwise.

4.2.2 Finding new rules

Assume in windowWi, we findNij − Nkj ≥ minWR. We need to find new rules to deal with the

drop of the accuracy. To avoid learning the new rules from scratch, we analyze the misclassified

records being tracked to find clues about the patterns of the new rules.

Assume all misclassified records whose true class label isCj satisfy two predicatesA1 = v1

andA2 = v2. Then, it is very likely that a new rule in the form ofP → Cj has emerged where

P contains one or both of the two predicates. On the other hand, if a predicate is satisfied by few

misclassified records, probably the new rules do not contain the predicate. We use this heuristics

to estimate the form of the new rules based on the information in the misclassified records.

Formally, we useLij to denote the set of predicates each of which is satisfied by no less thanc

misclassified records that belong to classCj. We representLij in the form of{pi : ci} wherepi is

a predicate, andci ≥ c is the number of misclassified records belonging toCj that satisfypi. We

useLij to generate candidate patterns of the new rules.

Let us return to the data stream in Figure 1 as an example. AssumeminWR is 2. For windowW1,

classifierC1 (shown in Eq 1) classifies every record correctly, so we haveN1,i = 0 for 1 ≤ i ≤ 4.

For windowW3, bothr7 andr8 are misclassified, soN3,4 becomes 2. Since the increase ofN3,4 is
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≥ minWR, we decide to mine new rules inW3. For classC4, the misclassified predicates and their

misclassified frequency are:{b2 : 2, c3 : 2, a1 : 1, a2 : 1}. We then decide the new rule is very

likely to have a pattern that includes predicateb2 and/or predicatec3, and we use these predicates

to generate the pattern of the new rule, and ignore other patterns. It turns out thatc3, b2 → C4 is

exactly the new rule we are looking for (Eq 2).

We describe our method of mining new rules more formally. We use a tableT to storeLij

for each classCj. TableT is updated as the window moves so it always contain the misclassified

predicates and their frequencies in the most recent window. We updateT as follows. WhenWi

becomes the new window and recordri−1 (the record that moves out) is a previously misclassified

record whose true label isCj, then for each attributeAd, we decrease the count ofAd = vd by 1,

wherevd is the value ofri−1 for attributeAd. We do the same forri+w−1 (the record that moves

in), but increase the count instead of deceasing it.

Algorithm M INERULE

1. sort all candidate predicates by their frequency

2. choose the top-K predicatesp1, ..., pK to construct a Candidate Rule Set (CRS)

3. scan the window to compute the support and confidence of rules in CRS

4. add valid rules to the current classifier

For everyw records (w is the window size), we compareNij with Nkj for eachj. We invoke

procedureM INERULE to mine new rules if the difference exceedsminWR. First, we construct a set

of candidate patterns. We sort all predicates by their occurrence frequencies in descending order.

Then, we use the top-K predicates to construct the patterns. We restrict the patterns to be within

certain lengthN . The reason is: i) a rule with many predicates has low support and cannot form a
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valid rule, ii) complex rules tent to overfit the data, and iii) evaluating rules with a long pattern is

time consuming. Then, we construct a candidate rule set (CRS) for classCj using patterns we have

obtained. We compute the support and the confidence of the rules in CRS. If a certain candidate

rule is valid, that is, its support and confidence exceedsminsup andminconf , we add this new

rule into the current classifier.

One remaining problem is, are the new rules discovered by procedureM INERULE enough to

represent the latest data distribution? After all, the constraints we use might have prevented us

from discovering some subtle concepts. Indeed, if the constraints are relaxed, we may find more

rules, but some just reflect noises in the data. The new rules will be evaluated as the window moves

ahead. At some windowWi′ down the stream when we are required to compareNi′j andNkj, we

will have accumulated more statistics. In most cases, the introduction of the new rules in window

Wi will have reducedNi′j so that its difference withNkj is smaller thanminWR, which means the

new rules are sufficient. In case the difference betweenNi′j andNkj is still larger thanminWR,

which means either we have missed some subtle rules, or there is another concept drift, we invoke

procedureM INERULE again. The experiments show that in most cases, we only need to apply

procedureM INERULE once to get enough new rules for one concept drift.

4.3 The algorithm

To build a stream classifier that is efficiently adaptable to new concepts, one major issue is to how

to access the records and update the rules efficiently. In this section, we describe data structures

and algorithms for this purpose.
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4.3.1 Data Structure

We use two tree structures to maintain the rules and the records for the most recent window.

The RS-tree We assume there is a total order among attributesA1 ≺ · · · ≺ Ad. We can sort

predicates and patterns based on this order. We store current rules in a prefix tree called the RS-

tree. Each nodeN represents a unique ruleR : P → Ci. A nodeN ′ that represents ruleP ′ → Cj

is a child node ofN , iff:

1. P ⊂ P ′

2. P ≺ P ′

3. no other ruleP ′′ → Ck exists so thatP ⊂ P ′′ ⊂ P ′ andP ≺ P ′′ ≺ P ′

A node storessup(R) andconf(R) for the ruleR it represents. An example RS-tree is shown

in Figure 3(b). NodeN1 represents rule(a1, b2) → C1 whose support and confidence are 0.33 and

1 respectively. NodeN3 is the child ofN2 since{a3} ⊂ {a3, c1} and{a3} ≺ {a3, c1}.

The REC-tree We think of each recordr as a sequence,〈vd, · · · , v1, C〉, wherevi is r’s value for

attributeAi, andC is r’s class label. We insert recordr in its sequence representation〈vd, · · · , v1, Ci〉

into a tree structure, which we call the REC-tree. A path from any internal nodeN to the root node

represents a unique postfix{Ai = vi, Ai+1 = vi+1, · · · , Ad = vd}.

Each internal node keeps a counter, which denotes how many records of the current window

contain the postfix represented by the node. A node in the REC-tree may point to nodes in the

RS-tree. Assumep1 ≺ · · · ≺ pk. NodeN points to rulep1 ∧ p2 ∧ · · · ∧ pk → Ci in the RS-tree if:

1. nodeN satisfiesp1
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2. the postfix that starts atN contains the patternp1 ∧ p2 ∧ · · · ∧ pk

Intuitively, nodeN represents a projection of a recordr, and it points to all rules whose pattern

r satisfies. For each record that moves into the window, we update the support and the confidence

of the rules it matches. The rule pointers speed up this process.

An example REC-tree is shown in Figure 3(a). Record{a2, b1, c1 : C1} is stored on the left-

most path. Node(b1 : 1) in the path points to ruleb1 → C2 in the RS-tree.

The REC-tree is associated with an array of record ids[i, · · · , i+w−1]. Each record id points

to a leaf node that represents that record. When a new record arrives, we insert it into REC-tree

and also insert an entry in the rid array. The record id array enables us to access any record in the

window efficiently.

(a) REC-tree (b) RS-tree

Figure 3: REC-tree and RS-tree
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4.3.2 Update the classifier using REC-tree

Assume the current window isWi. When a new recordri+w arrives, the window becomesWi+1

and we derive a new classifierCi+1. First we insertri+w to the REC-tree. We update the support

and the confidence of the rules pointed to by the nodes involved in the insertion as follows.

supi+1(R) =
supi(R) ∗ w + 1

w

confi+1(R) =





confi(R)∗supi(R)+1
supi(R)+1

: Ci = Cj

confi(R)∗supi(R)
supi(R)+1

: Ci 6= Cj

wheresupi(R) andconfi(R) are the old support and the old confidence ofR, andsupi+1(R) and

confi+1(R) are the new ones;Ci is the class label ofri+w andCj is the class label ofR.

The insertion ofri+w can create new nodes, in which case the counter is set to 1. Moreover,

new rule pointers, if necessary, are added to this node. To find which rules are matched a postfix,

we need to scan RS-tree. Assume a new node representsAi = v. Since the RS-tree is a prefix tree,

we only need to scan the subtrees whose root’s rule hasAi = v as its pattern’s first predicate.

We deleteri from REC-tree and update the rules matched by it. We decrease the counters of

the nodes involved. When the counter of a node becomes 0, we do not delete it from the REC-tree

immediately. Since it contains the information of the rules it points, the information can be used

later when a record with the same postfix arrives. However, when the number of nodes in REC-tree

exceeds a threshold, we delete the nodes whose counters are 0.

4.3.3 The main algorithm

We now describe our algorithm as a whole. It contains two phases. The first phase is the ini-

tial phase. We use the firstw records to train all valid rules for windowW1. Based on them,
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we construct the RS-tree and the REC-tree. The second phase is the update phase. When record

ri+w arrives, we insert it into the REC-tree and update the support and the confidence of the rules

matched by it. Then we delete the oldest record and also update the rules matched according to it.

For everyw records, we compareNi+1,j andNkj for each class label. If for somej, their differ-

ence exceedsminWR, we apply procedureM INERULE to find the new rules. AlgorithmUPDATE

describes the update phase.

Algorithm UPDATE

Input: ri: record that moves out of the window;

Input: ri+w: record that moves into the window;

1. let N be the node that representsri in the REC-tree;

2. for each noden from N to the root node

3. decrementn’s counter by 1;

4. update the rules pointed byn;

5. for m ← d to 1

6. if Am = vm already exists in REC-tree

7. then increment its counter by 1;

8. update the rules’ support and the confidence;

9. else create a new node with counter =1;

10. scan RS-tree and add rule pointers if necessary;

11. add a new entry in record id array;

12. updateNi+1,j andLi+1,j;

13. if (i + 1) modw = 0 and (Ni+1,j −Nkj) ≥ minWR
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14. then apply M INERULE;

5 Experiments

We conducted extensive experiments on both synthetic and real life data streams. The results show

the low granularity classifier proposed in this paper has significant advantage over state of the art

approaches. Tests are conducted on a PC with a 1.7GHz CPU and 256 MB main memory.

Datasets We create synthetic data with drifting concepts using a moving hyperplane. A hyper-

plane ind-dimensional space is represented by:
∑d

i=1 aixi = a0. Records satisfying
∑d

i=1 aixi <

a0 are labelled positive, otherwise negative. Hyperplane has been used to simulate time-changing

concepts because the orientation and the position of the hyperplane can be changed in a smooth

manner by changing the magnitude of the weights [10, 16].

We generate random records uniformly distributed in[0, 1]d. Weightsai(1 ≤ i ≤ d) are

initialized by random values in [0, 1]. We seta0 = 1
2

∑d
i=1 ai so that the hyperplane cuts the

multi-dimensional space in two parts of the same volume. Thus, roughly half of the examples are

positive, and the other half are negative.

We simulate concept drifts using several parameters. Parameterk specifies the number of

dimensions whose weights are changing. Parameterti ∈ R, 1 ≤ i ≤ k specifies the magnitude of

the change for weightsai, andsi ∈ {−1, 1} specifies the direction of change for each weightai.

We also used real life dataset ‘nursery’ in the UCI ML Repository [1]. The dataset has 10,344

records and 8 dimensions. we randomly sample records from the dataset to generate a stream. To

simulate concept drifts, for every 50,000 records sampled, we randomly select some attributes of
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the data set and change their values in a consistent way. One method we use is to shuffle the values,

for instance, we change valuesa1 → a2 → · · · → an → a1 for all records and keep the class label

intact.

5.1 Effect of model updating

We show the effectiveness of updating a rule-based classifier model in handling concept drifts. We

compare three approaches: i) training an initial rule-based classifier and using it without change

to classifier streaming data, ii) continuously revising the initial classifier by updating the support

and confidence of its rules, and iii) continuously revising the initial classifier by updating the

confidence/support of the existing rules and discovering new rules.

In the synthetic dataset we use, each record has 10 dimensions. The window size is 5,000. We

introduce a concept drift by randomly choosing 4 dimensions and changing their weights for every

50,000 records. The results in Figure 4 are obtained for a run with parametersminsup = .03,

minconf = .7, minWR = 150, K = 7 (the top-K parameter) andN = 5 (the maximum pattern

length).

From Figure 4, we observe that, 1) after the first concept drift, the accuracy of the initial classi-

fier drops significantly, which shows that concept drifts can be effectively detected by misclassified

records, 2) updating rule can adjust the classifier to adapt to the concept drift. 3) compared to ad-

justing existing rules only, the classifier that mines new rules has higher accuracy.
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Figure 4: Error Rate Comparison

5.2 The relation of concept drifts andNij

In this subsection, we verify the approach to detect concept drifts using abnormally increase of

Nij. We test it in a hyperplane dataset. Every after 50,000 records, we adjust the hyperplane to

simulate a concept drift. These two curves indicateNi1 andNi0 respectively. The result is shown

in figure 5. We can see that each time a concept drift happen,Ni1 andNi0 burst dramatically while

they keep stable when the streaming data is stable.
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Figure 5: Relation of concept drifts andNij
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5.3 Effect of rule composition

We verify the effectiveness of choosing the top-K candidate predicates in composing new rules.

We compare its accuracy against choosing predicates randomly. We used the same parameters as

in the previous experiment. The result is shown in Figure 6. It shows that by using most frequently

occurring predicates in misclassified records to construct CRS, we can obtain rules that effectively

representing the new concept.
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Figure 6: Choosing literals

5.4 Accuracy and time

While having improved or similar classifying accuracy, our rule-based approach is much faster

than state of the art stream classifiers. We compare our method with the ensemble classifier [16]

and CVFDT [10] in terms of accuracy and run time on both synthetic data and real life data.

We used different parameters (e.g., window size, number of classifiers in the ensemble, etc.)

to tune the classifiers, and a typical result is shown in Figure 7, which is obtained using windows

of size 10,000, and the ensemble contains 10 classifiers, each trained on 1,000 records. We report
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Figure 7: Synthetic data

error rate for every 5,000 records.

Figure 7(a) shows that the accuracy of our rule-based approach is higher than that of CVFDT,

and is similar to the ensemble classifier. Compared with CVFDT, our rule-based approach can

catch concept drifts and adjust the classifier more quickly. This is because the rule-based classifier

has low granularity, which means it can quickly determine which component to revise and quickly

figure out how to revise it, while the CVFDT has to learn the new concepts by re-growing a decision

tree level by level.

Figure 7(b) shows that our rule-based approach is much faster than the ensemble classifier and

CVFDT. Unlike the ensemble classifier and CVFDT, which keep learning new models, most of

the time all that our approach requires is to adjust the support and confidence of matched rules in

the model. Since each record only matches a limited number of rules, this operation is made very

efficient using the RS-tree and the REC-tree structure. Even when the new rule detection procedure

is triggered, the cost is still very small, because the update has already been limited to a very small

space, which is embodied by the top-K predicates. The second experiment is run on the real life
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Figure 8: Real life data

‘nursery’ dataset, and the results shown in Figure 8 are consistent with those on the synthetic data.

6 Conclusion

An important task in mining data stream is to overcome the negative effects of concept drifts.

Concept drifts pose a major challenge to stream classification algorithms because of the high cost

associated with maintaining the uptodateness of the models. Current stream classifiers are adapted

from algorithms designed for static data, and they are hardly incrementally maintainable because

it is not easy, if not impossible, to semantically break down the model into smaller pieces. In this

paper, we addressed the issue of classifier granularity, and we showed that by reducing this granu-

larity, change detection and model update can be made much more efficient without compromising

classification accuracy, as reported by our extensive experiments. Our future study will focus ex-

tending this work to enable the reuse of previously learned models by detecting recurring patterns

in concept drifts, thus further reducing the model update cost.
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